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11. Quotients

Very few proofs will be given in this section. The missing proofs can be found in Springer,

Humphreys and Borel (and other references that we give below). This is not because there

is anything very difficult about them; it is done so that we still have time to discuss other

topics.

11.1. Some general comments. Let X be a quasi-projective variety and H an algebraic

group acting on X. Ideally, we want a quotient X/H. One would expect:

• X/H is a quasi-projective variety.

• There is a morphism X → X/H that gives a bijection between points of X/H and

orbits of H in X.

• Additional properties: one may expect the morphism π to be open, that every

morphism X → Y constant on orbits of H factors through X/H and so on.

Unfortunately, already in very simple cases such a quotient doesn’t exists. For example,

let H = Gm act on X = A1. There are two orbits {0} and A1 − {0}. If A1/Gm existed

it should thus have two points, corresponding to the two orbits. Since X/H is a variety,

each such point is closed and so both orbits {0} and A1 − {0} are closed, which is not the

case.

On the other ase, if X is an affine variety and H is a finite group then a quotient exists

and moreover, X/H is an affine variety with coordinate ring k[X/H] = k[X]H . So, for

example, although it is not obvious, PSL2 = SL2/{±1} is an affine variety. Moreover, the

coordinate ring of SL2 is

k[SL2] = k[x11, x12, x21, x22, x11x22 − x12x21 − 1],

and so the coordinate ring of PSL2 is

k[xijxkl, x11x22 − x12x21 − 1 : i, j, k, l ∈ {±1}].

Note that it is presented as a closed subvariety of A10 !

The following theorem is very useful. There is a proof in Mumford/Abelian varieties.

Theorem 11.1.1. Let X be a quasi-projective variety and G a finite group acting on X,

then there is a quotient X → X/G with all the properties above (including the additional

properties).
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11.2. The quotient of a linear group by a subgroup. Let G be an affine linear group

over an algebraically closed field k. Let H be a closed subgroup of G. The main theorem

- a proof can be found in Springer’s book - is the following:

Theorem 11.2.1. There is a quotient G/H in the following sense: There is a homoge-

nous G-variety, denoted G/H, and a point a ∈ G/H such that:

for any pair (Y, b) comprising a homogenous G-variety Y and a point b ∈ Y such that

StabG(b) ⊇ H, exists a unique morphism

G/H → Y, a 7→ b.

Sketch of proof.

Step 0. Recall that a variety for Springer is a ringed space (X,OX) that is quasi-compact

and locally isomorphic to an affine variety. This means the following: X is a topological

space and OX is a sheaf of rings on X (see, e.g., Hartshorne for the concept of “sheaf”).

Quasi-compact means that every open cover contains a finite open subcover. (Some people

call that “compact”; here we follow the convention that a compact space is quasi-compact

and Hausdorff). Every quasi-projective variety is an example of a quasi-compact ringed

space. If (X,OX) is a ringed space and U ⊂ X is an open set then (U,OX |U) is a ringed

space. The assumption made on (X,OX) that it can be covered by open sets U such that

each (U,OX |U) is isomorphic as a ringed space to one obtained from a quasi-projective

variety (we could have required “from an affine variety” and that wouldn’t matter).

This category of variety is larger and more flexible then the category of quasi-projective

varieties.

Step 1.There exists a G-homogenous quasi-projective variety X for G and x ∈ X such

that:

• StabG(x) = H.

• the morphism ψ : G→ X, g 7→ gx gives a separable morphism G0 → G0x.

• the fibers of ψ are the cosets gH.

[[We recall that a dominant morphism of quasi-projective varieties φ : A→ B is called

separable, if for every a ∈ A the induced map TA,a → TB,φ(a) is surjective. Let k be a field

of characteristic p > 0. Here is a typical example of a non-separable morphism:

φ : Ga → Ga, φ(x) = xp.
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This morphism is called the Frobenius morphism. Now, let Ga act on A1 via φ. That is

x ? a = xp + a.

This action makes A1 into a homogenous Ga-variety. The stabilizer of a = 0 is the subgroup

{0}. But it is not true that Ga/{0} is isomorphic to A1 via the map φ. (It happens to be

isomorphic to A1 via a different map - the identity - but this is “a coincidence”. One thus

sees that if we are looking for a model for G/H using a homogeneous G-variety we need

to be careful about issues of separability. ]]

Step 2. In this step one constructs G/H as a ringed space. As a set G/H is the set of

cosets G/H and a = eH. The function π : G→ G/H is just π(x) = x̄ = xH. One gives

G/H the quotient topology: U ⊂ G/H is open iff π−1(U) is open in G. Thus, the function

π is continuous and open.

Finally, for an open set U ⊂ G/H define

O(U) = {f : U → k : f ◦ π is regular on π−1(U)

= OG(U)H .
(11.2.1)

This is a sheaf of rings on G/H.

Step 3. Show that the map of ringed spaces

(G/H, a)→ (X, x), gH 7→ gx,

where (X, x) is from step 1 is an isomorphism. It thus shows G/H is a variety, in fact a

quasi-projective variety. �

We can see some consequences of the proof:

• G→ G/H is open, surjective and its fibers are the cosets of H. dim(G/H) =

dim(G)− dim(H).

• G/H is quasi-projective.

• if H1 ⊇ H there is a natural surjective open morphism G/H → G/H1.

Proposition 11.2.2. A stronger universal property holds for the quotient G/H: Let φ :

G→ Y be a morphism such that ∀g ∈ G, h ∈ H,φ(gh) = φ(g). Then there exists a unique
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morphism φ̄ : G/H → Y making the following diagram commutative

G
φ //

π !!DD
DD

DD
DD

Y

G/H
φ̄

==zzzzzzzz

Proof. Uniqueness is clear, as two morphism agreeing as functions are equal and φ̄ is

determined as a function by the commutativity of the diagram. Define

φ̄ : G/H → Y, φ̄(x̄) = φ(x).

This is a well-defined function rendering the diagram commutative. It is a continuous

function: let U ⊂ Y be open, then φ̄−1(U) = π(φ−1(U)). Since φ−1(U) is open and π

is open, also φ̄−1(U) is open. Thus, the only property we still need to show is that if

f ∈ k[U ] is regular then φ̄∗f ∈ k[φ̄−1(U)] is regular. To show that we need to show that

π∗φ̄∗f ∈ k[φ−1(U)] is regular and H invariant. Now, π∗φ̄∗ = φ∗ and φ∗f(xh) = f(φ(xh)) =

f(φ(x)) = φ∗f(x). �

Example 11.2.3. Recall that GLn acts transitively on the flag variety F(d1,...,dt) parame-

terizing a flag of subspaces V0 = {0} ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vt ⊂ V = kn, where dim(Vi) = di.

Let d0 = 0 and dt+1 = n. The stabilizer of the standard flag

{Vi} : Vi = Spank{e1, . . . , edi}

is the subgroup

P =




A1 ∗ ∗ . . . ∗

A2 ∗ . . . ∗
A3 . . . ∗

. . .

At+1

 : Ai ∈ GLdi−di−1
, i = 1, . . . , t+ 1


,

where A1 is a square matrix of size d1, A2 is a square matrix of size d2− d1, A3 is a square

matrix of size d3 − d2 and so on, and At+1 is of size n− dt. The flag variety is projective

and we have a natural bijective morphism

GLn/P → F(d1,...,dt).
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In fact, this morphism is an isomorphism, but we shall not prove it here. It requires an

understanding of the tangent space of F(d1,...,dt) at each of its point. The following Lemma,

whose proof can be found in Springer, suffices to conclude many properties of GLn/P .

Lemma 11.2.4. Let φ : Y1 → Y2 be a bijective morphism of G-varieties, where G is a

linear algebraic group. Then, for every variety Y , the morphism φ× 1Y : Y1×Y → Y2×Y
is (topologically) a homeomorphism.

We mention one last important result about quotients.

Proposition 11.2.5. Let G be a linear algebraic group and H a closed normal subgroup

of G. Then the quotient G/H has a natural structure of an algebraic group. Further, G/H

is an affine algebraic group whose coordinate ring is k[G]H .

Thus, for example, PGLn = GLn/Gm is an affine algebraic group.
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12. Parabolic subgroups, Borel subgroups and solvable subgroups

12.1. Complete varieties. A variety X is called complete if for every variety Y the

projection map X × Y → Y is closed. Here are some fundamental facts about complete

varieties.

• A quasi-projective variety is complete if and only if it is projective.

• A closed subvariety of a complete variety is complete.

• If X1, X2 are complete varieties so is X1 ×X2.

• If X is complete and irreducible then any regular function on X is constant.

• X is complete and affine if and only if X is finite.

• If φ : X → Y is a morphism then φ(X) is closed and complete.

Of these facts the hardest to prove is the first one. The rest are not too hard to prove from

the definition, or deduce from the first fact. According to these facts A1 is not complete

and indeed we can show that directly. Consider the closed set Z = {(x, y) : xy = 1} in

A1 × A1. Its projection to A1 is A1 − {0}, which is not closed.

12.2. Parabolic subgroups. A closed subgroup P of G is called parabolic if G/P is a

complete variety.

Lemma 12.2.1. If P is parabolic then G/P is a projective variety.

Proof. We know already that G/P is a quasi-projective variety. Since it is also complete,

it must be projective. �

Lemma 12.2.2. Let G act transitively on a projective variety V and let v0 ∈ V , P =

StabG(v0). Then P is parabolic.

Proof. The natural map

G/P → V, gP 7→ gv0,

is a bijective map of homogeneous G-varieties. By Lemma 11.2.4, for every Y the map,

G/P × Y → V × Y,

is a homeomorphism and it commutes with the projection to Y . Thus, G/P is complete if

and only if V is complete, which, being projective, it is. �
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Corollary 12.2.3. The subgroup P of GLn given by

P =




A1 ∗ ∗ . . . ∗

A2 ∗ . . . ∗
A3 . . . ∗

. . .

At+1

 : Ai ∈ GLdi−di−1
, i = 1, . . . , t+ 1


,

is a parabolic subgroup.

Corollary 12.2.4. Let {e1, . . . , en, δ1, . . . , δn} be the standard symplectic basis of k2n, rel-

ative to the pairing 〈x, y〉 =t xJy, where J =
(

0 In
−In 0

)
. Thus, 〈ei, ej〉 = 〈δi, δj〉 = 0 for all

i, j and 〈ei, δj〉 = −〈δj, ei〉 = δij (where δij is Kronecker’s delta).

Let d0 = 0 < d1 < · · · < dt = n be integers and let F iso
d1,...,dt

be the projective variety

parameterizing flags {0} ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vt, where each Vi is isotropic and of dimen-

sion di. By Witt’s theorem, the symplectic group Sp2n acts transitively on F iso
d1,...,dt

. The

stabilizer of the standard flag Vi = Span{e1, . . . , edi} is thus a parabolic subgroup. This

stabilizer has the shape

Sp2n ∩




A1 ∗ ∗ . . . ∗

A2 ∗ . . . ∗
A3 . . . ∗

. . .

At+1

 : Ai ∈ GLdi−di−1
, i = 1, . . . , t


,

where dt+1 = 2n and At+1 is in GLn. Now, it is easy to verify that a matrix ( A B
0 D ) is

symplectic iff A ∈ GLn, D = tA−1 and tBD is symmetric. Note then that D has the shape


A−1

1 0 0 0 0
∗ A−1

2 0 0 0
∗ ∗ A−1

3 0 0
...

...
...

. . .
...

∗ ∗ ∗ . . . A−1
t

 : Ai ∈ GLdi−di−1
, i = 1, . . . , t


.

Proposition 12.2.5. Let Q ⊂ P ⊂ G be closed subgroups. If Q is parabolic in G then it

is parabolic in P .

Proof. We have an injective map P/Q→ G/Q. The image is closed, as its complement is

the image of the open set G− P under the projection map G→ G/Q. Thus, the image is
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complete and in bijection by a map of homogeneous P -spaces with P/Q. It follows that

P/Q is complete and so Q is parabolic in P . �

Proposition 12.2.6. If P is parabolic in G and Q is parabolic in P then Q is parabolic

in G.

Proof. We need to show that for every Y the morphism,

G/Q× Y → Y,

is closed.

Let A ⊆ G× Y be a closed set such that

(a, y) ∈ A⇒ (aq, y) ∈ A, ∀q ∈ Q.

We shall call such a set Q-closed (or Q-closed in G×Y ). Then, to show that the morphism

G× Y → Y is closed is equivalent to showing that the morphism G× Y → Y takes a Q-

closed set in G× Y to a closed set in Y .

Let A be a Q-closed set in G× Y . Consider the morphism

P ×G× Y → G× Y, (p, g, y) 7→ (gp, y).

The preimage of A is

A+ = {(p, g, y) : (gp, y) ∈ A}.

It is a Q-closed set in P × (G × Y ). Since Q is parabolic in P , the projection of A+ to

G× Y is thus closed. This projection is equal to the set

Ã = {(gp, y) : (g, y) ∈ A, p ∈ P}.

(Indeed, if (g, y) ∈ A, p ∈ P then (p−1, gp, y) ∈ A+; conversely, if (p, g, y) ∈ A+ then

(gp, y) ∈ A and so (g, y) = ((gp)p−1, y) ∈ Ã.) The set Ã is P -closed in G × Y and so its

projection to Y is closed. But this projection is equal to the projection of A. �

Proposition 12.2.7. Let P ⊂ Q ⊂ G be closed subgroups. If P is parabolic in G so is Q.

Proof. There is a surjective morphism G/P → G/Q. Since G/P is complete, so is its

image, namely G/Q. �

Proposition 12.2.8. Let P ⊂ G be a closed subgroup. Then P is parabolic in G if and

only if P 0 is parabolic in G0.
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Proof. First, G0 is parabolic in G as G/G0 is a finite group.

If P 0 is parabolic in G0 then, because G0 is parabolic in G, P 0 is parabolic in G by

Proposition 12.2.6. Suppose that P is parabolic in G. Since P 0 is parabolic in P , it is

parabolic in G, again by Proposition 12.2.6. Now G→ G/P 0 is an open map. Thus,

the open set G − G0 maps to an open set in G/P 0, whose complement is the closed set

G0/P 0. Since G0/P 0 is a closed subset of a complete variety it is complete too and so P 0

is parabolic in G0. �

Theorem 12.2.9. A connected linear group G contains a proper parabolic subgroup (that

is, a parabolic subgroup different from G itself) if and only if G is non-solvable.

Proof. Assume, without loss of generality, that G is a closed subgroup of GLn. Recall also

that the subgroup of upper triangular matrices in GLn is solvable. (We have seen that

the upper triangular unipotent matrices are a nilpotent, hence solvable group, and the

quotient is Gn
m which is also solvable.)

The group GLn, hence also G, acts on the projective space Pn−1. Let X be a closed orbit

for the action of G. Let x ∈ X and P = StabG(x). Then the morphism of homogeneous

G-varieties G/P → X, gP 7→ gx is bijective. Since X is complete, so is G/P (we have made

this argument before). Thus, P is parabolic. If P = G, it follows kx̃ ⊂ kn, where x̃ is a

lift of x to kn, is stable under G. Consider then the action of G on P(kn/kx). Continuing

this way, either we get a proper parabolic subgroup of G at some stage, or we arrive to a

basis of kn in which G is upper-triangular, hence solvable. Thus, if G is non-solvable, it

has a proper parabolic subgroup.

Suppose now that G is solvable (and connected, by our original assumption). We need to

show that it doesn’t have any proper parabolic subgroups. We argue by induction on the

dimension of G. The base case is dimension 0, where the statement is trivial as G = {1}.
Now, if G has proper parabolic group we may choose one of maximal dimension, say P .

We may assume, using Proposition 12.2.8 that P is connected.

Recall that the commutator subgroup (G,G) of G is closed and connected (by an exer-

cise). Consider the group

Q = P · (G,G).
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Since (G,G) is normal in G, P ·(G,G) is a subgroup of G, equal to the subgroup generated

by P and (G,G). Since both P and (G,G) are connected Q is connected. Since Q ⊇ P ,

Q is also parabolic. It follows that either (1) Q = G, or (2) Q = P .

Suppose that Q = G, then the homomorphism (G,G)→ G/P is surjective and so in-

duces a bijective morphism

(G,G)

(G,G) ∩ P
−→ G

P
.

Since G/P is complete so is (G,G)/((G,G)∩P ) and so (G,G)∩P is a parabolic subgroup

of (G,G). Since G is solvable, (G,G) is a proper subgroup of G and so has strictly small

dimension than G (G is irreducible) . Thus, by induction, (G,G) ∩ P is equal to (G,G).

Then (G,G) ⊂ P and G = P · (G,G) = P , which is a contradiction.

The other case is Q = P . In this case (G,G) ⊂ P . In this case, because G/(G,G) is

commutative, P is a normal subgroup of G and so G/P is affine and complete, hence finite.

But G/P is also connected. If follows that G/P is trivial and so that G = P , which is a

contradiction. �

Theorem 12.2.10 (Borel’s fixed point theorem). Let G be a connected linear solvable

algebraic group and let X be a complete G-variety. Then G has a fixed point on X.

Proof. Let Y ⊂ X be a closed orbit and y ∈ Y . By the usual argument, the stabilizer of y

is a parabolic subgroup, but cannot be a proper parabolic; hence it must be equal to G.

That is, y is a fixed point for G. �

12.3. Borel subgroups. A closed subgroup B of a linear algebraic group G is called a

Borel subgroup is it is closed, connected and solvable subgroup of G and is maximal

relative to these properties.

Example 12.3.1. Let G = GLn and B the upper triangular matrices. Then B is a

Borel subgroup. Indeed, it is certainly a closed subgroup. It is solvable, as we had already

remarked. It is also connected, being isomorphic, as a variety only, to Gn
m×An(n−1)/2. Why

is it maximal? Suppose that B $ P ⊂ G and P is connected. Then, since B is parabolic

in G, B is parabolic in P and so P has a proper parabolic subgroup which implies that P

is non-solvable.
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Remark 12.3.2. The same argument shows that whenever we find a connected solvable

closed subgroup of G which is parabolic, then it is a Borel subgroup. Thus, for example, the

matrices of the form ( A B
0 D ) such that A is an invertible n× n upper-triangular, D = tA−1,

and B is a matrix such that tBD is symmetric, form a Borel subgroup of Sp2n.

Theorem 12.3.3. The following assertions hold true:

(1) A closed subgroup of G is parabolic if and only if it contains a Borel subgroup.

(2) A Borel subgroup is parabolic.

(3) Any two Borel subgroups of G are conjugate.

Corollary 12.3.4. A closed subgroup of G is Borel if and only if it is a minimal parabolic

subgroup.

Proof of Theorem. Let P be a subgroup of G. Since P is parabolic in G if and only if P 0

is parabolic in G0, and since any Borel subgroup is contained in G0, we may assume that

G is connected.

Let B be a Borel subgroup and P a parabolic subgroup. Then B acts on the complete

variety G/P by (b, gP ) 7→ bgP . Since B is solvable and G/P complete, by Borel’s fixed

point theorem, B has a fixed point, say gP . Then g−1Bg ⊂ P . Since g−1Bg is also a

Borel subgroup, it follows that any parabolic subgroup contains a Borel subgroup. That

prove the “only if” part of (1). If we prove (2) then we get that every Borel subgroup is

parabolic and if B ⊂ P ⊂ G also P is parabolic by Proposition 12.2.7, hence the “if” part

of (1).

We now prove (2). Let B be a Borel. If G is solvable, then G = B (we assumed G is

connected) and a Borel is parabolic trivially. If G is not solvable, then there is a proper

parabolic subgroup P of G. By what we had proven above, we may assume that P ⊃ B.

Since the dimension of P is smaller than G’s, by induction B is a parabolic subgroup of

P . Thus, by Proposition 12.2.6, B is parabolic in G.

It remains to prove (3). Given two Borel subgroups B1, B2, since both are parabolic, we

may conjugate B1 into B2 and B2 into B1. Thus, dim(B1) = dim(B2). It follows that if

g−1B1g ⊂ B2 then, in fact, g−1B1g = B2. �

Proposition 12.3.5. Let φ : G→ H be a surjective homomorphism of algebraic groups

and let P be a parabolic, resp. Borel, subgroup of G. Then φ(P ) is parabolic, resp. Borel.
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Proof. Since any parabolic contains a Borel and every subgroup containing a parabolic is

parabolic, it is enough to proof the assertion for Borel subgroups P ⊂ G. The subgroup

φ(P ) is closed, connected and solvable. Further, the morphism G/P → H/φ(P ) induced by

φ is surjective and so H/φ(P ) is complete. Thus, φ(P ) is parabolic. As we have remarked

above, this implies that φ(P ) is Borel. �

Proposition 12.3.6. Let B be a Borel subgroup of a connected linear group G. Denote

the centre of G and B by C(G), C(B), respectively. Then

C(G)0 ⊂ C(B) ⊂ C(G).

Proof. The subgroup C(G)0 is closed, connected and commutative, hence contained in

some Borel subgroup. Since all Borel subgroups are conjugate, it is contained in every

Borel subgroup.

Let g ∈ C(B) and consider the morphism G/B → G given by xB 7→ gxg−1x−1. Since

G/B is projective (and so is its image) and G is affine, the image must consists of finitely

many points. Since the image is connected, it must be just the identity element. That

implies that g ∈ C(G). �

Remark 12.3.7. We shall later see that in fact C(B) = C(G). This simplifies in practice

the calculation of the centre of a group.
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13. Connected solvable groups

We have skipped over many results in Chapter 5 of Springer, in order to be able to cover

some deeper aspects of algebraic groups. In this chapter we will occasionally need such

results. Those that have short proofs, will be proven; the proofs for the others can be

found in the book.

13.1. Lie-Kolchin.

Theorem 13.1.1 (Lie-Kolchin). Let G be a closed connected solvable subgroup of GLn.

Then G can be conjugated into Tn - the upper triangular matrices.

Proof. We use Borel’s fixed point theorem. GLn acts on Pn−1. Thus G has a fixed point on

Pn−1, corresponding to a line kx1. Consider now the action of G on P(kn/kx1). There is a

fixed point, corresponding to a line in kn/kx1, hence to a plane kx1 +kx2 in kn. And so on.

This way we obtain a basis x1, . . . , xn in which G consists of upper triangular matrices.

Note that this proves that Tn is a Borel subgroup of GLn. Conversely, supposing that

Tn is a Borel of GLn, one can also argue differently. Since G is connected and solvable,

it is contained in a Borel subgroup of GLn. Since all Borel subgroups are conjugate, it

follows that G can be conjugated into Tn. �

13.2. Nilpotent groups.

Lemma 13.2.1 (Springer’s Corollary 5.4.8). Assume G to be a connected, nilpotent, linear

algebraic group G. The set Gs of semi-simple elements is a subgroup of the centre of G.

Proof. A commutator of length 1 is denoted (x1, x2) = x1x2x
−1
1 x−1

2 ; a commutator of length

two is either (x1, (x2, x3)) or ((x1, x2), x3), etc.. Since G is nilpotent, there exists an n so

that all iterated commutators of length n, (x1, (. . . (xn, xn+1) . . . )), are trivial.

Let s ∈ G be a semisimple element, σ = Int(s) the automorphism of conjugation by s

and χ : G→ G the morphism x 7→ σ(x)x−1 (and so χ(x) = (s, x)). The commutators of

length n being trivial implies that χnG = {1}. One the other hand, one has the following

identity on tangent spaces

dχe : g→ g, dχe = Ad(s)− 1.

Since χn is the trivial map Ad(s)− 1 is nilpotent. On the other hand, Ad(s) is semisimple

(any representation takes a semisimple element to a semisimple element) and the difference
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of two commuting semisimple operators is semisimple. Thus, Ad(s)−1 is at the same time

semisimple. It follows that Ad(s) − 1 = 0. Thus, Ad(s) is the identity map. We need to

use the following

Lemma 13.2.2 (Springer’s Corollary 5.4.5). Let G be a connected algebraic group. Let

s ∈ G be a semisimple element. Then:

(1) The conjugacy class C = {xsx−1 : x ∈ G} is closed. The morphism x 7→ xsx−1 is

separable.

(2) Let Z = ZG(s) = {x ∈ G : xsx−1 = s} be the centralizer of s. Then, with the

notation Z = TZ,e,

g = z⊕ (Ad(s)− 1)g.

It follows that g = z in our situation and so dim(G) = dim(Z). Since Z is a closed

subgroup of G and G is connected (hence irreducible), we must have Z = G. That is, s

belongs to the centre of G.

Since the product of commuting semisimple elements is semisimple, we can now deduce

that Gs is a group. �

The following proposition improves on Lemma 13.2.1.

Proposition 13.2.3. Assume that G is a nilpotent connected algebraic group.

(1) The set Gs, resp. Gu, of semi-simple, resp. unipotent, elements is a closed, con-

nected subgroup.

(2) Gs is a central torus of G.

(3) The product map Gs ×Gu → G is an isomorphism of algebraic groups.

Proof. We have just seen that Gs is a subgroup of the centre of G. Let us assume that

G is contained in GLn. We may simultaneously diagonalize the elements of Gs, obtaining

a decomposition of V = V1 ⊕ · · · ⊕ Vd into subspaces according to characters of Gs; In

particular, on each Vi each element of Gs acts by a scalar and because Gs is contained

in the centre of G, each Vi is G-invariant. Let Gi = G|Vi ; the group G embeds into the

product G1 × · · · × Gd. Note that each Gi is nilpotent and (Gi)s = (Gs)i and so the

semisimple elements of Gi are precisely the scalar matrices in Gi.

Each Gi is nilpotent, hence solvable. Thus, by Lie-Kolchin, we may assume that each

Gi consists of upper-triangular matrices. The unipotent elements of Gi are precisely those
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with 1 on the diagonal, and thus, the Jordan decomposition associates to a matrix M in Gi

a semisimple element Ms of Gi, which is therefore a diagonal matrix with the same diagonal

entries as in M , as they have the same eigenvalues, and a unipotent part determined by

M = MsMu. In fact, that semisimple part is a scalar matrix. One concludes that in this

basis of V

Gs = G ∩ Dn, Gu = G ∩ Un,

where we are denoting by Dn the diagonal matrices of GLn and by Un its upper triangular

unipotent matrices. It follows that both Gs and Gu are closed subgroup. The map

Gs ×Gu → G, (gs, gu) 7→ gsgu,

is a homomorphism because Gs is in the centre and it is bijective since it exhibits the

Jordan decomposition for G. The inverse map is also a morphism, since, as we have seen,

Ms is just the morphism M 7→ diag(m11, . . . ,mnn) and Mu = M−1
s M .

Finally, since G is connected this isomorphism shows that both Gs and Gu are connected.

�

13.3. Solvable groups.

Proposition 13.3.1. Let G be a connected solvable algebraic group.

(1) The commutator subgroup (G,G) (also called the derived subgroup) of G is a closed

connected unipotent normal subgroup.

(2) The set Gu of unipotent elements is a closed connected nilpotent normal subgroup

of G. It contains (G,G). The quotient G/Gu is a torus.

Example 13.3.2. The group (G,G) is contained in Gu but may be smaller than Gu. This

is so in the case G is unipotent (thus, under a suitable embedding to GLn, consists entirely

of upper triangular unipotent matrices) since it is then nilpotent and the derived series

must descend to the identity. For example, look at G = Un.

To illustrate the proposition, let Tn be the upper triangular matrices of GLn, which is

a Borel subgroup of GLn. The commutator subgroup is Un, which is equal to the set of

unipotent elements of Tn (but, as said, this need not be the case in general). The quotient

Tn/Un is a torus. In fact, it is isomorphic to Dn. As we’ll see, the fact that there is a

subgroup in Tn isomorphic to the quotient Tn/Un is not a coincidence.
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Proof. We already know that (G,G) is a closed connected normal subgroup. To see it is

unipotent, embed G in Tn, for some n, by Lie-Kolchin. Then it is easy to check that (G,G)

is a closed subgroup of Un, hence consists of unipotent elements.

As for (2), still by Lie-Kolchin, we view G as a closed subgroup of Tn. Thus, Gu = G∩Un

and so is a closed normal subgroup of G. We have an injective homomorphism of algebraic

groups,

G/Gu ↪→ Tn/Un
∼= Dn.

Thus G/Gu is commutative and all its elements are semisimple. As we have seen, G/Gu

can then be diagonalized and being connected must be a torus. (Here we are avoiding

arguing that G/Gu is isomorphic to its image, which is true in fact.)

To show Gu is connected, consider its identity component G0
u. Gu is normal in G and

G0
u is a characteristic subgroup of Gu so it is normal in G. Consider then the group G/G0

u.

The group homomorphism G→ G/G0
u takes unipotent elements to unipotent elements.

Thus Gu/G
0
u are unipotent elements of G/G0

u. Since G/Gu is a torus, these are all the

unipotent elements. That is

(G/G0
u)u = Gu/G

0
u.

Thus, the algebraic group H = G/G0
u has the property that Hu is finite and H/Hu is

commutative.

Lemma 13.3.3. Let J be a connected algebraic group and N a finite normal subgroup of J

then N is contained in the center of J .

Proof of Lemma. Let n ∈ N . Consider the map J → N, g 7→ gng−1. The image is con-

nected and contains n. Thus, the image is {n} and so n is a central element. �

Coming back to the main proof, we conclude that Hu is central and so we conclude that

H is nilpotent (because it is so modulo a central subgroup) and connected. By Proposi-

tion 13.2.3, Hu is connected, hence trivial. Thus, Gu = G0
u. �

Definition 13.3.4. Let G be a connected solvable algebraic group. We call a torus T in

G maximal if its dimension is dim(G/Gu).

It is clear that such a torus is indeed maximal in the sense that it is not properly

contained in any other torus, because any torus of G maps injectively into G/Gu. The



ALGEBRAIC GROUPS: PART IV 76

converse is also true: every torus is contained in a maximal torus in the sense that its

dimension is dim(G/Gu). We will prove that later.

Theorem 13.3.5. Let G be a connected solvable algebraic group.

(1) Let s ∈ G be a semisimple element. Then s lies in a maximal torus. In particular,

maximal tori exist (take s = 1, if you must).

(2) The centralizer ZG(s) of a semisimple element s ∈ G is connected.

(3) Any two maximal tori of G are conjugate.

(4) If T is a maximal torus then the morphism T × Gu → G is an isomorphism of

varieties.

Proof. We first prove (4). Since G/Gu is a torus and the homomorphism T → G/Gu is

injective (as T ∩Gu = {1}, the identity being the only element that is both unipotent and

semisimple), it is also surjective, by dimension considerations. Thus, the morphism

T ×Gu → G

is bijective as well. It is a morphism of T × Gu-homogeneous varieties, where we give G

the action (t, u) ∗ x = txu−1. Since a morphism of homogeneous varieties is separable if

and only if it is separable at one point (Springer, Theorem 5.3.2), it is enough to check

that it is separable at the identity elements.

We have

(13.3.1) L (T ×Gu) = L (T )⊕L (Gu)→ L (G), (X, Y ) 7→ X − Y.

(This is so because we are considering the morphism of T × Gu-varieties taking (t, u) to

teu−1. For the natural multiplication morphism T ×Gu → G the map is (X, Y ) 7→ X+Y .)

Lemma 13.3.6. L (T ) ∩L (Gu) = {0} (interesection inside L (G)).

Proof of Lemma. We show that the Lie algebra of a torus consists of semisimple elements

and the Lie algebra of a unipotent group consists of nilpotent elements (viewed as deriva-

tions they are linear operators). Hence their intersection is just {0}.
For a torus, we may reduce to Gn

m, whose Lie algebra, thought of as left-invariant

derivations, is spanned by the invariant derivations {t1∂/∂t1, . . . , tn∂/∂tn}. As we have

proven, the characters are a basis for k[Gn
m]. The effect of ti∂/∂ti on a character ta11 · · · tann
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is multiplication by ai. That means that in the basis of characters each invariant derivation

is already diagonalized and so is a semisimple operator.

For a unipotent group, using Lie-Kolchin, we may reduce to the case of Un. It is

isomorphic as a variety (not as a group!) to An(n−1)/2 and so k[Un] = k[tij : 1 ≤ i < j ≤ n].

A basis for the Lie algebra consists of the functions ∂/∂tij, for i < j. In this way we view

the tangent space of Un as a subspace gln. The operation δ 7→ ∗δ clearly agrees with this

identification. Now, recall that for GLn we have

Dij = ∗∂/∂tij =
n∑
a=1

tai∂(·)/∂taj.

Since on Un the functions tij = 0 for i > j and are equal to 1 for i = j, the invariant

derivation in L (Un) corresponding to ∂/∂tij, for i < j, is

Kij = ∂(·)/∂tij +
n∑

1≤a<i

tai∂(·)/∂taj.

To show each linear combination of such operators is nilpotent it is enough to show each

Kij is nilpotent and for that it is enough to show that it eventually reduces the degree of

every monomial. It is enough to consider

kij =
n∑

1≤a<i

tai∂(·)/∂taj.

Now kij takes a homogeneous polynomial (e.g., a monomial) to either zero, or a homo-

geneous polynomial of the same degree. However, if we put a lexicographic order on the

monomial where the letters are ordered t12 < t13 < · · · < t1n < t23 < t24 < . . . then it

decreases the order because

tai
∂

∂taj
(
∏

1≤k<`≤n

tαk`k` ) =

{
0 αaj = 0

αajtai

(∏
1≤k<`≤n t

αk`
k`

taj

)
αaj > 0.

(So, either the monomial is killed, or the weight is shifted to a preceding letter.) �

Thus, the map (13.3.1) on tangent spaces is injective. Since both source and target

groups are non-singular and of the same dimension, the map on tangent spaces is also

surjective. And so we have a bijective separable morphism T ×Gu → G. By Springer, loc.

cit., it is an isomorphism. This finishes the proof of (4).
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The rest of the theorem is proven by induction on the dimension of Gu.

Case 1. dim(Gu) = 0. In this case, since Gu is connected, Gu = {0} and Proposition 13.3.1

gives that G = G/Gu is a torus and the theorem holds trivially.

Case 2. dim(Gu) = 1. This case is non-trivial and will take a while to prove. Using again

the classification of connected algebraic groups of dimension 1, we know that Gu
∼= Ga.

Fix an isomorphism,

φ : Ga → Gu,

and use the notation ψ for the quotient map

ψ : G→ S := G/Gu.

The group S is a torus of dimension dim(G)− 1. Consider the map

Ga → Gu, a 7→ gφ(a)g−1.

Since Aut(Ga) = Gm, there is a unique scalar α(g) such that

gφ(a)g−1 = φ(α(g) · a).

It is easy to see that α is a character of G that factors through G/Gu. Thus, abusing

notation, there is a character α of S such that

gφ(a)g−1 = φ(α(ψ(g)) · a).

Claim. If α is trivial then G is commutative.

Proof of Claim. We first remark that this doesn’t hold for abstract groups. For example,

{±1} is a normal subgroup of the quaternion group Q8 of 8 letters. The action of G on

{±1} by conjugation is trivial and Q8/{±1} ∼= Z/2Z2 is commutative. Still Q8 is not

commutative. However, in our case, consider the commutator map

G×G→ G, (x, y) 7→ [x, y].

Since α is trivial, it means that Gu is in the centre (for every g ∈ G, a ∈ Ga, gφ(a) =

φ(α(ψ(g)) · a) · g = φ(a)g). Thus, the pairing factors through G/Gu×G/Gu → G. In fact,
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this pairing has image in Gu because taking the values mod Gu we get the commutator

pairing on a torus. Thus, we have a pairing

G/Gu ×G/Gu → Gu, (ḡ, h̄) 7→ ghg−1h−1.

Now, this pairing is in fact a homomorphism in, say, the first argument: [ḡ1ḡ2, h̄] =

g1g2hg
−1
2 g−1

1 h−1 = g1[g2, h]hg−1
1 h−1 = [g1, h][g2, h]. Thus, since G/Gu is a torus and Gu is

unipotent, the map ḡ 7→ [ḡ, h] must be trivial for any g ∈ G, h ∈ G and that means G is

commutative.

Thus, we have established that if α is trivial then G is commutative. In this case we have

proven that G = Gs×Gu and the assertions of the theorem are easy to check. (There is a

unique maximal torus, equal to Gs.). Thus, we assume henceforth that α is not trivial.

Let s ∈ G be a semisimple element and let Z = ZG(S) be its centralizer. By Lemma 13.2.2,

g = z⊕ (Ad(s)− 1)g, z := L (Z).

The relation,

ψ(sxs−1x−1) = 1,

(that follows from the commutativity of G/Gu) gives on the tangent spaces the relation

dψ ◦ (Ad(s)− 1) = 0.

Now, the map

dψ : TG,e → TG/Gu,e,

is not the zero map. In fact, from the construction of ψ : G→ G/H in general, it follows

that dψ is surjective with kernel L (H). In particular, ker(dψ) = L (Gu), which is one

dimensional and contains (Ad(s)− 1)g. Thus, dim(z) = dim(Z0) ≥ dim(G)− 1.

Consider first the case where α(ψs) 6= 1. It is important later that this case occurs.

Indeed, if g is such that α(ψg) 6= 1 then also α(ψgs) 6= 1. In this case, using gφ(a)g−1 =

φ(α(ψ(g)) · a), we see that

ZG(s) ∩Gu = {1}.

This shows that Z0 must be a proper subgroup of G and hence it is a closed connected

subgroup of G of dimension dim(G)− 1 with Z0
u = {1}. We proved that the quotient of a
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connected solvable group by its unipotent elements is a torus. Thus, Z0, having dimension

dim(G/Gu) is a maximal torus and by (4) we have

G = Z0Gu.

We claim that in fact Z = Z0. Let g ∈ G. Then g = g0gu with g0 ∈ Z0 and gu ∈ Gu.

Then, s commutes with g0 and so commutes with g if and only if it commutes with gu. But

that would imply α(ψs) = 1, unless gu = 1 (meaning gu = φ(0)). It follows that Z = Z0.

We have therefore shown (1) and (2) provided α(ψs) 6= 1.

Suppose then that α(ψs) = 1. This means that Gu ⊆ Z = ZG(s) and so L (Gu) ⊆ z.

But, the decomposition g = z⊕ (Ad(s)− 1)g and (Ad(s)− 1)g ⊂ L (Gu) is only possible

if Ad(s) − 1 = 0. That means that Z = G and so that s is an element of the centre of

G. In this case (2) is trivial. To see (1), namely that s lies in a maximal torus, take any

element s′ such that α(ψs′) 6= 1. We have then seen that ZG(s′), which surely contains s,

is a maximal torus.

We still need to prove (iii) (still in the case dim(Gu) = 1). Let T be a maximal torus. If

T ′ is a maximal torus, each of its elements is semi-simple, and from our discussion above

it follows that there must be an element t′ ∈ T ′ such that

α(ψt′) 6= 1, T ′ = ZG(t′).

Let us write

t′ = tφ(a), t ∈ T, a ∈ Ga.

If a = 0 then t′ ∈ T and T ′ = ZG(t′) ⊇ T , whence T = T ′. Assume a 6= 0. Let

b ∈ Ga, b 6= 0. Then

t · φ(a+ ([α(ψt′)]−1 − 1)b) = t · φ(a) · φ([α(ψt′)]−1b) · φ(b−1)

= t · φ(a) · (t′−1φ(b)t′) · φ(b−1)

= φ(b)t′φ(b)−1.

The point is that we can choose b 6= 0 so that the left hand side is t. We have shown that

t′ can be conjugated to get t. Thus, the centralizer of t′, which is T ′, can be conjugated

to contain the centralizer of t, which, in turn, contains T . That is, φ(b)T ′φ(b)−1 ⊇ T .

Dimensions being the same, and T and T ′ being connected, we must have φ(b)T ′φ(b)−1 = T .
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This finishes the proof in the case dim(Gu) = 1. For the induction step we shall need the

following lemma (that we use without proof; its proof is independent of our proof of the

theorem).

Lemma 13.3.7 (Springer’s Lemma 6.3.4). Under the assumptions of the theorem, assume

that G is not a torus. There exists a closed normal subgroup N of G, contained in Gu and

isomorphic to Ga.

We now assume that dim(Gu) > 1 and choose such a subgroup N . Let Ḡ = G/N , a

connected solvable group, and let Ḡu = Gu/N . Note that dim(Ḡu) = dim(Gu) − 1 and

Ḡu = (Ḡ)u. We can apply induction to Ḡ then.

Let s be a semisimple element of G and s̄ its image in Ḡ. It is a semisimple element and so

lies in a maximal torus T̄ of Ḡ. Recall that this means that dim(T̄ ) = dim(Ḡ)−dim(Ḡu) =

dimG − dimGu. Consider the preimage T̃ of T̄ in G. Since T̃u = N is one dimensional,

we may apply induction and conclude that s lies in a maximal torus of T̃ . This torus has

dimension dim T̃ − dimN = dim T̄ = dimG − dimGu and so is a maximal torus of G as

well. Hence, (1).

Let T, T ′ be maximal tori of G. Their projections to Ḡ are maximal tori and thus for

some b̄, b̄T̄ b̄−1 = T̄ ′. It follows that bTb−1 is a maximal torus of T̃ ′, the preimage of T̄ ′.

Thus, we reduced the assertion to maximal tori of T̃ ′. Since T̃ ′ is connected (being fibered

over T̄ ′ with fiber Ga) and T̃ ′u is one-dimensional, the assertion follows from the case we

have already proven. This proves (3).

Consider now assertion (2). We know that ZḠ(s̄) is connected. Let Z̃ be the preimage

in G. It is the subgroup of elements g of G such that [s, g] ∈ N . Z̃ is a connected

variety(being a fibration of ZḠ(s̄) with fiber Ga). It is thus a connected solvable group.

The centralizer of s in G is contained in Z̃ and is equal to the centralizer of s in Z̃. If s

is central everything is easy. If s is not central and dim Z̃ < dimG we have by induction

on dimG that the centralizer is connected. If s is not central and dim Z̃ = dimG then

G = Z0 ·N (because Z0 � Ḡ implies Z0 � Ḡ). Further, for dimension reasons, Z0 ∩N is

finite. But a unipotent group doesn’t have finite subgroups. Thus Z0∩N = {1}. As before

(cf. page 80), one concludes that Z = Z0 . Alternately, one can argue that G =
∐
zZ0 ·N

over coset representatives for Z/Z0 and use that G is connected. �
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Corollary 13.3.8. Let G be a connected solvable group and H ⊂ G a closed subgroup all

whose elements are semisimple.

(1) H is contained in a maximal torus of G. In particular, a subtorus of G is contained

in a maximal torus (and so the maximal tori are maximal with respect to inclusion

as well).

(2) The centralizer ZG(H) is connected and coincides with the normalizer NG(H).

Proof. Since H∩Gu = {1}, the morphism H → G/Gu is injective and so H is commutative.

In fact, a torus. If H is contained in the centre of G the assertions about the centralizer

and normalizer are obvious. Let s ∈ H. Then s is contained in a maximal torus T . We

claim that T ⊃ H, otherwise the homomorphism T×H → G shows that T is not maximal.

(In particular, we proved that every maximal torus contains the centre of the group.)

Otherwise, let s ∈ H be an element which is not in the centre of G. Then H ⊆ ZG(s),

which is a connected subgroup of G of smaller dimension. By induction on the dimension

of G we conclude that H is contained in a maximal torus T of ZG(s). It follows from

(1) of the theorem that ZG(s) contains a maximal torus of G, hence the dimension of the

maximal tori of G and of ZG(s) are the same. Thus, H is contained in a maximal torus

of G.

It remains to prove the assertion about NG(H). Let x ∈ NG(H) and h ∈ H. Then

xhx−1h−1 ∈ H ∩ (G,G) ⊆ H ∩Gu = {1},

and so x ∈ ZG(H). �

Example 13.3.9. All Borel subgroups are conjugate. Thus, to study Borel subgroups

of GLn it is enough to consider Tn. Also, every maximal torus of GLn is contained in a

maximal connected closed subgroup, that is, in a Borel. Thus, every maximal torus of

GLn is conjugate to a torus of Tn. All maximal tori in a Borel are conjugate. Thus, every

maximal torus of GLn is conjugate to Dn.

The unipotent elements of Tn are Un, the upper unipotent matrices. The map

Dn × Un, (M,N) 7→MN,

is an isomorphism of varieties, but not of groups (unless n = 1) as Dn and Un do not

commute in Tn for n > 1. It is important to note that there are plenty of elements

in Tn that are semi-simple besides Dn. For example, any matrix whose diagonal entries
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are distinct is semisimple. Every semisimple element is contained in a maximal torus, in

particular, every such element can be conjugated in Tn to a diagonal matrix, and vice-versa.

That is, the semisimple elements of Tn are the conjugates of the diagonal matrices.

Let us take a diagonal matrix and consider its centralizer in Tn. If the matrix is a scalar

then the centralizer is obviously Tn. Consider, as a sample case, a matrix of the form

diag(a, 1, . . . , 1), where a 6∈ {0, 1}. One calculates that the centralizer are the matrices

(tij) in Tn such that t1j = 0 for j > 1. Thus, the centralizer is isomorphic to Gm × Tn−1.

Example 13.3.10. Let us now look at Borel subgroups in Sp2n. It will be convenient to

change basis so that the pairing is given by

〈x, y〉 = tx

(
0 K
−K 0

)
y, K :=

(
1

1

. .
.

1

)
.

(K = K−1.) As we have done before, the symplectic group acts transitively on the flag

variety of maximal isotropic flats. The stabilizer of the standard flag are the following

matrices:{(
A B
0 D

)
: t

(
A B
0 D

)(
0 K
−K 0

)(
A B
0 D

)
=

(
0 K
−K 0

)
, A ∈ Tn

}
.

One finds that this amounts to the following conditions:

D = K−1 · tA−1 ·K, A ∈ Tn, tBKD is symmetric.

Note that if M = (mij) and σ is permutation of {1, 2, . . . , n},

σ = (1n)(2 n− 2)(3 n− 2) · · · ,

then

K−1MK = (mσ(i)σ(j)).

Let

τA = K ·t A−1 ·K.

Then A 7→ τA is an automorphism that preserves Tn and furthermore, if A = (aij) ∈ Tn
then the diagonal entries of τA are a−1

nn , . . . , a
−1
11 . This means that we can write the Borel

we have found as

B :=

{(
A B
0 τA

)
: A ∈ Tn, tBKD symmetric

}
.
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Note that these are upper triangular matrices lying also in GL2n and thus

Bu =

{(
A B
0 τA

)
∈ B : A ∈ Un

}
.

We find that the torus {
diag(t1, . . . , tn, t

−1
n , . . . , t−1

1 ) : ti ∈ k×
}

is a maximal torus since it maps isomorphically onto B/Bu.
As before, every maximal torus of Sp2n is conjugate to this torus and every maximal

torus of B is conjugate to this torus in B. Every Borel of Sp2n is conjugate to B. Every

semisimple element of B is conjugate to an element of the torus we found. As an example

of how a centralizer in B of such an element may look like, consider a diagonal matrix

diag(a, 1, . . . , 1, a−1). One calculates that the stablizer are the matrices of the form
a 0 . . . 0 0 . . . 0
0 A B

τA 0
a−1

 .

The middle matrix here is the Borel of Sp2n−2.


