
1. Recall: Modules

Let R be a ring, always associative and with 1. Recall that a left R-module M over R is an
abelian group M , together with a function,

R×M →M, (r,m) 7→ rm,

such that:
(1) r(m1 +m2) = rm1 + rm2.
(2) (r + s)m = rm+ sm.
(3) (rs)m = r(sm).
(4) 1m = m.

One defines right R-modules similarly where the action now is M×R→ R. We have the notion of
a submodule and quotient module: a submodule is a subgroup which is closed under multiplication
by R. If N < M is a submodule then the quotient group M/N is naturally an R-module under
rm := rm.

An R-module homomorphism f : M1 →M2 between R-modules M1,M2, is a function,

f : M1 →M2,

which is a group homomorphism and satisfies f(rm) = rf(m). The kernel and image of f are then
R-modules. We have the isomorphism theorems for R-modules, the most basic of which is that
given f : M1 →M2 and a submodule N < Ker(f) there is a canonical R-module homomorphism
F : M/N →M2, given by F (m) = f(m), such that the following diagram is commutative:

M1
f //

can.

""FFFFFFFF M2

M/N

F
<<xxxxxxxx

Furthermore, the kernel of F is Ker(f)/N .
A short exact sequence of modules is a diagram of modules and homomorphisms

0→M1 →M2 →M3 → 0,

such that the image of every map is the kernel of the following one. Namely, M1 →M2 is injective,
M2 →M3 is surjective and the image of M1 is the kernel of M2 →M3. Thus, M3

∼= M2/Im(M1).

1.1. Free modules. Recall that a module M is a called free on a set X ⊂M , X = {xα : α ∈ I},
if every function f : X → N (of sets), where N is an R-module, extends uniquely to an R-module
homomorphism F : M → N such that F (x) = f(x), for x ∈ X. Equivalently, every element of
M has a unique expression as m =

∑
α∈I rαxα, with rα ∈ R and rα = 0 except for finitely many

α’s (so there is no issue of convergence). Still equivalently,

M ∼= ⊕α∈IR = {(rα)α∈I : rα ∈ R, rα = 0 for almost all α}.

1.2. Modules over a field. If R is a field, then a module over R is just a vector space. Every
module is free.

Exercise 1. Let R be a division ring. Prove that every module over R is free. You will need to
use Zorn’s lemma:

Recall that a partially order set (=poset) S is a set with a relation x ≤ y defined between
some pairs of elements x, y ∈ S, such that: (i) x ≤ x; (ii) x ≤ y and y ≤ x implies x = y; (iii)
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x ≤ y, y ≤ z ⇒ x ≤ z. A chain in S is a subset T ⊂ S such that for all t, t′ in T , either t ≤ t′

or t′ ≤ t. We say that a chain has an upper bound if there’s an element s ∈ S (we don’t require
s ∈ T ) such that s ≥ t for all t ∈ T . Zorn’s lemma states for a non-empty poset S that if every
chain in S has an upper bound than S has a maximal element, namely an element s0 ∈ S such
that if s ∈ S and s ≥ s0 then s = s0 (note that we do not require that s0 ≥ s for all s ∈ S). If
you have never seen Zorn’s lemma in action, try to use it to prove that any ring R has a maximal
left ideal. Take S to be the set of ideals I 6= R of R with the partial order I ≤ J if I ⊆ J .

1.3. Group rings. Let G be a finite group and k a field. The group ring k[G] has elements∑
g∈G agg, where ag ∈ k. The operations are∑

g∈G
ag · g +

∑
g∈G

bg · g =
∑
g∈G

(ag + bg) · g,

and ∑
g∈G

ag · g

∑
g∈G

bg · g

 =
∑
g∈G

(∑
h∈G

ahbh−1g

)
· g.

We view k as contained in k[G] via a 7→ a · 1G.
A k-linear representation of G, or a representation of G over k, is a homomorphism

ρ : G→ Aut(V ),

from G to the automorphism group – invertible k-linear transformations – of a vector space V
over k. Every such representation ρ makes V into a k[G]-module, where we let∑

g∈G
ag · g

 · v =
∑
g∈G

ag · ρ(g)(v), v ∈ V,

and, conversely, if V is a k[G]-module, then the action of k makes V into a k-vector space, and
we get a representation of G by

g 7→ ρ(g), ρ(g)(v) := gv.

Exercise 2. Analyze the structure of the rings Q[G], C[G], where G is the cyclic group Z/nZ.

1.4. Modules over a PID. Let R be a PID and let M be a finitely generated module over
R, which, recall, means that there is a surjective map of R-modules Rn →M , for some positive
integer n; equivalently, there are elements x1, . . . , xn of M such that every element in M is of the
form r1x1 + · · ·+ rnxn for some ri ∈ R (but such an expression is usually not unique). The main
theorem is that M is isomorphic to Ra ⊕⊕bi=1R/ai, where R 6= a1 ⊇ · · · ⊇ ab 6= {0} are ideals of
R and r is a non-negative integer. Moreover, such an expression is unique.

Important cases are R = Z, the ring of integers, and R = F[x], the ring of polynomials in the
variable x over a field F. Since an abelian group is the same thing as a Z-module, the first case
gives the classification of finitely generated abelian groups. The second case gives the theory of
Jordan canonical form, when F = C. This requires some more explanation, but the main point
is that given a linear transformation T : V → V , we can make V into a C[x] module by letting
xv = T (v).
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1.5. Localization. In this section we assume that R is a commutative ring. Let S ⊂ R be a
multiplicative set, i.e., 1 ∈ S and s, t ∈ S ⇒ st ∈ S. For example, R can be the ring of complex
analytic functions on C and S can be the functions that do not vanish at zero. Or R can be the
integers Z and S can be all integers not divisible by p. Both these examples are a special case of
the following.

Exercise 3. Let I be a prime ideal in R and S = R− I then S is a multiplicative set. Find the
relevant ideals in the examples just mentioned.

We now define a ring R[S−1] as follows: consider symbols r
s where r ∈ R and s ∈ S and define

a relation:
r1
s1
∼ r2
s2

⇐⇒ ∃t ∈ S t(r1s2 − r2s1) = 0.

Exercise 4. Prove that this is an equivalence relation. Prove that the operations
r1
s1

+
r2
s2

=
r1s2 + r2s1

s1s2
,

r1
s1
· r2
s2

=
r1r2
s1s2

,

make R[S−1] into a commutative ring and that the natural map

R→ R[S−1], r 7→ r

1
is a ring homomorphism. Find its kernel. Give examples when the kernel is trivial and when the
kernel is not trivial.

Example 1.5.1. Let R be an integral domain and S = R − {0}. The set S is multiplicative
and R[S−1] is actually a field containing R, called its field of fractions. It is the “minimal” field
containing R.

Let M be an R-module and S a multiplicative set. We may then define M [S−1] as the equivalence
classes of elements m

s ,m ∈ M, s ∈ S where m1
s1
∼ m2

s2
if there exists a t ∈ S such that t(s2m1 −

s1m2) = 0. Then M [S−1] is an R[S−1] module, where
m1

s1
+
m2

s2
=
s2m1 + s1m2

s1s2
,

r

s
· m1

s1
=
rm1

ss1
.

It is easy to see that if f : M1 →M2 is a homomorphism then the canonical map f : M1[S−1]→M2[S−1],
given by f(m/s) = f(m)/s is well-defined homomorphism.

A particular and important case of localization of modules is the following.

Exercise 5. Let I be an ideal of R then I[S−1] is an ideal of R[S−1], which is the ideal generated
by I in R[S−1]. Conversely, if ϕ : R→ R[S−1] is the natural map and J is an ideal of R[S−1]
then ϕ−1(J) is an ideal of R. Prove that (ϕ−1(J))[S−1] = J and if I∩S = ∅ then ϕ−1(I[S−1]) = I
(while if I ∩ S 6= ∅ then ϕ−1(I[S−1]) = R).

Conclude that if I is a prime ideal and S = R− I then there is a bijection between the ideals of
R contained in I and the ideals of R[S−1], which takes prime ideals to prime ideals. In particular,
R[S−1] is a local ring whose maximal ideal is I[S−1].

Exercise 6. Let S be a multiplicative set and 0→M1 →M2 →M3 → 0 an exact sequence of
R-modules. Prove that the sequence 0→M1[S−1]→M2[S−1]→M3[S−1]→ 0 is also exact.
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1.6. On the notion of rank. Let R be an integral domain and M a module over R. A set
X = {xα : α ∈ I} ⊂ M is independent if

∑
α∈I raxα = 0 (where all rα = 0 except for finitely

many) implies rα = 0 for all α. The rank of M is the supremum of the cardinalities of independent
sets X ⊂M .

Still assuming that R is an integral domain, recall that an element m ∈ M is called a torsion
element if ∃r ∈ R, r 6= 0 such that rm = 0. For example, if R = Z, all the element of M that
are of finite order (in the sense of the underlying abelian group) are torsion. One lets tor(M)
denote the collection of all torsion elements of M . This is a submodule of M . This submodule
has rank 0. Indeed, given an element m ∈ tor(M) and r ∈ R, r 6= 0, such that rm = 0 we find
that the element m is linearly dependent: the non-trivial linear combination rm is equal to zero.
Exercise 7. Let R be an integral domain. Prove that a free R-module M on a set X, has rank
|X|. You may assume this result for vector spaces and reduce to this case. Prove further that a
finitely generated module has finite rank.
Exercise 8. Let R = Z[

√
−5] and I the ideal 〈2, 1 +

√
−5〉. Prove that I is not a free R-module

and that it has rank 1.
Exercise 9. Show that rk(M) = rk(M/tor(M)).
Exercise 10. Let R be an integral domain and M an R-module. (i) Show that the rank of M is
equal to the cardinality of a maximal free submodule of M . (ii) Suppose that this rank is n. Prove
that every n + 1 elements of M are dependent. (iii) Let N ⊂ M be a maximal free submodule.
Prove that M/N is torsion.
Exercise 11. Let 0→M1 →M2 →M3 → 0 be an exact sequence of finitely generated modules.
Prove that rk(M2) = rk(M1) + rk(M3).


