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1. Introduction

We already assume some familiarity with modules, groups, fields, ....
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2. Categories

2.1. Categories: definition and some examples. The notion of a category serves to organize the type of

objects we study in mathematics and the maps between the objects that we allow. But besides serving as a

way to systemize our conventions, it also introduces powerful tools, namely, functors and derived functors,

equivalence of categories, universal objects, adjoint functors and so on, that allow one to prove new results

and clarify the wheels at work behind many results in algebra, topology and logic.

2.1.1. Definition of category. A category K consists of the following data:

(1) A collection of objects Ob K of objects of K;

(2) For any two objects A,B ∈ Ob K a set Mor(A,B), called the morphisms from A to B, such that
the following hold:

(a) The sets Mor(A,B) are pairwise disjoint;

(b) There is an associative composition law

Mor(A,B)×Mor(B,C)→ Mor(A,C), (f , g) 7→ g ◦ f ,
(often denoted gf );

(c) For every object A there is a morphism 1A ∈ Mor(A,A) such that f 1A = f , f ∈ Mor(A,B) and
1Af = f , f ∈ Mor(B,A).

(It follows that 1A is unique.) A morphism f ∈ Mor(A,B) is called an isomorphism, or equivalence, if there
is a morphism g ∈ Mor(B,A) such that gf = 1A, f g = 1B. Note that such g, if it exists, is unique since if
also g′f = 1A then (g′f )g = g but (g′f )g = g′(f g) = g′1B = g′. We can therefore denote g by f −1 when
convenient.

2.1.2. Examples. Here we list some of the principal examples of categories. Some may be unfamiliar at this

point, but will make sense when you continue in your studies of mathematics. The verification of the axioms

is left to you.

(1) The category of sets Set. The objects are sets. (Note that this collection is not a set in itself;

the notion of cardinality doesn’t make sense for it, since if we denote this collection by S then the

cardinality of 2S is bigger than that of S, by a fundamental result, yet 2S ⊂ S because every element
of 2S is a subset of S, hence a set in its own right, thus an element of S.) The morphisms are just

functions.

(2) The category of partially ordered sets, or posets, POSet. The objects are sets (S,≤) together with
a partial order ≤ (a relation which is reflexive, transitive and x ≤ y , y ≤ x ⇒ x = y , but there
could be elements x, y of S for which neither x ≤ y , nor y ≤ x .) The morphisms are functions that
preserve order, namely f ∈ Mor((A,≤), (B,≤)) if f is a function from A to B and x ≤ y , x, y ∈ A
implies f (x) ≤ f (y).

(3) The category of linearly ordered sets, LOSet. The objects are posets (A,≤) only that the order is
complete: for x, y ∈ A either x ≤ y or y ≤ x . The morphisms are as for POSet.

(4) The category of groups Gp. The objects are groups and the morphisms are group homomorphisms.

(5) The category of abelian groups AbGp. The objects are abelian groups and the morphisms are group

homomorphisms.

(6) The category of left R-modules RMod over a ring R. Let R be a ring, always associative with

identity 1. The objects are left R-modules (so the structure map is R ×M → M). The morphisms
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are R-modules homomorphisms. Similarly we have the category of right R-modules ModR (so the

structure map is M × R→ M). In particular, if R is a field then RMod is the category of vector
spaces over R whose morphisms are linear maps.

(7) The category of rings Ring. The objects are rings and the morphisms are ring homomorphisms.

(8) The category of topological spaces TopSp. The objects are topological spaces and the morphisms

are continuous maps.

(9) The category of short exact sequences of left R-modules, RSES. Let R be a ring. Recall that a

short exact sequence of R-modules is a sequence of left R-modules

0 // M1
i // M2

j // M3 // 0 ,

such that the image of every map is the kernel of the following one, that is, i is injective, Im(i) =

Ker(j) and j is surjective. A morphism,

( 0 // M1
i // M2

j // M3 // 0 ) → ( 0 // N1
i ′ // N2

j ′ // N3 // 0 ),

is a triple (f1, f2, f3) where fi : Mi → Ni is a morphism of R-modules and the following diagram
commutes:

0 // M1
i //

f1

²²

M2
j //

f2

²²

M3 //

f3

²²

0

0 // N1
i ′ // N2

j ′ // N3 // 0.

(10) Let S be a monoid (a semi-group with a two sided inverse). That is S has an associative composition

law, (x, y) 7→ xy , with a two-sided inverse. Define a category C , with a single object ∗ and with
Mor(∗, ∗) = S, where composition is given by multiplication. (So morphisms need not be functions.)

(11) The category of linear representations of a finite group G over a field k , Repk(G). Let G be a finite

group and k a field. A linear representation of G over k is a group homomorphisms ρ : G → GL(V ),
where V is a vector space over k . The objects of the category Repk(G) are finite dimensional linear

representations of G over k . A morphism f : (V, ρ)→ (V ′, ρ′) is a linear map f : V → V ′ such that
f ◦ ρ(g) = ρ′(g) ◦ f for all g ∈ G. Namely, f is a G-equivariant linear map. We remark that the
finiteness of G plays no role so far. However, having in mind the theory we are about to develop

concerning representations of groups, we restrict our discussion from the outset to finite groups.

(12) Let G be a group. The category GSet is the category whose objects are pairs (S, ρ) consisting of a

non-empty set S and a group homomorphism ρ : G → ΣS from G to the group of permutations of
S; namely, sets S equipped with a G-action. The morphisms are G-equivariant functions.

Exercise 2.1.1. An object X in a category C is called a final (respectively, initial) object, if for every object

A in C there is a unique morphism A→ X (respectively, X → A).
(1) Prove that an initial (resp. final) object is unique, up to unique isomorphism, if it exists.

(2) For each category listed above find if there is a final, or initial, object and determine it.

2.2. Functors and natural transformations.
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2.2.1. Definition of a functor. Let K,H be two categories. A covariant functor F : K→ H from K to H
is a rule associating to every object A of K an object F (A) of H and to every morphism f ∈ Mor(A,B)
a morphism F (f ) ∈ Mor(F (A), F (B)) such that (i) composition is respected, F (gf ) = F (g)F (f ), and (ii)
F (1A) = 1F (A).

We remark that not every object of H needs to be of the form F (A) for some object A; likewise, not every

morphism h ∈ Mor(F (A), F (B)) needs to be of the form F (f ) for some f ∈ Mor(A,B). It is also possible
that for some f1 6= f2 ∈ Mor(A,B) we have F (f1) = F (f2). This motivates the following definitions: (i) If
for every A,B in Ob K, for f1, f2 ∈ Mor(A,B) the equality F (f1) = F (f2) implies f1 = f2, we call F faithful;
(ii) If every morphism h ∈ Mor(F (A), F (B)) is the form F (f ) for some f ∈ Mor(A,B), and that holds for all
A,B in Ob K, we call F full.

A contravariant functor F : K→ H from K to H is a rule associating to every object A of K an object F (A)
of H and to every morphism f ∈ Mor(A,B) a morphism F (f ) ∈ Mor(F (B), F (A)) such that (i) composition
is respected, F (gf ) = F (f )F (g), and (ii) F (1A) = 1F (A).

2.2.2. Examples. We shall see many examples during the course. For now we give some basic, sometimes

artificial, examples.

(1) There is a class of functors, called forgetful functors. They are often faithful and rarely full. Here

are some instances:

(a) F : POSet→ Set, F ((A,≤)) = A, F (f ) = f . The functor forgets the order on A and forgets
the fact that f preserves order. This functor is faithful, but not full.

(b) F : LOSet→ POSet, F ((A,≤)) = (A,≤), F (f ) = f . The functor forgets the fact that the
order is complete. This functor is full and faithful.

(c) F : Repk(G)→ kMod. Here F ((V, ρ)) = V, F (f ) = f . The functor forgets the group action

and the fact that f is equivariant.

(d) F : TopSp→ Set, F ((S,T )) = S, F (f ) = f . The functor forgets that the set S has a
topology T on it and forgets the fact that f is continuous.

(2) The functor F : Gp→ AbGp. Let G be a group. Recall that G′ denotes the commutator group
of G, the subgroup of G generated by all expressions [x, y ], x, y ∈ G, where [x, y ] = xyx−1y−1.
The group G′ is normal in G and G/G′ is the largest quotient of G which is abelian. The functor is

F (G) = G/G′ and F (f ) = f̄ , where by that we mean that f : G → H induces a well-defined group
homomorphism, denoted f̄ , from G/G′ to H/H′, f̄ (gG′) = f (g)H′.

Exercise 2.2.1. Prove that this functor is not faithful and not full.

(3) The restriction and induction functors. Let H be a subgroup of a finite group G. The restriction

functor Res : Repk(G)→ Repk(H) is given by Res((V, ρ)) = (V, ρ|H). If we need to be more precise
we shall denote this functor by ResGH. For a morphism f : (V, ρ)→ (V, ρ′) we have F (f ) = f . This
functor is faithful but not full.

There is also a functor, called induction, Ind : Repk(H)→ Repk(G). Given a representation
(W,α) of H, we let

V = {f : G → W : f (gh) = α(h)−1f (g), h ∈ H},
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which is k-vector space under the usual addition and multiplication by scalar of functions. The action

of G is given by

[ρ(g)f ](x) = f (g−1x).

In the literature one also finds the following space

V ′ = {f : G → W : f (hg) = α(h)f (g),∀h ∈ H},
with G acting by

[ρ′(g)f ](x) = f (xg).

Exercise 2.2.2. Prove that V and V ′ are representations of G, and are in fact isomorphic repre-
sentations. Show how to complete the definition so that we get a functor. Is the functor full?

faithful?

(4) We have the torsion functor Tor from AbGp to AbGp associating to an abelian group A its torsion

subgroup Tor(A) = {a ∈ A : o(a) < ∞}. Here Tor(f ) = f . This functor is not faithful. If A
is finitely generated then Hom(A,B)→ Hom(Tor(A),Tor(B)) is surjective, but for general abelian
groups seems it is not, and so this is not a full functor. Suppose that there is an abelian group G such

that there is no surjection G → Tor(G) extending the identity map on Tor(G). Take the identity map
Tor(G)→ Tor(G). If there is a homomorphism f : G → Tor(G) extending the identity map then
f is surjective and we get a contradiction and so Tor applied to Hom(G,Tor(G)) is not surjective

onto Hom(Tor(G),Tor(G)). Conversely, if for every G there is a surjection G → Tor(G) extending
the identity map on Tor(G) then we easily check that Tor is full (given f : Tor(G)→ Tor(H) take
G ³ Tor(G)→ Tor(H) ↪→ H). Thus, the issue is whether there is an abelian group G for which
Tor(G) is not a direct summand? It is known that if Tor(G) is killed by some positive integer N

then it is a direct summand of G (see Rotman: An introduction to the theory of groups, 3rd edition,

Corollary 10.37), but it is not so in general:

Consider the direct product A =
∏∞
n=0 Z/pnZ and let T = Tor(A) be its torsion subgroup. Now,

suppose that T is a direct summand, say A = T ⊕ C. On the one hand, in A/T ∼= C the non-zero
element (0, 0, p, p, p2, p2, . . . ) is divisible by every power of p. Indeed, given n ≥ 0, up to torsion,
this element is equal to pn · (0, . . . , 0, 1

2n
, 1, p, p, p2, p2, . . . ). On the other, in A and so in C, for

every element x there is a maximal natural number n such that x is divisible by pn. In fact, take the

first non-zero coordinate of x , say xi ∈ Z/piZ. Then n is the maximal integer a such that xi ≡ 0
(mod pa). We get a contradiction.

(5) Contravariant functors appear frequently, often in the context of duality, or in the context of coho-

mology. Here is a simple example. Let k be a field and consider on the category kMod the functor

∗ associating to a vector space V the dual vector space V ∗ = Homk(V, k) and to a map f : V → W
the map f ∗ : W ∗ → V ∗, f ∗(φ)(v) = φ(f (v)).

Exercise 2.2.3. Let fkMod be the category of finitely generated k-modules (i.e., finite dimensional

k-vector spaces). Prove that ∗ is also a functor on fkMod, and that it is full and faithful. Is this
functor full or faithful on kMod?

(6) Another example of contravariant functors is the following. Let L/K be a finite Galois extension of

fields, namely the group of field automorphisms of L that fix K, AutK(L) has cardinality [L : K]
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(and is denoted in this case Gal(L/K)). Let the category K consist of the subfields L ⊇ L′ ⊇ K
and Mor(L′, L′′) consists only of the inclusion map L′ ↪→ L′′ if L′ is a subfield of L′′ and otherwise
is the empty set. Let G be the Galois group Gal(L/K) and let C be the category whose objects are

subgroups H of Gal(L/K) with, again, morphism being the inclusion maps only, if they exist.

The Galois correspondence L′ 7→ GL′ = {g ∈ G : g|L′ = id} is a contravariant functor K→ C,
and the correspondence H 7→ LH = {` ∈ L : h(`) = `,∀h ∈ H} is a contravariant functor C→ K.
The main theorem of Galois theory is that these functors are inverses to each other.

2.2.3. Definition of a natural transformation. Let F,G : K→ H be two functors. A natural transformation
α from F to G is a map associating to every object A in Ob K a morphism αA : F (A)→ G(A) such that for
every arrow f : A→ B in K we have a commutative diagram:

A

f

²²
B

F (A)
αA //

F (f )

²²

G(A)

G(f )

²²
F (B)

αB // G(B).

If each αA is an isomorphism, we say that F and G are naturally equivalent, or isomorphic.

We only give a few examples at this point. Given a set S there are two trivial topologies on it: the topology

Tdisc consisting of all subsets of S, and the topology Ttriv consisting of the empty set and the total space alone.

We get two functors F,G : Set→ TopSp, F (S) = (S,Tdisc), F (f ) = f and G(S) = (S,Ttriv), G(f ) = f .
There is natural transformation α : F → G given by αA = 1A. Note, though, that there is no natural
transformation G → F .
Here is a another example. Consider the abelianization functor G 7→ G/G′, now as a functor from Gp to

Gp (and not to AbGp). The natural homomorphism αG : G → G/G′ defines a natural transformation from
the identity functor to the abelianization functor. There is no natural transformation in the other direction.

As a final example, consider the double dual functor V 7→ V ∗∗ on the category of k-vector spaces kMod.
The natural map V → V ∗∗, mapping a vector v to the function sending a functional φ on V to φ(v), defines
a natural transformation of the identity functor to the functor ∗∗.

We have a similar definition of a natural transformation between two contravariant functors.

Let F,G : K→ H be two contravariant functors. A natural transformation α from F to G is a map
associating to every object A in Ob K a morphism αA : F (A)→ G(A) such that for every arrow f : A→ B
in K we have a commutative diagram:

A

f

²²
B

F (A)
αA // G(A)

F (B)

F (f )

OO

αB // G(B).

G(f )

OO

If each αA is an isomorphism, we say that F and G are naturally equivalent, or isomorphic.

2.3. Equivalence of categories.
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2.3.1. Definition of equivalence. Let K and C be categories. We say they are equivalent if there are functors

F : K→ C and G : C→ K such that the composition GF ∼= 1K (the identity functor of K) and FG ∼= 1C
(the identity functor of C).

We have similarly the notion of antiequivalence. The definition is the same only that both F and G

are assumed to be contravariant (note that the compositions are covariant so the requirements GF ∼= 1K,
FG ∼= 1C, make sense).

2.3.2. Some examples. Here are some important examples.

(1) The categories of subfields of a Galois extension and subgroups of the Galois group, cf. § 2.2.2 are
antiequivalent.

(2) The functor ∗ on the category of k-vector spaces kMod is not an antiequivalence, in general we
only have a natural transformation 1 7→ ∗∗ which is not an equivalence. The problem being that for
infinite dimensional vector spaces the map V → V ∗∗ is only an inclusion.
Let K be a category. A subcategory C of K is a category whose objects are a subcollection

of those of K and such that for every A,B ∈ Ob C we have MorC(A,B) ⊆ MorK(A,B). For
example, the category of finite sets is a subcategory of the category of sets. A subcategory is called

full if in fact we have MorC(A,B) = MorK(A,B) for any A,B ∈ Ob C. Thus, the category of
finite sets if a full subcategory of the category of sets. The category of abelian groups is a full

subcategory of the category of groups. The category of finite dimensional vector spaces over k ,

fkMod is a full subcategory of the category kMod . On the category fkMod the duality functor ∗ is
an anti-equivalence.

Consider now another category, say B. The objects of B are the vector spaces {0} = k0, k =
k1, k2, k3, . . . , one for each non-negative integer. The morphisms are just linear maps. There is an

obvious functor F : B→ fkMod. Define a functor G : fkMod→ B. Given an object A in fkMod,
choose an isomorphism ηA : A→ kdim(A); if A = kn then we choose ηA to be the identity. Define
now G(A) = kdim(A) and for f ∈ Mor(A,B) the map G(f ) = ηBf η−1A .

Exercise 2.3.1. Prove that G is a functor and that (F,G) is a natural equivalence of categories.

Note that though in a certain sense F and G are inverses, G is not uniquely determined by F ; its

definition very much depends on the choice of maps ηA.

2.3.3. A criterion for equivalence. There is a general criteria for a functor F to be a natural equivalence of

categories. The proof is not harder than the example of fkMod.

Theorem 2.3.2. Let F : C→ D be an functor. There exists a functor G : D→ C such that (F,G) is an
equivalence of categories if and only if (i) F is full and faithful; (ii) F is essentially surjective, namely, for

every object D of D there is an object C of C such that F (C) is isomorphic to D.

Proof. Suppose that there exists such a functor G and let γ : GF → 1C, δ : FG → 1D be isomorphisms. For
every f : A→ B we have a commutative whose horizontal arrows are isomorphisms:

A

f

²²
B

GF (A)
γA //

GF (f )

²²

A

f

²²
GF (B)

γB // B
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(and similarly for δ). Consider MorC(A,B) and MorD(F (A), F (B)). It is easy to check that the isomorphism

γ : GF → 1C induces an isomorphism
GF : Mor(A,B) ∼= Mor(GF (A), GF (B)),

for every A,B ∈ Ob C. Indeed, given f : A→ B we get GF (f ) : GF (A)→ GF (B) and in fact GF (f ) =
γ−1B f γA, where γA : GF (A)→ A etc. . Conversely, given g : GF (A)→ GF (B) we have γBgγ−1A : A→ B.
Since GF : Mor(A,B)→ Mor(GF (A), GF (B)) factors through Mor(A,B)→ Mor(F (A), F (B)), this map is
injective and so F is faithful.

Likewise, the isomorphism FG : Mor(F (A), F (B))→ Mor(FGF (A), FG(B)) factors through the map
F : Mor(GF (A), GF (B))→ Mor(FGF (A), FGF (B)) and so this map F is surjective. Since GF ∼= 1C we get
Mor(A,B) ∼= Mor(GF (A), GF (B))→ Mor(FGF (A), FGF (B)) ∼= Mor(F (A), F (B)) is surjective, too. This
composition is calculated as follows: f 7→ γ−1B f γA 7→ F (γB)−1F (f )F (γA) 7→ δF (B)F (γB)−1F (f )F (γA)δ−1F (A).
There is no reason for F (γA)δ

−1
F (A) to cancel out; nonetheless, F (γA)δ

−1
F (A) is an isomorphism and so is

δF (B)F (γB)
−1 and it follows that also the map f 7→ F (f ) from Mor(A,B) to Mor(F (A), F (B)) is surjective

too. This shows that F must be full and faithful. Furthermore, let D be an object of D then C = G(D) is

an object of C and we have an isomorphism δD : FG(D)→ D, and so the last condition is also satisfied.
Conversely, let F be a functor with the stated properties. To define G first choose in arbitrarily an

isomorphism αD : D → F (CD) for every object D in D , where CD is a suitable object of C. Define G on
objects by G(D) = CD and on morphisms as follows. Given a morphism g ∈ MorD(D,E) we get a morphism
g′ = αEgα−1D ∈ Mor(F (CD), F (CE)). There is a unique morphism f ∈ Mor(CD, DE) = Mor(G(D), G(E))
such that F (f ) = g′. We let f = G(g).

To define δ : FG → 1D we let δD : FG(D) = F (CD)→ D be the morphism α−1D . To define γ : GF → 1C
we let γA : GF (A) = CF (A) → A be the unique morphism such that F (γA) : F (CF (A))→ F (A) is α−1F (A). The
verifications are left as an exercise. ¤

As an application we prove the following theorem, which is part of what’s called “Morita equivalence”.

Theorem 2.3.3. Let R be a ring and n ≥ 1 an integer. The categories RMod and Mn(R)Mod are equivalent.

Proof. We define a functor

F :R Mod → Mn(R)Mod,

that satisfies the conditions of Theorem 2.3.2. Given an R-module M let

F (M) = Mn = {t(m1, . . . , mn) : mi ∈ M}.
It is naturally an Mn(R)-module. Given a morphism f : M → N we get a morphism F (f ) : Mn → Nn by

F (f )(m1, . . . , mn) = (f (m1), . . . , f (mn)).

The verification that F is a functor is easy.

Let Ei j be the n × n elementary matrix with 1 in the i j entry and zeroes otherwise.
It is clear that F is faithful. Let g : Mn → Mn be a morphism of Mn(R)-modules. Then g = (g1, . . . gn).

Let m ∈ M.
We have g(m, 0, . . . 0) = g(E11

t(m, 0, . . . 0)) = E11(g1(m, 0, . . . 0), g2(m, 0, . . . 0), . . . , gn(m, 0, . . . 0)) =

(g1(m, 0, . . . 0), 0, . . . 0). This shows that gi(m, 0, dots, 0) = 0. A similar argument thus gives that gi(mej) =
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0 and so that gi(m1, dots,mn) = gi(mi). We conclude that g(m1, . . . , mn) = (g1(m1), . . . gn(mn)), where

each gi : M → M is an R-module map.
Now, given a permutation σ ∈ Sn, there is a matrix M(σ) ∈ Mn(R) such that M(σ)(m1, . . . mn) =

(mσ(1), . . . , mσ(n)). We conclude that g(M(σ)(m1, . . . , mn)) = (g1(mσ(1)), . . . , mσ(n)) and is equal also to

M(σ)(g1(m1), . . . gn(mn)) = (gσ(1)(mσ(1)), . . . gσ(n)(mσ(n))). We conclude that gi = gσ(i) for all i and σ and

so that g1 = · · · = gn. Therefore g = F (g1) and we conclude that F is full.

Exercise 2.3.4. Prove that every Mn(R)-module is isomorphic to M
n for some R-module M.

¤

2.4. products and coproducts. The notion of a product and coproduct (also called “sum”) is very important

in any category where it exists. It also allows us, in this exposition, to introduce the idea of a universal object.

Let C be a category and A,B ∈ Ob C. The product of A,B, it it exists, is an object C together with two
morphisms α : C → A, β : C → B such that for every object D of C and morphisms α′ : D → A, β′ : D → B
there is a unique morphism f : D → C such that the following diagram commutes:

D

f

²²
α′

®®

β′

¶¶

C

α
ÄÄÄÄ

ÄÄ
ÄÄ

Ä

β ÃÃA
AA

AA
AA

A

A B.

Remark 2.4.1. The use of arrows is meant to ease notation. Instead of writing f ∈ Mor(D,C) we write
f : D → C and identities between compositions of morphisms are described by diagrams. There is no need
to assume that a morphism is a function from a set D (with additional structure) to a set C (with additional

structure). Though often this is the case, e.g for Set,Gp,TopSp, RMod, it need not be so in general; already

for SES the situation is more complicated.

Proposition 2.4.2. The product of A,B, if it exists, is unique up to unique isomorphism. We denote it

A
∏
B.

Proof. The proof is easy. Still, it is a prototype for many similar statements so we give it in detail. Suppose

that C′ is also a product with morphisms α′ : C′ → A, β′ : C′ → B. Then we get a commutative diagram

C′

α′

²²

β′

''NNNNNNNNNNNNN
f //

C

α

wwpppppppppppppp

β

²²

f ′
oo

A B.

From which we conclude a commutative diagram

C

α

²²

β

&&NNNNNNNNNNNNN
f f ′ //
1C

// C

α

xxppppppppppppp

β

²²
A B.
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The uniqueness of the morphism C → C making the diagram commutative, implies f f ′ = 1C . Similarly,
f ′f = 1C′ and we conclude that C is isomorphic to C′. ¤

The notion of coproduct is similar. Let A,B ∈ Ob C. The product of A,B, it it exists, is an object
C together with two morphisms α : A→ C, β : B → C such that for every object D of C and morphisms
α′ : A→ D,β′ : B → D there is a unique morphism f : C → D such that the following diagram commutes:

A
α

ÃÃA
AA

AA
AA

A

α′

ÀÀ

B
β

~~}}
}}

}}
}}

β′

¢¢

C

f

²²
D.

Likewise, if the coproduct exists it is unique up to unique isomorphism. The similarity can be given an

explanation, useful in many other cases. Given a category C define the dual category C∗ to be the category with
objects Ob C and morphisms MorC∗(A,B) = MorC(B,A) with the natural composition law: g ◦C∗ f = f ◦C g.
Under this construction the notion of product and coproduct is interchanged, and the notion of isomorphism is

preserved. Thus the uniqueness of the coproduct of a category C follows from the uniqueness of the product

for the category C∗, which was already established.
In general it can be rather tricky to determine when a product and coproduct exist; the arguments are

specific to the case under consideration.

(1) Set. In this case the product is the cartesian product and the coproduct is the disjoint union.

(2) TopSp. In this case the product is the cartesian product, with the product topology, and the

coproduct is the disjoint union with the disjoint union topology. There is a subtle point involving the

choice of topologies in verifying the universal property.

(3) RMod. Here both the product and the coproduct are both the cartesian product. If one defines

infinite products and coproducts then the product is the (unrestricted) direct product, while the

coproduct is the set of elements in the direct product all but finitely many of their coordinates are

zero. Thus, the product of a family of R-modules {Mi : ı ∈ I}, indexed by a set I, is
∏

i∈I
Mi = {(mi)i∈I : mi ∈ Mi},

where addition is done component wise and R acts diagonally.

The direct sum, or coproduct, is usually denoted either
∐
i∈IMi , or ⊕i∈IMi , and consists of

{(mi)i∈I : mi ∈ Mi , mi = 0 except for finitely many i}.
(4) LOSet and POSet.

Exercise 2.4.3. Prove the assertions concerning product and coproduct in Set, TopSp and RMod.

Prove that in LOSet products and coproducts need not exist, but that they exist in POSet.

(5) Gp. The product is simply the direct product. The coproduct of the group A,B is their free product

A ∗ B. This construction is discussed systematically later on (see *******), but for now a sketchy
description should be enough. The elements of A∗B are strings whose elements are taken from either
A or B, with obvious identifications such as xyz · · · st · · · uvw = xyz · · · (st) · · · uvw if s, t ∈ A,
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or s, t ∈ B. Also, · · · xyzss−1uvw · · · = · · · xyzuvw · · · and so on. No identification is made
between elements of A and B, even if A = B. (Thus, for example Z/2Z ∗Z/2Z is an infinite group;
some care should be taken with the notation here. It is better to write this group is A ∗ B, with
A = {e, a}, B = {e, b}. The elements a, ab, aba, abab, ababa, . . . are all distinct.)

Exercise 2.4.4. Do there exist products and coproducts in SES? in Ring? in GSet?

2.5. Direct and inverse limits. The notions of direct and inverse limits can be discussed in much greater

generality than what follows. We have chosen to restrict ourselves from the outset to the cases most prevalent

in applications.

Let I be a partially-ordered set. We may view I as a category I: the objects of I are the elements of I and

if x ≤ y then Mor(x, y) has a single element, call it ixy and else is empty.
Let C be a category and I a partially ordered set, the index set. A direct system indexed by I is a functor

I → C. Namely, for every i ∈ I an object Ci of C is given, and for every pair i ≤ j ∈ I a morphism fi j : Ci → Cj
is specified such that fi i = 1 and if i ≤ j ≤ k then fjk ◦ fi j = fik .
An inverse system indexed by I is a contravariant functor I → C. Namely, for every i ∈ I an object Ci of

C is given, and for every pair i ≥ j ∈ I a morphism fi j : Ci → Cj is specified such that fi i = 1 and if i ≥ j ≥ k
then fjk ◦ fi j = fik .
The injective (or direct) limit of this data is an object C of C and morphisms ei : Ci → C such that

ej ◦ fi j = ej whenever i ≤ j ∈ I and such that given an object D and morphisms e ′i : Ci → D such that
e ′j ◦ fi j = e ′i , there is a unique morphism q : C → D such that q ◦ ei = e ′i for all i ∈ I. It’s denoted lim−→ Ci .

Ck

ek

§§°°
°°
°°
°°
°°
°°
°°
°°
°°
°°
°°
°°
°°

¨¨

Ci

fik

44iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii fi j //

ei

''NNNNNNNNNNNNNNNNNNNNNNNN

""

Cj

fjk

==zzzzzzzzzzzzzzz

ej

²²

··

lim
−→
Ci

²²
D

The projective (or inverse) limit of this data is an object C of C and morphisms pi : C → Ci such that
fi j ◦ pi = pj whenever i ≥ j ∈ I and such that given an object D and morphisms p′i : C → Ci such that
fi j ◦ p′i = p′j , there is a unique morphism q : D → C such that pi ◦ q = p′i for all i ∈ I. It’s denoted lim←− Ci .
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D

lim
←−
Ci

²²

Ck
!!

ek

CCCCCCCCCCCCCCC ¸¸

Ci

fik

44iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii fi j //
ÄÄ

ei

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¨¨
Cj

fjk

==zzzzzzzzzzzzzzz²²

ej

®®

Theorem 2.5.1. Direct and inverse limits exist in the category RMod .

Proof. Consider ⊕i∈IMi and let λi : Mi → ⊕i∈I Mi be the natural inclusion map in the ith coordinate. For
the direct limit we take the module C = ⊕i∈IMi/W , where W is the submodule generated by all elements
{λi(a) − λj(fi j(a)) : a ∈ Mi , i ≤ j ∈ I}. The maps ei : Mi → C are just λi(·) + W . Since mod W

we have λi(a) = λj(fi j(a)), it follows that ei = ej ◦ fi j . Given an object D with morphism e ′i : Ci → D
define a map ⊕i∈IMi → D so that λi(a) = e ′i (a) for a ∈ Mi . There is a unique such map. Moreover,
λj(a) = e

′
j (a) = e

′
i (fi j(a)) = λi(fi j(a)) and so we get a well define map

q : C → D,

such that q(λi(a) mod W ) = e
′
i (a), that is q(ei(a)) = e

′
i (a) for a ∈ Mi .

The proof for the inverse limit is very similar: “we dualize the proof” given above. We now let C ⊂∏
i∈IMi

to consist of all the vectors (mi) such that fi j(ai) = aj whenever i ≥ j . It is indeed an R-submodule and
there are natural projection maps pi : C → Mi satisfying fi jpi = pj . The verification of the universal property
is entire similar to what we did above in the case of direct limits. ¤

The fun in this subjects is definitely in the examples. To begin with products and coproducts are projective

and injective limits, respectively, associated to the diagram with no arrows

A B.

2.5.1. Pull-back and push-out. Let A,B, C be R-modules. Consider the diagram

B

β

²²
A

α // C

,
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as a projective system. The projective limit P is called in the case the pullback and we have the following

diagram:

P ′
q

ÃÃ@
@

@
@ p′B

""
p′A

ÀÀ

P
pB //

pA

²²

B

β

²²
A

α // C.

The general theorem we proved gives

P = {(a, b) ∈ A× B : α(a) = β(b)},
with pA, pB being the projections onto the first and second coordinates, respectively. We remark that the

same diagram in a geometric, or topological context, is called a fiber product and P is usually denoted A×CB.
The pushout P is the injective limit of the diagram:

C
β //

α

²²

B

A .

We have

C
β //

α

²²

B

eB

²² e ′B

¶¶

A eA
//

e ′A ++

P
q

ÃÃA
A

A
A

P ′.

The pushout is given as

P = A⊕ B/M,M = {(α(c),−β(c)) : c ∈ C}
and the maps eA, eB are given by a 7→ (a, 0) mod M,b 7→ (0, b) mod M, respectively.

2.5.2. Some important examples. Let R be a ring and ICR an ideal. We have then a natural projective
system:

· · · → R/I3 → R/I2 → R/I → 0.
The projective limit is called the I-adic completion of R and denoted RÎ . It has the following description:

{(· · · , r3, r2, r1) : ri ∈ R/I i , ri+1 = ri (mod I i)}.

There is a natural map R→ RÎ whose kernel is ∩In, which may or may not be the zero ideal.
Here are two very interesting examples:

(1) R = Z, I = pZ. The projective limit is denoted Zp and called the ring of p-adic integers. It has the
description

{(· · · , r3, r2, r1) : ri ∈ Z/piZ, ri+1 ≡ ri (mod pi)}.
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An interesting point is that although each Z/piZ is torsion, Zp is torsion free.

Exercise 2.5.2. Prove that indeed Zp is a ring with a unit and that Z ⊂ Zp. Prove that every integer
prime to p is invertible in Zp. Define a function

v : Zp → N, v((. . . , r3, r2, r1)) = max{i : ri = 0}.
Prove that v is a discrete valuation, namely, it satisfies v(xy) = v(x) + v(y) and v(x + y) ≥
min{v(x), v(y)} with equality if v(x) 6= v(y). If z ∈ Z is viewed as an element of Zp, what is v(z)?
Show that an element of Zp is invertible if and only if its valuation is 0. Show that every ideal J

of Zp is principal, generated by any element of minimal valuation. Prove that Z is dense in Zp in the
sense that for any element x of Zp there is a series of elements xn ∈ Z such that v(x − xn)→ n∞;
if we define a norm by ‖x‖ = pv(x) then we have ‖x − xn‖ → 0. Prove that relative to the metric
defined by the norm Zp is compact.

(2) Let k be a field and R = k [x ], I = (x). Prove that there is a natural isomorphism

lim
←−
k [x ]/(xn) ∼= k [[x ]],

where k [[x ]] is the ring of Taylor series with k coefficients.

In algebraic geometry the process of completion allows one to pass to infinitesimal study of varieties with

no need to have limits in the sense of classical analysis.


