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4. Constructible sets

Let X be a quasi-projective variety, equipped with its Zariski topology. Call a subset C

of X locally closed if C = V ∩Z, where V is open and Z is closed. We call a subset of X

constructible if it is a finite disjoint union of locally closed sets.

Example 4.0.1. The set T = (A2 − {x = 0}) ∪ {(0, 0)}, being dense in A2 is not locally

closed (Z would have to contain A2 − {x = 0}), hence would be equal to A2 and T is

not open). But T is a constructible set, being the disjoint union of two locally closed

sets A2 − {x = 0} (open) with {(0, 0)} (closed).

Lemma 4.0.2. The following properties hold:

(1) An open set is constructible.

(2) A finite intersection of constructible sets is constructible.

(3) The complement of a constructible set is constructible.

Proof. If C is open then C = C ∩ X is the intersection of an open set with the closed

set X. Similarly if C is closed.

To show part (2), suppose that
∐
Ci and

∐
Di are constructible, where each Ci, Dj is

locally closed. Since
∐
Ci ∩

∐
Dj =

∐
Ci ∩Dj, it is enough to prove that the intersection

of two locally closed subsets C = V1 ∩ Z1, D = V2 ∩ Z2 is constructible. In fact, C ∩D =

(V1 ∩ V2) ∩ (Z1 ∩ Z2) is even locally closed.

For part (3), the formula (
∐
Ci)

c = ∩(Ci)
c and part (2), show that it is enough to

prove that a complement of a locally closed set is constructible. Indeed, if C = V ∩ Z
then Cc = V c ∪ Zc = Zc

∐
(V c − Zc), a disjoint union of an open set with a closed set,

both constructible as we have proven above. �

Corollary 4.0.3. A finite union of constructible sets is constructible. Thus, one may also

define a constructible set as a union (not necessarily disjoint) of locally closed sets. The

difference of two constructible sets is constructible.

Proof. If Ci constructible, to show ∪Ci is constructible, it is enough to show that (∪Ci)c =

∩Cc
i is constructible. But that follows (2) and (3) of the Lemma. The proof for the

difference is similar. �

Corollary 4.0.4. The collection of constructible sets is the smallest collection F of subsets

of X containing all open sets and closed under finite intersections and complements.
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Proof. The lemma tells us that F is also closed under unions and is contained in the

collection of constructible sets. To show the converse, it is enough to show that every

locally closed set belongs to F . This is true because F contains the open sets, hence the

closed sets and hence their intersections. �

Exercise 3. Every constructible set contains on open dense set of its closure.

The main relevance of constructible sets to algebraic geometry is the following important

theorem.

Theorem 4.0.5. Let ϕ : X → Y be a morphism of varieties. Then ϕ maps constructible

sets to constructible sets; in particular ϕ(X) is constructible and contains a set open and

dense in its closure.

Corollary 4.0.6. If ϕ is dominant, i.e., if the closure of ϕ(X) is Y , then the image of ϕ

contains and open dense set of Y .

For the proof see Humphreys, p. 33, or, in more generality, Hartshorne, Algebraic Geom-

etry (GTM 52), exercise 3.19 on page 94.

Exercise 4. Find a morphism A2 → A2 whose image is the set T of Example 4.0.1.

5. Connected components

Let G be an algebraic group over an algebraically closed field k. There is no need to

assume in this section that G is linear.

Proposition 5.0.7. There is a unique irreducible component G0 of G that contains the

identity element e. It is a closed subgroup of finite index. G0 is also the unique connected

component of G that contains e and is contained in any closed subgroup of G of finite

index.

Proof. Let X, Y be irreducible components containing e, then XY = µ(X ×Y ), XY , X−1

and tXt−1, for any t ∈ G, are irreducible and contain e. Since an irreducible component is,

by definition, a maximal irreducible closed set, it follows that X = XY = XY , Y = XY
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and, so, X = Y . Since X−1 is also an irreducible component containing e, X = X−1,

and since tXt−1 is an irreducible component containing e, X = tXt−1. Putting everything

together, we conclude: (i) there is a unique irreducible component through e; (ii) it is

closed; (iii) it is a subgroup; (iv) it is normal.

An irreducible component is connected. On the other hand, we have G =
∐

x xG
0, the

union being over coset representatives, each being an irreducible component. Thus, there

must be finitely many of them, each is also open, and the union is a disjoint union of

topological spaces. It follows that G0 is a connected component of G, and in fact, the

connected components equal the irreducible components.

Finally, given a subgroup H of G of finite index, we find that H0 is of finite index in H

and so in G, and is connected. Thus, H0 is contained in G0 and has finite index in it.

Since G0 is connected, we must have H0 = G0. �

Example 5.0.8. The group Ga and Gm are connected. Hence, Gn
a and tori are connected.

The unipotent group of GLn is connected, being isomorphic to Am, for m = n(n − 1)/2,

and so the Borel subgroup is connected as well. The group GLn is connected: it is the

closed subset of An2×A1 defined by y det(xij)−1, which is an irreducible polynomial. One

can also argue that GLn is irreducible, being an open non-empty subset of the irreducible

space An2
. It follows that the unitary groups U(p, q) are connected.

Assume that B is a non-degenerate quadratic form over a field of characteristic different

from 2. Let q be the associated quadratic form. The orthgonal group Oq is not connected,

as it has a surjective homomorphism det : Oq → {±1}.
The spin groups Spin(V, q) are connected and so it follows that the groups SOq are

connected (and that Oq has two connected components). We give the argument under the

assumption that q is not a square. Let Z be the closed subset of isotropic vectors in (V, q).

Its complement U is connected, being an open dense set. In fact, it’s an irreducible affine

variety. Then, also the variety U ′ = {(u, t) : t2 − q(u) = 0} in V × A1 is an irreducible

affine variety. Further, the closed subvariety W = {v ∈ V : q(v) = 1} is also irreducible

because we have a surjective morphism U ′ → W, (v, t) 7→ v/t.

For every r there is a map

W 2r → Spin(V, q), (w1, . . . , w2r) 7→ w1w2 · · ·w2r.



ALGEBRAIC GROUPS: PART II 20

Let the image of these maps be S2r. Then S2r is irreducible, S2r ⊆ S2r+2 and every

element of Spin(V, q) belongs to S2r for some r. It follows that for some r � 0 we

have S2r = Spin(V, q) proving Spin(V, q) is irreducible, equivalently, connected.1

6. Subgroups

There is no need to assume in this section that G is linear.

Lemma 6.0.9. Let U, V be two dense open subsets of an algebraic group G then G = UV .

Proof. Let g ∈ G and consider gV −1. Since V −1 is open (x 7→ x−1 is a homeomorphism)

also gV −1 is open and so gV −1 ∩ U 6= ∅. Thus, for some v ∈ V, u ∈ U we have gv−1 = u,

which implies g ∈ UV . �

Proposition 6.0.10. Let H be a subgroup of an algebraic group G. Let H̄ be its closure.

Then H̄ is a closed subgroup of G. If H is constructible then H̄ = H.

Proof. We first need to show that H̄ is a subgroup. We have H̄−1 = H−1 = H̄ and so

it is closed under inverses. Since HH ⊂ H we have HH ⊂ H̄ and so for every h ∈ H

we have hH = hH ⊂ H̄. That is, HH̄ ⊂ H̄. Now, for every h ∈ H̄ we have Hh ⊂ H̄

and so H̄h ⊂ H̄ and it follows that H̄ · H̄ ⊂ H̄ which shows that H̄ is closed under

multiplication.

Consider H̄ as an algebraic group by itself. SinceH is constructible it contains a subset U

which is open and dense in H̄. By the lemma H̄ = UU ⊂ H and so H = H̄. �

Proposition 6.0.11. Let ϕ : G→ J be a morphism of algebraic groups. Then the kernel

of ϕ and the image of ϕ are closed subgroups. Furthermore, ϕ(G0) = ϕ(G)0.

1Had we wanted to use the Cartan-Dieudonné theorem we could have been more precise here. It tells
us that every element of SOq is a product of q − p(q) reflections, where p(q) = 0 if the dimension is even

and otherwise p(q) = 1. Thus, up to ±1 we get every element of the spin group from Sq−p(q). Thus, every
element of the spin group is gotten from Sq+2−p(q).
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Proof. The kernel is closed being the preimage of a closed set. The image is a constructible

subgroup of J , hence closed. We note that ϕ(G0) is connected, closed, and of finite index

in ϕ(G), hence contains ϕ(G)0. Maximality of the connected component implies that it is

equal to ϕ(G)0. �

Proposition 6.0.12. Let {Xi} be a family of irreducible varieties together with maps φi :

Xi → G. Let H be the minimal closed subgroup of G containing all the images Yi = φi(Xi).

Assume that all Yi contain the identity element. Then:

(1) H is connected.

(2) We can choose finitely many among the Yi, say Yi1 , . . . , Yin and signs ε(i) such

that H = Y
ε(1)
i1
· · ·Y ε(n)

in
.

Proof. We may assume that each Y −1
i occurs among the Yj. Given a multi-index a =

(a(1), . . . , a(n)) let

Ya = Ya(1)Ya(2) · · ·Ya(n).

We note that each Ya is constructible and irreducible, being the image of Xa and so are Ya.

We also have YaYb = Y(a,b).

Since YbYc ⊂ Y(b,c) also YbYc ⊂ Y(b,c). Let u ∈ Ya then uYc ⊂ Y(b,c) and so uYc = u · Yc ⊂
Y(b,c). It follows that YbYc ⊂ Y(b,c). Repeating the argument, we find

Yb · Yc ⊂ Y(b,c).

Let us take Ya of maximal dimension. Then Ya ⊂ YaYbY(a,b). Maximality gives that Ya =

Y(a,b) and Yb ⊂ Ya. Applying this to b = a we conclude that Ya is closed under multiplication

and applying it to b such that Yb = Y −1
a we conclude that it is closed under inverse too and

contains every Yb. Thus, Ya is a closed subgroup and has properties (i) and (ii). Since Ya

is constructible, it contains a sent open and dense in Ya and so, by Lemma 6.0.9, Ya =

YaYa = Y(a,a) and so H = Y(a,a) has all the properties stated. �

Since a closed connected subgroup is irreducible, the following corollary holds.

Corollary 6.0.13. If the Xi are a family of closed connected subgroups of G then the

subgroup H generated by them is closed and connected. There’s a choice of Gi1 , . . . , Gin

among them (perhaps with repetitions!) such that H = Gi1 · · ·Gin.
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Exercise 5. If H and K are closed subgroups of G, one of which is connected then (H,K)

- the subgroup of G generated by all the commutators xyx−1y−1, x ∈ H, y ∈ K - is closed

and connected.

Exercise 6. Prove that the symplectic group is connected. You may want to use transvec-

tions for that.

7. Group actions and linearity versus affine

Recall that a group G acts on a variety V if we are given a morphism

a : G× V → V, a(g, v) =: gv,

such that 1v = v,∀v ∈ V and g(hv) = (gh)v, ∀g, h ∈ G, v ∈ V .

The orbit of v ∈ V is Gv and the isotropy group, or stabilizer, of v is

Gv = {g ∈ G : gv = v}.

It is a closed subgroup of G. If there is v such that Gv = V we say that G acts transitively

and that V is a homogeneous space under G.

Example 7.0.14. (1) The following maps define group actions

G×G→ G, a(x, y) = xy.

This group action is transitive: there is one orbit. In fact, it is simply transitive: the

isotropy groups are trivial. Thus, this is an example of a principle homogenous

space for G.

Another action is:

G×G→ G, a(x, y) = xyx−1.

Here the orbits Gy are conjugacy classes and the isotropy group of y (or its stabi-

lizer) is its centralizer.



ALGEBRAIC GROUPS: PART II 23

(2) Let V be a vector space over k. A homomorphism

r : G→ GL(V )

of algebraic groups over k is called a rational representation over k. It defines

an action

G× V → V, a(g, v) = r(g)(v).

(3) The group GLn acts on the matrices Mn by

GLn ×Mn →Mn, (X, Y ) = XYX−1.

Assume that k is algebraically closed then the orbits corresponds to matrices in

standard Jordan form.

(4) The natural action of GLn on an n-dimensional vector space V induces an action

GLn × P(V )→ P(V ),

where P(V ) is the projective space associated to V . If V = kn then

P(V ) = {(x1 : . . . , xn) : xi ∈ k, ∃i xi 6= 0},

where, as usual (x1 : . . . , xn) = (y1 : . . . , yn) if and only if there’s a λ ∈ k× such

that λxi = yi,∀i. We can also say that P(V ) is the space of orbits for the action

Gm × V → V, (λ, (x1, . . . , xn)) 7→ (λx1, . . . , λxn).

This is a special case of the action of GLn on flag spaces we have already discussed.

Proposition 7.0.15. Let G act on V .

(1) An orbit Gv is open in its closure. It is thus a locally closed set of V .

(2) There exist closed orbits.

Proof. Gv is a constructible set, hence there is a set U such that U ⊂ Gv ⊂ Gv and U is

open in Gv. But then Gv = ∪g∈GgU is also open.

It follows that Bdv := Gv−Gv is closed and is a union of orbits of G. That is, if x ∈ Gv
then gx ∈ Gv. This is true because gx ∈ g ·Gv = gGv = Gv. In a quasi-projective variety

every family of closed sets contains a minimal one. Thus, there is a minimal element in

the family {Bdv : v ∈ V }. Take that minimal element v(0). If Bdv(0) is not empty, it is

a union of orbits and so there is v(1) such that G · v(1) ⊂ Bdv(0), but then so is G · v(1)

and so Bdv(1) $ Bdv(0) (because v(1) 6∈ Bdv(1)). That is a contradiction. Thus, Bdv(0) is

empty, which means that G · v(0) is closed.
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�

Assume from now on that G is an affine algebraic group over k. We shall ultimately prove

that G is linear, namely that G is isomorphic to a closed subgroup of GLn over k. The

converse is clear. In order to do so, we shall analyze the action of G on spaces of functions

on V , and ultimately take V = G itself.

7.1. Assume that G and V are affine. Then, to give a morphism G× V → V corresponds

to giving a k-algebra map

a∗ : k[V ]→ k[G]⊗k k[V = k[G× V ].

The map a∗ has additional properties expressing the axioms of the group action, but, at

any rate, being the pull-back map on functions, we have

a∗(f)(g, v) = f(gv).

Define now an action of G on functions:

s(g)(f)(x) = f(g−1x).

This gives a linear representation

G→ GL(k[V ]).

Proposition 7.1.1. Let U be a finite dimensional subspace of k[V ].

(1) There is a finite dimensional subspace W of k[V ] such that W contains U and W

is invariant under the action of G via s.

(2) U is stable under G if and only if a∗U ⊆ k[G]⊗k U .

Proof. It is enough to prove it when U is one dimensional, say U = kf . Suppose that

a∗f =
∑

ri ⊗ fi ∈ k[G]⊗ k[V ].

Then, s(g)f(v) = a∗(f)(g−1, v) =
∑
ri(g

−1) · fi(v) and so the function s(g)f is equal

to
∑
ri(g

−1) · fi and we see that s(g)f ∈ Span({fi}i). The subspace W spanned by all

the functions s(g)f is invariant under the action of G and on the other hand, is contained

in k[{fi}], which is finite dimensional.
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Let now U be a subspace such that a∗(U) ⊂ k[G] ⊗ U . Then, if f ∈ U we have a∗f =∑
ri ⊗ fi ∈ k[G]⊗ U and so s(g)f =

∑
ri(g

−1)fi ∈ U and so U is invariant under G.

Conversely, suppose that U is invariant under G and let f ∈ U . Let {fi} be a basis of U

and complete it to a basis {fi} ∪ {gj} to k[V ]. For f ∈ U we may write

a∗f =
∑

ri ⊗ fi +
∑

tj ⊗ gj.

Then s(g)f = a∗f(g−1, ·) =
∑
ri(g

−1)fi +
∑
tj(g

−1)gj is an element of U and it follows

that tj(g
−1) = 0 for all g ∈ G and so that tj = 0. Thus, a∗f ∈ k[G]⊗ U . �

Theorem 7.1.2. Let G be an affine algebraic group then G is linear, namely G is isomor-

phic to a closed subgroup of GLn for some n.

Proof. Here we choose to work with the action of G given by

ρ(g)(f)(x) = f(xg),

instead of the action considered above of s(g)(f)(x) = f(g−1x). This is just for notational

convenience. It is clear that the same results we have proved above also hold for this

action.

G is finitely presented k-algebra. Thus,

k[G] = k[f1, . . . , fn],

for some fi. The vector space spanned by the fi is contained in a G-stable vector space,

and so we may assume that Spank〈f1, . . . , fn〉 is G-invariant. Thus,

(7.1.1) ρ(g)fi =
n∑
j=1

mji(g)fj, ∀g ∈ G,

where mji are in k[G]. The map

g 7→ φ(g) = (mij(g))1≤i,j≤n

is a linear representation of G into GLn - namely, it is an algebraic homomorphism. We

would like to prove that

G ∼= φ(G).

For that it is enough to show that φ is injective, the image is closed and that the coordinate

ring of the image is isomorphic to k[G].
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Note that since G→ GLn is a homomorphism of algebraic groups, the image φ(G) is a

closed subgroup of G. The map φ∗ simply takes the coordinate Tij of a matrix and sends

it to mij. Since, by (7.1.1),

fi(·) =
∑
j

mji(·)fj(e),

the map φ∗ is surjective. This implies that φ is injective, because given g 6= g′ in G,

there is some function f of k[G] such that f(g) 6= f(g′). If this f is of the form φ∗F

then F (φ(g)) 6= F (φ(g′)) and so g 6= g′.

Now, by definition, Ker(φ∗) is the ideal whose radical defines the coordinate ring of the

closure of φ(G) (which is just φ(G)). Since we know k[G] = k[GLn]/Ker(φ∗) it follows

that Ker(φ∗) is a radical ideal. Thus, the coordinate ring of k[φ(G)] is k[GLn]/Ker(φ∗) =

k[G]. That means that φ is an isomorphism onto its image. �
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8. Jordan Decomposition

8.1. Recall: linear algebra. Let k be an algebraically closed field and V a finite dimen-

sional vector space over k. An operator a ∈ End(V ) is called:

• Semi-simple, or diagonalizable, if there is a basis of V consisting of eigenvectors.

• Nilpotent, if aN = 0 for some N > 0.

• Unipotent, if (a− 1)N = 0 for some N > 0.

The Jordan canonical form of a matrix implies that we can write any a as

a = as + an,

where as is semi-simple, an is nilpotent and asan = anas. The key point of this section is

that such a factorization is highly stable under all kind of maps.

Proposition 8.1.1 (Jordan decomposition in End(V )). Let a be an operator on a finite

dimensional vector space V over an algebraically closed field k. Then, we can write

a = as + an,

where as is semi-simple, an is nilpotent and asan = anas. Furthermore, such a decomposi-

tion is unique and a commutes with as, an.

Proof. Let χ(t) be the characteristic polynomial of a. We may write

χ(t) =
∏
i

(t− αi)ni ,

where the αi are the distinct eigenvalues of a. This decomposition induces a decomposition

of V :

V = ⊕Vi, Vi = {v ∈ V : (a− αi)ni = 0}.

Using the Chinese Remainder Theorem, we may choose a polynomial P (t) ∈ k[t] such that

P (t) ≡ 0 (mod t), P (t) ≡ αi (mod (t− αi)ni),∀i.

(Note that this works also if some αi = 0.) Let Q(t) = t − P (t). Consider the linear

operators P (a), Q(a). We have

a = P (a) +Q(a).

P (a) acts as a scalar on each Vi and so P (a) is semi-simple. Q(a) acts as a−αi on each Vi

and so is nilpotent. Furthermore, a commutes with P (a) and Q(a).
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Suppose we had another decomposition: a = bs + bn. Then, since bs and bn commute,

they also commute with a and so with P (a), Q(a). That is, bs commutes with as and bn

commutes with an. The following is easy to prove by linear algebra:

• The sum of two commuting semi-simple operators is semi-simple.

• The sum of two commuting nilpotent operators is nilpotent.

Thus, as − bs = bn − an is both semi-simple and nilpotent, hence must be zero. �

Corollary 8.1.2. Let W ⊆ V be an a-invariant subspace. Then W is also invariant

under as and an, and so is V/W . Furthermore,

a|W = as|W + an|W ,

is the decomposition of a|W as a sum of a semi-simple operator and a nilpotent operator.

The same holds for V/W .

Proof. We have seen in the proof above that as = P (a), an = Q(a) and that shows that W

is stable under as, an. Note that we can still take P as the polynomial for producing (a|W )s

and similarly for Q and it follows that (a|W )s = as|W and similarly for the nilpotent part.

Similar arguments apply to V/W . �

Corollary 8.1.3. Let a be an operator on V and b an operator on another finite dimen-

sional vector space W . Let φ : V → W be a linear map such that

V
φ //

a

��

W

b
��

V
φ // W

is a commutative diagram. Then also the following diagrams are commutative:

V
φ //

as

��

W

bs
��

V
φ // W,

V
φ //

an
��

W

bn
��

V
φ // W.

Proof. We can decompose φ as

V � V/ ker(φ) ↪→ W,

and use the previous corollary. �
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Corollary 8.1.4 (Jordan decomposition in GL(V )). Let a ∈ GL(V ) then there is a unique

decomposition:

a = asau,

such that as is semi-simple, au is unipotent and asau = auas. This decomposition if func-

torial in the sense described in the previous corollaries.

Proof. We have a = as + an. Since a is invertible also as must be invertible. This follows

from the proof constructing as (it acts by a scalar αi on each Vi and, a being invertible, αi 6=
0 for all i). And so, a = as(1 + a−1

s an). Since as commutes with an, the operator 1 + a−1
s an

is unipotent.

Conversely, given a factorization a = asau = as(1 + (au − 1)) it follows that au − 1

is nilpotent and so is as(au − 1) and we get a decomposition a = as + as(au − 1) into a

semi-simple and nilpotent operator that commute. It is easy now to deduce uniqueness

and functoriality. �

We now want to generalize the Jordan decomposition to infinite-dimensional vector

spaces under a finiteness assumption. Let V be a vector space over k and let a ∈ End(V ).

We call a locally-finite if V is a union of finite dimensional vector spaces stable under a. a

is then called semi-simple (locally nilpotent) if its restriction of each such subspace

is semi-simple (nilpotent). To avoid un-necessary complications, we shall assume that V

has countable dimension, or, equivalently, that there are a-invariant finite-dimensional

subspaces

V0 ⊂ V1 ⊂ V2 ⊂ . . . , V = ∪iVi.

In this case, we can define as and an as the unique operators whose restrictions to each Vi

is the semi-simple and nilpotent part, respectively, of a restricted to Vi. We have then,

a = as + an, asan = anas.

Furthermore, as, an are unique with such properties and preserve each Vi. If a is invertible,

then we have a factorization

a = asau, asau = auas,

where as is semi-simple and au is unipotent, and, again, this factorization is unique.
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8.2. Jordan decomposition in linear algebraic groups. Let G be a linear algebraic

group. The representation

ρ : G→ GL(k[G]), (ρ(g)f)(x) = f(xg),

maps elements of G to locally finite endomorphisms. Thus, for every g ∈ G we have a

decomposition:

ρ(g) = ρ(g)sρ(g)u.

The idea is to use this to define the semisimple and unipotent part of g itself and moreover

prove that this decomposition is canonical.

Theorem 8.2.1. (1) There are unique elements gs, gu in G such that gs is semisim-

ple, gu is unipotent, g = gsgu = gugs and. moreover,

ρ(g)s = ρ(gs), ρ(g)u = ρ(gu).

(2) If φ : G→ H is a homomorphism of algebraic groups then φ(gs) = φ(g)s and φ(gu) =

φ(g)u.

(3) For G = GLn the decomposition defined here agrees with the Jordan decomposition

defined before.

Proof. Multiplication on k[G] is a k-algebra homomorphism

m : k[G]⊗k k[G]→ k[G].

Since ρ(g) is a k-algebra homomorphism of k[G] it commutes with multiplication in the

sense that

m ◦ (ρ(g)⊗ ρ(g)) = ρ(g) ◦m.

If we apply the functoriality of Jordan decomposition to the vector spaces k[G] ⊗k k[G]

and k[G], relative to the map m, we find that

(8.2.1) m ◦ (ρ(g)s ⊗ ρ(g)s) = ρ(g)s ◦m, m ◦ (ρ(g)u ⊗ ρ(g)u) = ρ(g)u ◦m.

We are using here the facts, left as exercises that for two linear maps a, b we have as ⊗ bs
is semi-simple au⊗ bu is unipotent, which implies (a⊗ b)s = as⊗ bs and (a⊗ b)u = au⊗ bu.

From now on we just prove the statements for the semi-simple part; the proof for the

unipotent part is the same. The identity (8.2.1) means that ρ(g)s is not just a linear map;
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it commutes with multiplication. That is, ρ(g)s is a k-algebra homomorphism of k[G]. We

can thereferore define a k-algebra homomorphism

(8.2.2) k[G]→ k, f 7→ (ρ(g)sf)(e).

Such a homomorphism is nothing else but a k-point of G, which we call gs. We have an

equality of homomorphisms

f 7→ (ρ(g)sf)(e) is the homomorphism f 7→ f(gs).

But, on the other hand,

f(gs) = (ρ(gs)f)(e).

Thus, for any function f , we have

(ρ(g)sf)(e) = (ρ(gs)f)(e).

Given a function f we can apply this relation to the functions λ(h)f(x) := f(h−1x), h ∈ G,

to get:

ρ(g)s(λ(h)f)(e) = ρ(gs)(λ(h)f)(e).

Now, since ρ(g) ◦ λ(h) = λ(h) ◦ ρ(g), if we think of λ(h) as a k-linear map on the vector

space k[G], we may conclude by the functoriality of Jordan decomposition that

ρ(g)s ◦ λ(h) = λ(h) ◦ ρ(g)s.

Thus, we have the relation

λ(h)(ρ(g)sf)(e) = ρ(g)s(λ(h)f)(e) = ρ(gs)(λ(h)f)(e).

The left hand side is ρ(g)sf(h−1), while the right hand side is f(h−1gs) = (ρ(gs)f)(h−1).

Thus,

ρ(g)sf = ρ(gs)f, ∀f ∈ k[G].

This means that ρ(g)s = ρ(gs). The same holds for unipotent parts: ρ(g)u = ρ(gu). Since ρ

is faithful, that finishes the proof of (1).

We now prove (2). We may factor φ as

G� φ(G) ↪→ H.

(Note that φ(G) is a closed subgroup of H and so all the groups here are affine.) In the first

case, φ∗ identifies k[φ(G)] with a subspace T of k[G]. The operator ρ(g)|T is nothing else



ALGEBRAIC GROUPS: PART II 32

then ρ(φ(g)) (via φ∗). Functoriality of Jordan decomposition for restriction gives ρ(g)s =

ρ(gs) is equal to ρ(φ(g))s = ρ(φ(g)s) on T and so, since ρ is faithful, φ(gs) = φ(g)s.

For φ(G) ↪→ H we may view k[G] as k[H]/I where I is the ideal defining the closed

subset φ(G). The ideal I is stable under the action of ρ(φ(G)). Now the result will follow

from functoriality of Jordan decompositions for quotient spaces.

It remains to prove (3). G acts naturally on the vector space V = kn. Fix a non-zero

function f ∈ V ∗ - the dual vector space. For every v ∈ V define a function fv on G by

fv(g) = f(gv).

This gives us an injective linear map

V → k[G], v 7→ fv.

Now, fgv is the function whose value at h is f(hgv) = (ρ(g)fv)(h). Thus, the map V → k[G]

is equivariant for the natural action of G on V and on k[G] via ρ. Functoriality now gives

us ρ(g)s = ρ(gs). �

Corollary 8.2.2. An element g ∈ G is semi-simple (resp. unipotent) if and only if for

any isomorphism φ from G to a closed subgroup of some GLn, φ(g) is semi-simple (resp.

unipotent).

Proposition 8.2.3. The set of unipotent elements of G is a closed subset.

Proof. Choose an embedding G→ GLn. The image is closed and the map takes unipotent

to unipotent. Thus, it is enough to prove the statement for G = GLn. But then the

unipotent elements are defined by the equation (a− 1)n = 0. �

Theorem 8.2.4. Let G be a subgroup of GLn consisting of unipotent elements. Then G can

be conjugated to Un, where Un are the upper unipotent matrices. That is, for some x ∈ Gn

we have

xGx−1 ⊂ Un.

Proof. One argues by induction on n. The case n = 1 being clear. Assume n > 1. If V = kn

is a reducible representation of G then there is a proper G-stable subspace W . The action

of G on W and V/W is unipotent and so there are bases B for W and C ′ to V/W relative

to which the action is by upper unipotent matrices. Lift the elements of C ′ in any way
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to V obtaining a set C. Then B ∪ C is a basis for V in which the action of G is by upper

unipotent matrices.

If V is an irreducible representation of G then, by a theorem of Burnside (that is not at

all obvious; it follows from Jacobson’s density theorem. See Lang/Algebra, Chapter XVII)

the linear span of G is the whole of End(V ).

Consider the linear functional g 7→ Tr(g). Since g − 1 is nilpotent, Tr(g − 1) = 0 and

so this functional is constant on G, having value n = dim(V ). Let x, y ∈ G and write

x = 1 + N , where N is nilpotent. We have Tr(y) = Tr(xy), because x, xy ∈ G and

Tr(xy) = Tr((1 + N)y) = Tr(y) + Tr(ny). Thus, Tr(Ny) = 0 for all y ∈ G. But then this

holds for all y in the k-linear span of G, which is Mn(k). If we choose y to vary over the

elementary matrices (zero everywhere except for 1 in a single place) and calculate Tr(Ny)

we find that N = 0 and so G = {1}. This is a contradiction to irreducibility. �

The group Un is nilpotent. To see that let U(a) be the matrices M with zero on all the

diagonals mi+x,j+x with 0 ≤ j − i ≤ a− 1. One checks that U(a)U(b) ⊆ U(a+ b) and that

1+U(a) is a group. One the proves that if G(0) = Un, G
(1) = [Un, Un], . . . G(`+1) = [Un, G

(`)]

then G(`) ⊆ 1 + U(` + 1). One proves by induction, using that if u is nilpotent then

(1 + u)−1 = 1− u+ u2 − u3 + . . . (this is a finite sum!), and by expanding the expression

[1 + u, 1 + v] = (1 + u)(1 + v)(1− u+ u2 − . . . )(1− v + v2 − . . . ).

Corollary 8.2.5. A unipotent algebraic group is nilpotent, hence solvable (both notions in

the sense of group theory).

Proof. We can embed the group into GLn for some n and so into Un. Since Un is nilpotent

so is any subgroup of it. A nilpotent group is solvable. �

Corollary 8.2.6. Let G be a unipotent algebraic group and ρ : G→ GLn a rational rep-

resentation. Then there is a non-zero fixed vector for this action.

Proof. This follows directly from the theorem. �

Corollary 8.2.7. Let G be a unipotent algebraic group and V an affine variety on which G

acts. Then all the orbits of G in V are closed.

Proof. Let W be a G-orbit. We may assume without loss of generality that W is dense

in V . We want to show that W = V . We know that W is open in V . Let C = V −W and
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let I the ideal defining the closed set C. To show C is empty it is enough to show that I

contains a non-zero constant function. The group G acts on I and the representation is

locally finite as I ⊂ k[V ]. Thus, there is a non-zero fixed function f in I. This means

that f is constant on W , hence on V , hence a constant. �
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9. Commutative algebraic groups

9.1. Basic decomposition.

Lemma 9.1.1. Let V be a finite dimensional vector space over an algebraically closed

field k. Let S ⊂ End(V ) be a set of commuting operators, then there is a basis of V

in which all the semi-simple elements of S are diagonal and all the elements of S are

upper-triangular.

Proposition 9.1.2. Let G be a commutative linear algebraic group over an algebraically

closed field k. The set of semi-simple elements of G, Gs, and the set of unipotent elements

of G, Gu, are both closed subgroups of G. Further,

G ∼= Gs ×Gu.

Proof. We may assume that G is a closed subgroup of GL(V ) for some vector space V

over k of dimension n <∞. A collection of commuting linear maps can be simultaneously

triangularized. Thus, we may assume that G ⊆ Bn, where Bn is the standard Borel

subgroup of GLn. It is easy to see that an element of Bn is semi-simple iff it belongs to the

torus Tn, and unipotent iff it belongs to the unipotent group Un. Thus, Gs = G∩Tn, Gu =

G ∩ Un and thus both are closed subgroups.

The existence of Jordan decomposition shows that the map Gs × Gu → G, (gs, gu) 7→
gsgu is surjective. Since Tn ∩ Un = {In} the map is also injective. The set-theoretic

maps G→ Gs, G→ Gu taking an element g to gs and gu, respectively, are morphisms

because they are defined by taking a subset of the coordinates of g. Thus, we have an

isomorphism Gs ×Gu
∼= G. �

The proposition reduces the study of commutative linear algebraic groups to the study of

semisimple commutative groups and unipotent commutative groups.

9.2. Diagonalizable groups and tori. For an algebraic group G, the group of charac-

ters of G is

X∗(G) = Homk(G,Gm) (homomorphism of k-algebraic groups).

It is a commutative (abstract group) which we write additively:

(χ1 + χ2)(g) := χ1(g) · χ2(g).
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The cocharacters of G, also called one-parameters subgroups of G, are

X∗(G) := Homk(Gm, G) (homomorphism of k-algebraic groups).

In general this is only a set. If G is a commutative group then X∗(G) is a commutative

group as well, and again the group is written additively. We use the notation nχ for n ∈ Z
to denote the cocharacter

(nχ)(x) = χ(x)n = χ(xn).

Proposition 9.2.1. Let x ∈ Tn and write x = (χ1(x), . . . , χn(x)). Then each χi is a

character of Tn. We have

k[Tn] = k[χ±1
1 , . . . , χ±1

n ].

The functions χa11 · · ·χann are linearly independent over k and are all characters of Tn.

Furthermore, every character of Tn is of this form. We have X∗(Tn) ∼= Zn and X∗(Tn) ∼=
Zn.

Proof. The statement k[Tn] = k[χ±1
1 , . . . , χ±1

n ] is equivalent to the statement in case n = 1

(which is clear), together with the statement Tn ∼= Gn
m, which is also clear.

We have analyzed before End(Tn) and the arguments made there easily extend to

Hom(Ga
m,Gb

m) and so give us the statements about the characters. And about the cocharaters.

�

We say that a linear algebraic group is diagonalizable if it is isomorphic to a closed

subgroup of Tn for some n.

Theorem 9.2.2. The following are equivalent:

(0) G is commutative and G = Gs.

(1) G is diagonalizable.

(2) X∗(G) is a finitely generated abelian group and its elements form a k-basis for k[G].

(3) Any rational representation of G is a direct sum of one dimensional representations.

Proof. The equivalence of (0) and (1) is clear from Lemma 9.1.1. Assume that G is di-

agonalizable, say G ⊆ Tn a closed subgroup. Thus, k[G] = k[Tn]/I for some ideal I. By

Dedekind’s theorem on independence of characters, the elements of X∗(G) are linearly

independent over k and they contain the spanning set obtained as the restriction of the
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characters from X∗(Tn) (since k[Tn] has a basis consisting of the characters χa11 · · ·χann , and

the restriction of a character is a character). Thus, X∗(G) form a basis for k[G] and

X∗(Tn)→ X∗(G),

is surjective and, in particular, X∗(G) is finitely generated.

Let us assume now that G has the property that X∗(G) is a finitely generated abelian

group and its elements form a k-basis for k[G]. Let φ be a rational representation of G, φ :

G→ GLn. Consider the function

g 7→ φ(g)ij.

It is a regular function on G, and so there are scalars m(χ)ij, almost all of which are zero,

such that

φ(g)ij =
∑
χ

m(χ)ij · χ(g).

Packing this together, we find matrices M(χ), almost all of which are zero, such that

φ(g) =
∑
χ

χ(g)M(χ).

We then have

φ(gh) =
∑
χ

χ(gh)M(χ) =
∑
χ

χ(g)χ(h)M(χ).

On the other hand,

φ(g)φ(h) = (
∑
χ

χ(g)M(χ))(
∑
χ

χ(h)M(χ)) =
∑
χ1,χ2

χ1(g)χ2(h)M(χ1)M(χ2).

We can view the two formulas for φ(gh) = φ(g)φ(h) as formulas between characters

on G × G (viz., we have characters (g, h) 7→ χ(g)χ(h) and (g, h) 7→ χ1(g)χ2(h)). Us-

ing independence of characters, we find that

M(χ1)M(χ2) = δχ1,χ2M(χ1).

In addition, 1 = φ(1) =
∑

χM(χ) and so we have decomposed the identity operator into

a sum of (commuting) orthogonal idempotents {M(χ)}. Let

V (χ) = Im(M(χ)).

One easily check that

V = ⊕χV (χ),
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and that G acts on each V (χ) via the character χ. This proves (3).

Assume (3) and choose an embedding G ⊆ GLn, realizing G as a closed subgroup. (3)

implies that the natural representation of G on kn affords a basis in which G is diagonal,

namely, we can conjugate G in GLn into Tn and so G is diagonalizable. �

Corollary 9.2.3. If G is diagonalizable then X∗(G) is a finitely generated abelian group

with no p-torsion if char(k) = p > 0. The algebra k[G] is isomrophic to the group algebra

of X∗(G) and its comultiplication, and coinverse, are given by

χ 7→ χ⊗ χ, χ 7→ −χ.

This construction can be reversed. Given a finitely generated abelian group M , with

no p-torsion if char(k) = p > 0, we can define a k-algebra - the group algebra of M - k[M ].

In order not confuse the operations, we write M additively, but we write e(m) for the

corresponding function of k[M ] so that k[M ] has a basis {e(m) : m ∈M} and

e(m1)e(m2) = e(m1 +m2).

We endow k[M ] with comultiplication, coinverse and counit by, respectively,

∆(e(m)) = e(m)⊗ e(m), ι(e(m)) = e(−m), e(m) 7→ 1,∀m ∈M.

This construction satisfies

k[M1 ⊕M2] = k[M1]⊗k k[M2].

We let G (M) be the corresponding algebraic group. We have

G (M1 ⊕M2) ∼= G (M1)× G (M2).

The group G (M) is a diagonalizable group. To show that it is enough to consider

the case where M = Z,Z/nZ. It not hard to check that then G is isomorphic to Gm and

to µn, respectively.

There is a canonical isomorphism

M ∼= X∗(G (M)).

Indeed, each e(m) is a character of G (M) (as follows from ∆(e(m)) = e(m)⊗ e(m)). Any

character of G (M) is a linear combination of the characters e(m) and so, as before, it must

be one of the characters e(m).
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If G is a diagonalizable group then

G ∼= G (X∗(G)),

as we have seen.

From this constructions one deduces the following:

Corollary 9.2.4. Let G be a diagonalizable group.

(1) G is isomorphic to a direct product of a torus and a finite abelian group of order

prime to p = char(k).

(2) G is connected if and only if it is a torus.

(3) G is a torus if and only if X∗(G) is a free abeian group.

We have constructed a correspondence

{f.g. abelian groups with no p-torsion} ←→ {diagonalizable groups}.

In fact, this correspondence is an equivalence of categories. Given a morphism of di-

agonalizable groups G1 → G2 we get a homomorphism of groups X∗(G2)→ X∗(G1) and

conversely. This is left as an exercise. Note that the categories are not abelian; the quotient

of an abelian group with no p-torsion by a subgroup may well have p-torsion. That com-

plicates the picture a little bit. Note that this equivalence implies that Hom(Ga
m,Gb

m) ∼=
Ma,b(Z).

9.2.1. Galois action. The picture can be made richer taking into account the Galois ac-

tion. Let F be a field and k its separable closure. An F -group G is called diagonaliz-

able if G(k) is. One can show that G(k) is diagonalizable iff G(F alg) is. Let X∗(G) :=

X∗(G(k)) = X∗(G(F alg)). The Galois group Γ = Gal(k/F ) acts on X∗(G) as follows.

Let γ ∈ Γ, χ ∈ X∗(G):

γχ(x) = γ(χ(γ−1(x))).

Then γχ is a group homomorphism. It is also a morphism: If we choose a presenta-

tion k[G] = k[x1, . . . , xn]/({fj}) and χ is any function G→ A1 we can make the same

definition for γχ. Then, letting χ(x1, . . . , xn) =
∑

I cI · xI we have

γχ(a1, . . . , an) = γ(
∑
I

cI · (γ−1(a))I) =
∑
I

γ(cI) · aI .
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That is,

χ =
∑
I

cI · xI ⇒ γχ =
∑
I

γ(cI) · xI .

Finally, we clearly have

α(βχ) = αβχ.

This makes X∗(G) into a continuous Γ-module. The main theorem is that there is an

antiequivalence of categories

{Γ-modules that are f.g. abelian groups with no p-torsion} ←→ {diagonalizable F -groups}.

Example 9.2.5. Let K/L be a finite separable extension of fields. Let G = ResK/LGm.

Recall that this is the algebraic group over L associating to an L-algebra R the group

G(R) = (K ⊗L R)×.

Choose an algebraic closure K̄ of K. It is also an algebraic closure of L. We have

G(K̄) = (K ⊗L K̄)× ∼= ⊕τ∈HomL(K,K̄)K̄
×.

The isomorphism is given on generators by

α⊗ λ 7→ (τ(α)λ)τ .

This is the isomorphism showing that G is a torus of dimension [K : L].

Let us write χτ for the character

χτ (α⊗ λ) = τ(α)λ

(its values on a general invertible element
∑
αi⊗λi is

∑
τ(αi)λi). To determine the Galois

action it is enough to consider generators. Let σ ∈ Gal(L̄/L) then

σχτ (α⊗ λ) = σ(χτ (σ
−1(α⊗ λ)))

= σ(χτ (α⊗ σ−1(λ)))

= σ(τ(α) · σ−1(λ))

= (σ ◦ τ)(α) · λ

= χστ (α⊗ λ).

Therefore,

σχτ = χστ .
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Since Gal(L̄/L) acts transitively on HomL(K, K̄), and so on the set {χτ : τ ∈ HomL(K, K̄)},
one concludes that as a Galois module

X∗(ResK/LGm) = Ind
Gal(L̄/L)

Gal(L̄/K)
1.

(The induction here is in a more subtle sense than in the theory of representations on

vector spaces; it is at the level of lattices.)

Here is a particular situation. The Deligne torus is defined as

S = ResC/RGm.

This is a 2-dimensional torus defined over R. Let us write C = R · 1 + R · i. Then x + iy

is invertible iff x2 + y2 6= 0. The group S was then constructed as the affine variety

R[x, y, (x2 + y2)−1].

Since, (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + (x1y2 + x2y1)i, the co-multiplication of S is

given by

x 7→ x⊗ x− y ⊗ y, y 7→ x⊗ y + y ⊗ x.

Over C we have the isomorphism

S ∼= G2
m, (x, y) 7→ (x+ iy, x− iy).

(Note that since 0 6= x2 + y2 = (x+ iy)(x− iy) the right hand side is indeed in G2
m.) The

morphism is clearly invertible and one verifies directly that it is a homomorphism. A basis

for the characters of S is thus visibly

(x, y)
χ17→ x+ iy, (x, y)

χσ7→ x− iy.

Here σ is a formal symbol, but now let σ denote complex conjugation. Then
σχ1(x, y) = σ(χ1(σ−1(x, y)))

= σ(χ1(x̄, ȳ))

= σ(x̄+ iȳ)

= x− iy

= χσ(x, y).

Thus,
σχ1 = χσ
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(justifying our notation) and, necessarily, σχσ = χ1. Thus, as a Galois module,

X∗(S) = Z2 = Zχ1 ⊕ Zχσ, σ 7→
(

1
1

)
.

We have an exact sequence of Galois modules:

0→ Z · (χ1,−χσ)→ Zχ1 ⊕ Zχσ → Z→ 0,

where Z on the right is given the trivial Galois action. The map to it is simply n1χ1 +

nσχσ 7→ n1+nσ. The module Z·(χ1,−χσ) is isomorphic to Z with σ acting as multiplication

by −1; it defines a torus T over R.

This exact sequence of Galois module corresponds to an exact sequence of tori over R:

(9.2.1) 1→ Gm → S→ T → 1.

Using the Gm ×Gm model for S(C), the complex points of this sequence are

1→ C× → C× × C× → C× → 1,

where the maps are z 7→ (z, z) and (z1, z2) 7→ (z1/z2). (Check this!). The real points of S
are written in the Gm × Gm model as {(z, z̄) : z ∈ C×}. And so the real points of the

sequence (9.2.1) are

1→ R× → C× → T (R)→ 1,

where the maps are r 7→ (r, r) and z 7→ z/z̄ ∈ C1. One finds that T (R) = C1 and the

sequence of real points of (??) is just

1→ R× → C× → C1 → 1.

9.3. Action of tori on affine varieties. Let T be a torus. There is a canonical perfect

pairing

X∗(T )×X∗(T )→ Z, (χ, φ) 7→ χ ◦ φ ∈ End(Gm) = Z.

Let V be an affine variety on which T acts. Then T has a locally finite rational represen-

tation on k[V ]; letting k[V ]χ denote the eigenspace corresponding to χ ∈ X∗(T ), namely

the functions f satisfying s(t)f(v) = f(t−1.v) = χ(t)f(v) for all t ∈ T, v ∈ V , we have

k[V ] = ⊕χ∈X∗(T )k[V ]χ, k[V ]χk[V ]ψ = k[V ]χ+ψ.
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Theorem 9.3.1. Let V be an affine T -variety. For λ ∈ X∗(T ), a one-parameter subgroup,

put

V (λ) = {v ∈ V : the morphism λ : Gm → V, g 7→ λ(g).v,

extends to a morphism λ′ : A1 → V }.

We then say limt→ 0 λ(t).v exists and define it as λ′(0). We have that V (−λ) is the set

of v such that limt→∞ λ(t).v exists. Then:

(1) V (λ) is a closed set.

(2) V (λ) ∩ V (−λ) is the set of fixed points for Imλ.

Proof. Let f =
∑

χ fχ. Then,

s(λ(a))f =
∑
χ

χ(λ(a))fχ =
∑
χ

a〈χ,λ〉fχ.

Then lima→ 0 λ(a).v exists iff lima→ 0 f(λ(a).v) exists for every f , iff lima→ 0 a
〈χ,−λ〉fχ(v)

exists, iff for every χ such that 〈χ,−λ〉 < 0, fχ(v) = 0. That is, v ∈ V (λ) iff v is a zero of

the ideal ⊕{χ:〈χ,λ〉>0}k[V ]χ.

It follows that V (λ) ∩ V (−λ) is the set of v that annihilate all k[V ]χ with 〈χ, λ〉 6= 0,

which are the set of v such that f(λ(a)v) = f(v) for all a ∈ k∗. That is, the fixed points

for λ. �

Example 9.3.2. The group SO2 = {
(
a b
−b a

)
: a2 + b2 = 1} is actually a form of Gm.

Let a = 1
2
(x + 1/x), b = −i

2
(x − 1/x). This gives a homomorphism Gm → SO2 which is

clearly invertible, x = a+ ib. Given a vector v = (v1, v2) we have(
a b
−b a

)(
v1

v2

)
=

(
1
2
(x+ 1/x)v1 + −i

2
(x− 1/x)v2

i
2
(x− 1/x)v1 + 1

2
(x+ 1/x)v2

)
.

This has a limit as x→ 0 iff v1 + iv2 = 0. It has a limit as x→∞ iff v1 − iv2 = 0. And

so we find that the only fixed point under SO2 is the zero vector (0, 0).

Example 9.3.3. Let λ : Gm → G be a one parameter group and define an action of G

on G (playing now the role of the affine variety) by conjugation. So that Gm acts by

a.g = λ(a)gλ(a)−1. In this case the variety V (λ) is denoted P (λ). One checks that P (λ)

is a subgroup, hence a closed subgroup. In fact, it is a parabolic subgroup (a notion we

discussed for GLn and discuss in general later). We have P (λ)∩P (λ−1) equal to the fixed

points of λ, which is precisely the centrailizer of λ(Gm) in G.
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9.4. Unipotent groups. We shall be very brief here. More information can be found in

Springer’s book.

Let k = k̄ be an algebraically closed field of characteristic p ≥ 0. A unipotent linear

algebraic group G/k is called elementary if it is abelian and, moreover, if p > 0 then its

elements have order dividing p.

Example 9.4.1. The additive group Ga = (A1,+) is isomorphic to the subgroup {( 1 ∗
0 1 )}

and hence is unipotent. If p > 0 then a + · · · + a (p times) is pa = 0. Thus, Ga is an

elementary unipotent group.

Theorem 9.4.2. Let G be a connected linear algebraic group of dimension 1. Then, either

G ∼= Gm or G ∼= Ga.

For the proof see Springer, §3.4. We sketch part of the proof.

• G is commutative. Fix g ∈ G and consider the morphism G→ G, x 7→ xgx−1. The

closure of the image is either G, or e, by dimension considerations and connected-

ness. Assume it is G. Then, every element, but finitely many, is of the form xgx−1

and thus (viewing G as a subgroup of some GLn) and has the same characteristic

polynomial as g. Altogether there are finitely many possibilities for the characteris-

tic polynomial of elements of g. Since G is connected, the characteristic polynomial

(whose coefficients are algebraic functions on G) must then be constant. However,

the identity has characteristic polynomial (t− 1)n and, thus, so does every element

of G. Thus, G is unipotent. In that case, it is nilpotent and so its commutator

subgroup must be strictly contained in G (and connected), hence equal to {e}. It

follows that G is commutative and that contradicts our assumption that the image

of x 7→ xgx−1 is G. Thus, the image is always {e} and G is commutative.

• Therefore, G ∼= Gs×Gu. Both factors must be connected and exactly one of which

1-dimensional (and so the other must be trivial). If Gs is one dimensional, it is a

connected diagonalizable group of dimension one hence isomorphic to Gm. Else,

G ∼= Gu, a commutative unipotent group.

• If G = Gu then G is elementary. One views G as a subgroup of the upper unipotent

group Un in GLn, for a suitable n. If the characteristic is p, writing x = 1+N , where

N is nilpotent, using the binomial formula and divisibility of binomial coefficients

by p, one concludes that xp
n

= 1.



ALGEBRAIC GROUPS: PART II 45

Let G(m) the image of the homomorphism x 7→ xm. It is a closed connected

subgroup of G and so is either G or {1}. If G(p) = G then, inductively, G(pn) =

(G(pn−1))(p) = G and that is a contradiction, because xp
n

= 1 for all x ∈ G. Thus,

G(p) = {1} and therefore G is elementary.

• The next (hard) step is to show that an elementary unipotent group of dimension 1

is isomorphic to Ga. For that see Springer’s book.


