Remarks on Assignment 2

November 11, 2009

I have noticed some trouble in proving a lemma which is a hint for exercise 33. Here is the proof:

Lemma. Let Q be an abelian group, and let $q \in Q$ be a nonzero element. Then there exists $h: Q \to \mathbb{Q}/\mathbb{Z}$ such that $h(q) \neq 0$.

Proof. Consider the subgroup $\langle q \rangle \subseteq Q$, generated by the element q. It is a cyclic abelian group, and thus isomorphic to either \mathbb{Z} or to $\mathbb{Z}/m\mathbb{Z}$ for some $m \in \mathbb{Z}$. In the first case, define $\tilde{h}: \langle q \rangle \to \mathbb{Q}/\mathbb{Z}$ by $\tilde{h}(tq):=\frac{t}{2} \mod \mathbb{Z}$. In the second case, set $\tilde{h}(tq):=\frac{t}{m} \mod \mathbb{Z}$. This is a group homomorphism, and since \mathbb{Q}/\mathbb{Z} is injective (over \mathbb{Z}) it can be extended to $h: Q \to \mathbb{Q}/\mathbb{Z}$. But $h(q) = h(\iota(q)) = \tilde{h}(q) \neq 0$, as wanted.

