
EXERCISES FOR THE COURSE MATH 722, ALGEBRAIC GEOMETRY, FALL 2012

Some of the exercises are taken from Hartshorne. It’s a good idea to consult the book often and

look at all the exercises. It may be the case that to solve an exercise appearing below you would

have to solve first an easier exercise appearing in Hartshorne (if you find it useful).

First assignment: Please submit exercises (1) - (6) by Wednesday, September 19, 20;00. Mail

solutions in the form

LastName.AG.AssignmentNumber.pdf (so Smith.AG.13.pdf should be the name of the file of

Smith’s solutions to assignment 13)

to the address 2eyalgoren@gmail.com (and NOT to my McGill address).

Second assignment: Please submit exercises (9) - (14) by Wednesday, October 3, 20;00.

Third and Fourth assignment: Please submit exercises (15) - (26), except exercise (22), by

Wednesday, October 24, 20;00.

Fifth assignment: Please submit exercises (27) - (31) by Monday, November 5, 20;00.

Sixth assignment: Please submit exercises (32) - (36) by Monday, November 19, 20;00.

(1) Prove the following assertions:

• Let T ⊆ k [x1, . . . , xn]. Then, Z(T ) = Z(〈T 〉) = Z(
√
〈T 〉).

• For ideals a, bCk [x1, . . . , xn] we have

Z(a) ∪ Z(b) = Z(ab), Z(a) ∩ Z(b) = Z(a + b).

(2) If we identify A2 with A1 × A1 in the standard way, prove that the topology on A2 is not

the product topology.

(3) Let Y be the plane curve y = x2 (i.e., Y is the zero set of the polynomial f = y − x2).

Show that A(Y ), the coordinate ring of Y , is isomorphic to the polynomial ring in one

variable over k . Let Z be the plane curve xy = 1. Show that A(Z) is not isomorphic to

the polynomial ring in one variable over k . Let W be the plane curve x2 + 3y2 = 1. Then

A(W ) is isomorphic to either A(Y ) or A(Z). Which is it?

(4) Let a be an ideal of k [x1, . . . , xn] which can be generated by r elements. Prove that every

irreducible component of Z(a) has dimension ≥ n − r .

(5) Show that a k-algebra B is isomorphic to the affine coordinate ring of some algebraic set in

An, for some n, if and only if B is a finitely generated k-algebra with no nilpotent elements.

Illustrate this for the case B = k [x2, xy , y2] (a subring of k [x, y ]).
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(6) Consider the affine space An2 , where n ≥ 1 an integer. We think of elements of this space

as matrices (xi j)i ,j=1,...,n. Let k ≤ n. Prove that the set of matrices of rank at most k is

an algebraic set in An2 . For k = n− 1, determine the dimension of these algebraic sets and

prove they are irreducible.

(7) Let V ⊂ An be a variety of codimension 1, that is, a hypersurface. Prove that V is the zero

set of an irreducible polynomial.

(8) Prove the following properties of homogonous ideals in a graded ring R = ⊕∞d=0Rd .

(a) The intersection, sum, product and radical of homogenous ideals are homogenous.

(b) An ideal a is homogenous if and only if a is generated by homogenous elements.

(c) A homogenous ideal a is a radical ideal if and only if for each homogenous element f

we have f n ∈ a⇒ f ∈ a.

(d) A homogenous ideal a is prime if and only if for any two homogenous elements f , g we

have f g ∈ a implies f ∈ a or g ∈ a.

(e) If a is a homogenous ideal then R/a has a natural grading.

(9) Let R be a ring and let ICR be an ideal. Prove that ⊕∞d=0Id and ⊕∞d=0Id/Id+1 are graded

rings. Suppose now that R = k [x1, . . . , xn] and I = 〈f 〉 for some non-constant irreducible

polynomial f . Give an explicit description of ⊕∞d=0Id and ⊕∞d=0Id/Id+1. (A good start is to

construct a graded homomorphism k [x1, . . . , xn, t]→ ⊕∞d=0 Id , with the grading given by

t-degree, viewing k [x1, . . . , xn, t] as polynomials in t with coefficients in k [x1, . . . , xn].)

(10) Let Y ⊂ Pn be a projective variety. Prove that dim(Y ) = dim(S(Y ))− 1.

(11) Let a ⊆ k [x1, . . . , xn] be a radical ideal and Z = Z(a) the algebraic set in An it defines.

Consider the closure of Z in Pn under the map (a1, . . . , an) = (1 : a1 : · · · : an). Show

that it is the zero set of the ideal 〈Ff : f ∈ a〉, where Ff denotes the homogenization of f

relative to the additional variable x0.

(12) Prove that the closure S of the affine surface S0, given as xy−z = 0 in A3x,y ,z , in P3x,y ,z,w is

given by the equation xy−zw . Let D = S−S0. The twisted cubic curve {(t, t2, t3) : t ∈ k}
lies on S0. Determine how its closure in P3 intersects D. Further, let T0 be the surface

xy − z2, T its closure in P3 and E = T − T0. Calculate T ∩ S and E ∩D.

(13) Prove that the ring of regular functions of U = A2−{(0, 0)} is k [x, y ]. Prove that U is not

an affine variety.

(14) The Segre embedding. Let φ : Pr × Ps → PN be the map defined by sending the ordered

pair (a0, . . . , ar ) × (b0, . . . , bs) to (. . . , aibj , . . . ) in lexicographic order, where N = (r +

1)(s + 1)− 1. Prove that ψ is well-defined and injective function. Show that the image of

ψ is a subvariety of PN . (Hint: Let the homogenous coordinates on PN be zi j , i = 0, . . . , r ,

j = 0, . . . , s, and let a be the kernel of the homomorphism k [zi j ]→ k [x0, . . . , xr , y0, . . . , ys ]

that sends zi j to xiyj . Show that Im(ψ) = Z(a).)

(15) Let X be the curve in A2 given by y2 = x3. Let f : A1 → X be the morphism f (t) = (t2, t3).

Prove that f is bijective but not an isomorphism. Find the image of k [X] in k [t].



EXERCISES FOR THE COURSE MATH 722, ALGEBRAIC GEOMETRY, FALL 2012 3

(16) Let X be the plane curve defined by y2 = x3 + x2. Prove that f : A1 → X, f (t) =

(t2 − 1, t(t2 − 1)) is a morphism. Is it injective? surjective? isomorphism? Show that the

image of k [X] in k [t] are the polynomials g such that g(1) = g(−1).

(17) Prove that the hyperbola xy = 1 and the affine line A1 are not isomorphic.

(18) Consider the morphism f : A2 → A2 defined by f (x, y) = (x, xy). Find the image f (A2).

is it open in A2? dense? closed?

(19) Prove that every automorphism of A1 is given by map of the form f (x) = ax + b, a 6= 0.

(20) Let f : X → Y be a morphism. The graph of f , Γf is the subset of X × Y consisting of the

points {(x, f (x)) : x ∈ X}. Prove that it is a closed subset of X × Y that is isomorphic

to X. Using this, prove that every morphism f : X → Y can be factored pY ◦ g, where

pY : X × Y → Y is the projection and g : X → X × Y is an embedding.

(21) In this exercise we prove that the product of varieties is a variety. Namely, given what was

done in class, that it’s irreducible.

Let X, Y be varieties.

• Show that for y ∈ Y , Xy := X × {y} ⊂ X × Y is isomorphic to X.

• Let X × Y = Z1 ∪ Z2 a union of two closed sets. Using the irreducibility of X, prove

that for each y ∈ Y , Xy is contained either in Z1 or in Z2 (or both). Prove that the

set of points y ∈ Y such that Xy ⊂ Z1 is closed in Y . Similarly for Z2.

• Using the irreducibility of Y , conclude the proof.

• Now, assuming that X, Y, are affine, deduce a statement about the tensor product of

integral domains that are finitely generated k-algebras, k an algebraically closed field.

(The assumptions are needed!)

(22) Let E be a d-dimensional linear subspace of Pn defined by the vanishing of n − d linear

equations L1 = · · · = Ln−d = 0. The projection with centre E is the rational map π :

Pn → Pn−d−1, π(x) = (L1(x) : · · · : Ln−d(x)). It is defined on Pn − E.

If X is a subvariety of Pn disjoint from E then we get a morphism π : X → Pn−d−1. The

geometric meaning of this projection is the following. Take any n−d −1-dimensional linear

subspace H of Pn that is disjoint from E. For every point x ∈ Pn − E there is a linear

subspace 〈E, x〉 generated by E and x and 〈E, x〉 ∩ H consists of one point. There is an

isomorphism H ∼= Pn−d−1 under which this point is π(x).

Apply all this to the situation of E = (0 : 0 : 1) and H = (x : y : 0). Given a conic

f (x, y , z) in P2 (namely, f (x, y , z) is a quadratic irreducible homogenous polynomial passing

through E), use this to show that Z(f ) is isomorphic to P1.
(23) Let f be a rational function on a variety X. Prove that there is a largest open set on which

f is represented by a regular function.

(24) Let f : X 99K Y be a rational map. Prove that there is a largest open set U on which f is

represented by a morphism.

(25) Let f be the rational function on P2 given by f (x0 : x1 : x2) = x1/x0. Find the set of points

where f is defined and describe the corresponding regular function.
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Now think of f as a rational map P2 99K P1. Find the set of points where f is defined

and describe that morphism.

(26) Prove that the map y0 = x1x2, y1 = x0x2, y2 = x0x1 defines a birational map f of P2 to itself.

At which points are f and f −1 defined? What are the open sets mapped isomorphically by

f ?

(27) Assume that the characteristic of the base field is not 2. The Steiner surface S in P3 is

defined by

x21 x
2
2 + x22 x

2
0 + x20 x

2
1 − x0x1x2x3 = 0.

Show that there is a rational morphism P2 → S given by

(u0 : u1 : u2) 7→ (u1u2 : u0u2 : u0u1 : u20 + u21 + u22).

Is it a morphism? Is it birational? Is it bijective?

(28) Find the singular points of the Steiner surface. Calculate the tangent cone at the singular

points and its nature (for example, irreducible smooth surface of degree d , a union of two

transversely crossing smooth surfaces each of degree d , etc.)

(29) Show that every polynomial f in k [x, y , z ] can be written as a(x2 − y) − b(x3 − z) + r ,

where r is a polynomial in x alone and a, b ∈ k [x, y , z ]. Let I be the ideal of the twisted

cubic curve. Prove that if f ∈ I then r = 0 and so f = a(x2− y)− b(x3− z). This actually

proves that (x2 − y , x3 − z) is a basis for I. Write z2 − x4y this way.

(30) Take the ideal (x2− y , x3− z) and find a Gröbner basis for it relative to lex and invlex. For

each of these orders determine the ideal 〈LT(I)〉. (This is a bit of lengthy computation for

lex; easy for invlex. Please do it by hand to get used to those computations.)

(31) Gröbner bases can be used to calculate projective closures. Let I be an ideal in k [x1, . . . , xn]

and let g1, . . . , gs be a Gröbner basis for I relative to grlex. Homogenize the gi relative

to a new variable x0. Prove that the homogenizations G1, . . . , Gs are a Gröbner basis for

the homogenization of I relative the order on monomials given as follows xαxc0 > xβxd0 if

xα > xβ or α = β and c > d (prove this is a monomial order); in particular, the provide

equations for the closure of the affine algebraic set Z(I) in the projective space Pn, because

this closure is just the projective algebraic set Z(Ih). Denote this order by <gr lex+.

First prove the property that LT<gr lex+(f h) = LT<gr lex (f ). Then show that the Gi are a

Gröbner basis by showing that their leading terms generate the ideal 〈LT ((Ih))〉 (namely,

using the definition and not, say, Buchberger’s criterion).

(32) Find a surface S in A3 with a unique singular point equal to 0 = (0, 0, 0) and such that the

tangent cone at that point is x1x2 = 0. Blow up the surface S at the point 0 and calculate

the singular points of the blow-up.

(33) Assume that we are in characteristic zero (to avoid considering special cases). Consider the

curve Ya,b : y a = xb, where a, b are integers, both greater than 1 (a = b is allowed and is in

a certain sense a special case). Prove that it has a unique singular point and calculate the

tangent space and tangent cone at that point. Blow-up the curve Ya,b at the point (0, 0).
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Calculate the singularities of Ỹa,b. At each singular point calculate the dimension of the

tangent space and the tangent cone. In which cases the singularities were resolved?

(34) Assume that we are in characteristic zero (to avoid considering special cases). Calculate

the singular points of “the pince” S : xy2 = z2 in A3; calculate their tangent spaces and

tangent cones. Blow-up S at the point (0, 0). Calculate the singular points of the blow-up

S̃. Calculate the tangent cone and the dimension of the tangent space at the points of the

exceptional fibre.

(35) Assume that we are in characteristic zero (to avoid considering special cases). Does blow-up

resolves the singularities of the plane curve Y : x2y + xy2 = x4 + y4?

(36) Let k be an algebraically closed field of characteristic different than 3. The group µ3, the

roots of unity of order 3 acts on the ring of polynomials k [x, y ]

[α](x) = α · x, [α](y) = α2 · y

(and extend by linearity and multiplicativity). Let A be the ring of invariants. Let X be the

affine variety with A ∼= A(X). Realize X as an affine variety in some affine space. Show that

the inclusion A(X)→ k [x, y ] gives a finite morphism A2 → X and write it down explicitly.

Find a finite morphism X → A2 by using Noether’s normalization lemma.


