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1. Differentials and regularity

1.1. Derivations and the module of differentials - affine theory.

A = ring

B = A-algebra (where the ring homomorphism A −→ B need not be injective)

M = B module

Definition 1.1.1. An A-derivation d : B −→ M is a function that is:

(1) additive;

(2) d(b1b2) = b1 · db2 + b2 · db1;

(3) da = 0,∀a ∈ A.

We shall denote the set of A-derivations valued in M by DerA(B,M).

Remarks: First, note that the B-module structure is used to express the Leibniz rule (ii), but the

function d is not required to be B-linear. In fact, if it were, d would be identically zero, as the

following argument shows.

First note that d1 = d(1 · 1) = 2 · d1 and thus d1 = 0. Condition (iii) is equivalent to requiring

that d is A-linear. Indeed, assume d is A-linear then da = a · d1 = a · 0 = 0. Conversely, if da = 0

for all a ∈ A then d(ab) = a · db + b · da = a · db.

We now seek an A-derivation that is universal. Namely a B-module, to be denoted ΩB/A and an

A-derivation

d = dB/A : B −→ ΩB/A,

such that for every B-module M and a derivation δ : B −→ M there is a B-module homomorphism

f : ΩB/A −→ M making the following diagram commutative:

B
d //

δ !!DDDDDDDD ΩB/A

f
��
M.

As usual, if (d,ΩB/A) exists, it is unique up to unique isomorphism.

Proposition 1.1.2. (d,ΩB/A) exists. It is called the module of relative differentials of B over A.

Proof. This is an easy formal construction. Define ΩB/A to be the quotient of the free B module

⊕b∈BB · db by the B submodule generated by all the expressions {da : a ∈ A}, {d(b1b2) − b1 ·
db2 − b2 · db1 : b1, b2 ∈ B}, {d(b1 + b2)− db1 − db2}. Further, define d : B −→ ΩB/A by sending

b to db.

Given a derivation δ : B −→ M define a map f : ΩB/A −→ M by f (
∑
i βidbi) =

∑
i βiδbi . It is

immediate to check this is well-defined homomorphism of B module that satisfies f ◦ d = δ. �
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Corollary 1.1.3. ΩB/A is generated as a B-module by the set {db : b ∈ B}. For every B-module

T , HomB(ΩB/A, T ) = DerA(B,T ).

Proposition 1.1.4 (The diagonal). Let f : B ⊗A B −→ B be the multiplication map f (b1 ⊗ b2) =

b1b2. Let I be the kernel of f . Consider B ⊗A B, I and I2 as left B-modules. Define a map

δ : B −→ I/I2, δb = 1⊗ b − b ⊗ 1.

Then (δ, I/I2) is a universal module of differentials for B over A. Thus, (δ, I/I2) ∼= (dB/A,ΩB/A).

Proof. We shall define an isomorphism ΩB/A −→ I/I2 that commutes with the derivations. First,

we verify that δ is indeed a derivation. Additivity and A-linearity are clear. Furthermore,

δ(b1b2)− b1δb2 − b2δb1 = (1⊗ b1b2 − b1b2 ⊗ 1)− (b1 ⊗ b2 − b1b2 ⊗ 1)− (b2 ⊗ b1 − b1b2 ⊗ 1)

= 1⊗ b1b2 + b1b2 ⊗ 1− b1 ⊗ b2 − b2 ⊗ b1

= (1⊗ b1 − b1 ⊗ 1)(1⊗ b2 − b2 ⊗ 1) ∈ I2.

Next, the universal property of ΩB/A gives us a map of B-modules, commuting with the derivation

maps,

ΩB/A −→ I/I2, db 7→ 1⊗ b − b ⊗ 1.

We need to construct an inverse to this map. To do so, consider the B-module

B ⊕ΩB/A,

and define on it the operation

(b1, m1) · (b2, m2) = (b1b2, b1m2 + b2m1).

With some patience one verifies that this gives a commutative ring structure and, evidently the ideal

ΩB/A satisfies that (ΩB/A)2 = {0} in this ring. We define a ring homomorphism

B ⊗A B −→ B ⊕ΩB/A, b1 ⊗ b2 7→ (b1b2, b1db2).

(There is a clear lack of symmetry here, but we had already broken the symmetry by deciding that

B ⊗A B is considered as a left B-module.) It is straight-forward to verify that this is indeed a ring

homomorphism. Indeed, additivity is easy and 1 goes to (1, 0) which is the unit element of B⊕ΩB/A.

As to multiplication, the key calculation is that (b1 ⊗ b2)(b′1 ⊗ b′2) = b1b
′
1 ⊗ b2b

′
2 is mapped to

(b1b
′
1b2b

′
2, b1b

′
1b2db

′
2 + b1b

′
1b
′
2db2), which is indeed the product (b1b2, b1db2)(b′1b

′
2, b
′
1db

′
2). Fi-

nally, this is also a map of B-modules as b(b1⊗b2) = bb1⊗b2 7→ (bb1b2, bb1db2) = b(b1b2, b1db2).

Now, the induced map on I takes I to {0} × ΩB/A ⊂ B ⊕ ΩB/A. As Ω2
B/A = 0, we get a

well-defined homomorphism of B modules

I/I2 7→ ΩB/A,
∑

bi ⊗ b′i 7→ (0,
∑

bidb
′
i).

Now, the map ΩB/A −→ I/I2 takes db to δb = 1⊗b−b⊗1, which goes under the map I/I2 7→ ΩB/A

above to (b, db)−(b, 0) = (0, db). That is, the composition ΩB/A −→ I/I2 −→ ΩB/A is the identity.

As we have seen last term I/I2 is generated as a B-module by the elements b1 ⊗ b2 − b2 ⊗ b1.
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Such an element is mapped to (b1b2, b1db2) − (b1b2, b2db1) = (0, b1db2 − b2db1) in B ⊕ ΩB/A

that is then mapped to b1δb2 − b2δb1 = b1(1⊗ b2 − b2 ⊗ 1)− b2(1⊗ b1 − b1 ⊗ 1). But this is just

b1⊗ b2− b2⊗ b1 again. Thus, also the composition I/I2 −→ ΩB/A −→ I/I2 is the identity and the

proof is complete. �

Remark 1.1.5. Let B −→ C be a homomorphism of rings. We shall often use the canonical iso-

morphism HomC(X ⊗B C, Y ) = HomB(X, Y ), X a B-module, Y a C-module. This isomorphism

expresses the fact that the pair of functors ((−) ⊗B C, F ), between B-modules and C-modules

(where F is the forgetful functor) is an adjoint pair. More generally, for a C-module M, we

have HomC(X ⊗B M, Y ) = HomB(X,HomC(M, Y )), which is the adjoint property of the functors

((−)⊗B M,HomC(M,−)). (Note that for M = C this gives back the previous adjoint pair).

Proposition 1.1.6 (Exercise 1; base change and localization properties). (1) Let A1 be an A-

algebra and define B1 = A1 ⊗A B, which is an A1-algbera and a B-algebra. Then

ΩB1/A1
= B1 ⊗B ΩB/A.

(2) Let S be a multiplicative set in B then

ΩB[S−1]/A = B[S−1]⊗B ΩB/A.

A geometric moment: The homomorphism of rings A −→ B corresponds to a morphism of schemes

Spec B −→ Spec A. The ideal I is the ideal defining the closed immersion

∆ : Spec B −→ Spec B ×Spec A Spec B = Spec(B ⊗A B).

More precisely, the associated quasi-coherent sheaf Ĩ corresponds to that closed immersion. Ĩ/Ĩ2 is

initially a sheaf of modules on Spec(B ⊗A B). On the other hand I/I2 viewed as a B-module (as

above) define a quasi-coherent sheaf Ĩ/Ĩ2 also on Spec B. The relation between those two sheaves

is that

∆∗(Ĩ/Ĩ
2) = Ĩ/Ĩ2 = Ĩ/I2.

(Which allows for the ambiguity in notation.) Thus, the algebraic construction of the module of

differentials ΩB/A finds a geometric interpretation as the quasi coherent module I/I2 coming from

the diagonal morphism ∆ : Spec B −→ Spec B ⊗A B. The content of the preceding proposition

is that these constructions commute with base-change and localization. This is almost immediate

from the geometric interpretation, but it is perhaps healthier to give a direct algebraic proof.

1.2. Exact sequences and key examples.
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Proposition 1.2.1 (1st Exact sequence). Let A
φ // B

ψ // C be ring homomorphisms. There

is an exact sequence of C-modules,

ΩB/A ⊗B C
v // ΩC/A

u // ΩC/B
// 0.

Furthermore, v is injective and its image a direct summand if and only if any A-derivation B −→ M

into a C-module M can be extended to an A-derivation C −→ M.

Proof. The maps v and u are natural, determined by v(dB/Ab⊗c) = c ·dC/Aψ(b) and u(c ·dC/Ac1) =

c ·dC/Bc1. Note that u ◦v(dB/Ab⊗c) = c ·dC/Bψ(b) = c ·0 = 0 and, thus, u ◦v = 0. Furthermore,

as ΩC/B is generated as a C module by the symbols {dc : c ∈ C}, the surjectivity of u is clear. It

remains to show that Im(v) = Ker(u). We use the following lemma.

Lemma 1.2.2 (Exercise 2). To show that a complex of C-modules,

M1
v // M2

u // M3 ,

is exact, it suffices1 to show that for every C-module T , the following sequence is exact:

HomC(M1, T ) HomC(M2, T )
v∗oo HomC(M3, T )

u∗oo .

We make use of the lemma in our situation; we need to show exactness of the upper row

HomC(ΩB/A ⊗B C, T ) HomC(ΩC/A, T )
v∗oo HomC(ΩC/B, T )

u∗oo

HomB(ΩB/A, T )

DerA(B,T ) DerA(C, T )
v∗oo DerB(C, T ).

u∗oo

The exactness of the bottom row follows directly from the definitions.

For the last part we use the following lemma.

Lemma 1.2.3 (Exercise 3). A homomorphism v : M1 −→ M2 is injective and its image a direct

summand, if and only if the homorphism v∗ : HomC(M2, T ) −→ HomC(M1, T ) is surjective for all

C-modules T .

We apply the lemma to the map v : ΩB/A ⊗B C −→ ΩC/A; we need thus to consider the upper

row of the following diagram:

HomC(ΩB/A ⊗B C, T ) HomC(ΩC/A, T )
v∗
oo

DerA(B,T ) DerA(C,A)
v∗

oo

1But not necessary! Consider 0 −→ Z ×2−→ Z and T = Z.
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The bottom row gives the reinterpretation of the surjectiveness of v∗ appearing in the statement of

the theorem. �

Proposition 1.2.4 (2nd Exact sequence). Let B be an A-algebra and C = B/I for some ideal I of

B. There is an exact sequence of C-modules,

I/I2 δ // ΩB/A ⊗B C // ΩC/A
// 0,

where δb̄ = db ⊗ 1.

Remark 1.2.5. Note that ΩC/B = 0. Thus, the 2nd exact sequence improves on the first exact

sequence by determining the kernel of ΩB/A ⊗B C −→ ΩC/A.

Proof. We first remark that I/I2 is a B-module killed by I, hence naturally a C-module. The

map δ is well-defined: we first define it as a map I −→ ΩB/A ⊗B C and check that it kills I2.

Indeed, δ(b1b2) = b1db2 ⊗ 1 + b2db1 ⊗ 1 = db2 ⊗ b1 + db1 ⊗ b2 and this is zero because both bi

(being elements of I) are zero in C. The function δ is indeed C-linear. Additivity is clear. Next,

δ(c̄ b̄) = d(cb)⊗ 1 = cdb ⊗ 1 + bdc ⊗ 1 = c(db ⊗ 1) = c · δb̄.

Now, it follows directly from the definitions that we have a complex

I/I2 δ // ΩB/A ⊗B C // ΩC/A,

and so, using Lemma 1.2.2, we need to show the exactness of the complex

DerA(C, T ) −→ DerA(B,T ) −→ HomC(I/I2, T ),

where the first map is restriction of derivations and the second map takes a derivation d : B −→ T

to the C-module homomorphism I/I2 −→ T that takes b̄ 7→ db. Now, the only statement left to

check is that an A-derivation of B that takes I to zero is a derivation of C, but that is clear. �

Proposition 1.2.6. Let A be a ring, A[x ] := A[x1, . . . , xn] the ring of polynomials in n variables over

A, then

ΩA[x ]/A = ⊕ni=1A[x ] · dxi .

More generally, let {f1, . . . , fm} ⊂ A[x ] and C = A[x1, . . . , xn]/〈f1, . . . , fm〉, then

ΩC/A = ⊕ni=1C · dxi/〈{
n∑
j=1

∂fi
∂xj
· dxj : i = 1, . . . , m}〉C .

Proof. First, for any f ∈ A[x ] we have the identity in ΩA[x ]/A,

df =

n∑
j=1

∂f

∂xj
· dxj .

This identity is A-linear in f , so to verify it one can assume that f = xa1
1 · · · xann and proceed by

induction on the total degree of f . It is easy to check by induction on a1 ≥ 0 that dxa1
1 = a1x

a1−1
1 dx1.
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Now, if a1 > 0 then f = xa1
1 · x

a2
2 · · · xann = xa1

1 · g and thus, using the induction hypothesis for g,

df = xa1
1

∑n
j=2

∂g
∂xj
· dxj + g · a1x

a1−1
1 dx1 =

∑n
j=2

∂f
∂xj
· dxj + a1x

a1−1
1 xa2

2 · · · xann dx1 =
∑n
j=1

∂f
∂xj
· dxj .

It follows that ΩA[x ]/A is generated as an A[x ] module by dx1, . . . , dxn. Suppose that there is a

relation between these differentials:
n∑
i=1

Pidxi = 0,

for some Pi ∈ A[x ]. As ∂
∂xi

is an A-derivation of A[x ] valued in A[x ], there is an A[x ]-module

homomorphism fi : ΩA[x ]/A −→ A[x ] such that the following diagram commutes:

A[x ]
d //

∂
∂xi

##HHHHHHHHH
ΩA[x ]/A

fi
��

A[x ].

Under this maps we have xj 7→ δi j ·dxj and ∂xj/∂xi = δi j (Kronecker’s δ). It follows that fi(dxj) = δi j

and so that 0 = fi(
∑n
j=1 Pjdxj) =

∑n
j=1 Pj fi(dxj) = Pi (where we have used strongly that fi is a

homomorphism of A[x ]-modules). Thus, each Pi = 0.

To get the stronger claim, use Proposition 1.2.4, where I = 〈f1, . . . , fm〉. We have,

ΩC/A =
(

ΩA[x ]/A ⊗A[x ] C
)
/δ(I/I2)

∼= (⊕ni=1C · dxi) /δ(I/I2),

but, as I/I2 is generated as a C module by f1, . . . , fm and δ(f̄i) = dfi ⊗ 1 =
∑n
j=1

∂fi
∂xj
· dxj we find

that δ(I/I2) = 〈{
∑n
j=1

∂fi
∂xj
· dxj : i = 1, . . . , m}〉C . �

Example 1.2.7. We provide some simple examples. More to follow!

(1) We first remark that Proposition 1.2.6 holds equally well for infinite number of variables xi

and polynomials fj . However, to simplify, we would often just consider the finitely generated

case. For example:

(2) Let K/F be a finite separable extension of a fields. Without loss of generality, K =

F [t]/(f (t)), where f is an irreducible separable polynomial of F [t]. Thus, f ′(t) is non-

zero in K. Consequently, ΩK/F = F [t] · dt/F [t] · f ′(t) · dt = {0}.
(3) Consider now the case of a purely transcendental extension K = F (t). First, ΩF [t]/F =

F [t] · dt. Using localization we find that

ΩF (t)/F = F (t) · dt.

In particular, the canonical map f : ΩF (t)/F −→ F (t), taking g(t) · dt to g(t) provides us

with an F -derivation F (t) −→ F (t) for which t 7→ f (dt) = 1. This is no-surprise; this is

simply the derivation ∂
∂t .
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(4) Consider now that following case: F is a field of characteristic p, a ∈ F is not a p-power

and K = F [t]/(tp − a). Then K is a field and, as dK/F (tp − a) = ptp−1dt = 0,

ΩK/F = K · dt.

We can therefore repeat the argument made in the previous example to deduce that there

is an F -derivation δ : K −→ K such that δ(t) = 1.

(5) Consider the cuspidal curve B = k [x, y ]/(y2− x3) over k . The B-module ΩB/k has torsion

elements. Indeed, consider 2x · dy − 3y · dx , which is a non-zero element of ΩB/k . We

find that y(2x · dy − 3y · dx) = 2xy · dy − 3x3 · dx = x(d(y2 − x3)) = 0. This is of

interest because we shall later prove that if we have a non-singular variety over a field k ,

for example a non-singular affine variety Spec(A), where A is a finitely-generated k-algebra

that is a domain, then the sheaf of relative differentials ΩA/k is locally free and in particular

a torsion-free A-module. Thus, our example shows on the level of differentials that Spec(B)

is singular.

It will be very useful to us to have an even stronger form of the last proposition. The proof is

similar and is left as an exercise.

Proposition 1.2.8 (Exercise 4). Let k be a ring and A a k-algebra. Then:

(1) ΩA[x ]/k = (ΩA/k ⊗A A[x ]) ⊕ ⊕ni=1A[x ] · dxi (the canonical isomorphism being induced by

Proposition 1.2.1).

(2) Let m = 〈f1, . . . , fm〉 be an ideal of A[x ] and let C = A[x ]/m. Show that

ΩC/k
∼= (ΩA/k ⊗A (A[x ]/m))⊕⊕ni=1(A[x ]/m) · dxi ,

modulo δ(m/m2), where

δ(f ) = (d0f )(x) +

n∑
i=1

∂f

∂xi
dxi ,

and where for f =
∑
I aIx

I , aI ∈ A we let

(d0f )(x) =
∑
I

dA/kaI(mod m) · x I .

1.3. Differentials and separability. Let k be a field and K = k(t) a purely transcendental exten-

sion. We have Ωk[t]/k = k [t] · dt and so, by localization, ΩK/k = K · dt. More generally,

(I) If k ⊂ L are fields and K = L(t) then ΩL[t]/k = (ΩL/k ⊗L L[t])⊕ΩL[t]/L. Localizing, we obtain

ΩK/k = ΩL/k ⊗L K ⊕K · dt.

We note that ΩL/k is a vector space over L and we conclude that

dimK(ΩK/k) = dimL(ΩL/k) + 1, K = L(t).



NOTES - ALGEBRAIC GEOMETRY II 9

(II) If K = L[t]/f where f is a separable and irreducible polynomial in L[t] then we find, using

Proposition 1.2.8, that

ΩK/k =
(

ΩL/k ⊗L K ⊕K · dt
)
/〈δf 〉L[t],

where δf = (d0f )(t) + ∂f
∂t dt. As (f , ∂f∂t ) = 1 we have ∂f

∂t invertible in K and it follows that

ΩK/k = ΩL/k ⊗L K. In this case,

dimK(ΩK/k) = dimL(ΩL/k), K/L finite separable.

We recall the notion of a separating transcendence basis. Let K/k be an extension of fields. A

transcendence basis {tα} is called a separating transcendence basis if the extension K/k({tα}) is

(algebraic and) separable. If k is a perfect field, any extension K/k has a separating transcendence

basis. Our discussion so far gives the following.

Corollary 1.3.1. Let K/k be a finitely generated field extension that has a separating transcendence

basis. Then,

dimK(ΩK/k) = tr. deg.(K/k).

Now, in considering how field extensions are built2, there are two more possibilities to consider.

They only need to be considered in characteristic p.

(III) k ⊂ L ⊂ K an extension of fields of characteristic p, K = L[t]/(tp − a) where a ∈ L. In

this case, in the notation of Proposition 1.2.8, δ(tp − a) = dL/k(a). There are two possibilities. If

dL/k(a) = 0 then

ΩK/k = ΩL/k ⊗L K ⊕K · dt.

Thus,

dimK(ΩK/k) = dimL(ΩL/k) + 1, K = L[t]/(tp − a), dL/k(a) = 0.

(IV) The remaining case is when dL/k(a) 6= 0 (and the rest is as above). In this case we find that

dimK(ΩK/k) = dimL(ΩL/k) > 0.

Our goal is to prove now that if dimK(ΩK/k) = tr. deg.(K/k), and K is finitely generated over k ,

then K has a separating transcendence basis over k . As K can be obtained from k by iterating

constructions as in (I) - (IV), we may conclude that if for a subfield L/k we have ΩL/k 6= 0 then

also ΩK/k 6= 0.

2Any Field extension K/L has the following filtration L ⊆ L1 ⊆ L2 ⊆ K, where L1/L is a purely transcendental
extension, L2/L1 is an algebraic separable extension and K/L2 is an algebraic purely inseparable extension, which
means that every element of K not in L2 is not a root of separable polynomial with coefficients in L2. If K/L2 is a
finitely generated non-trivial extension, then [K : L2] = pa, a > 0, and p is a prime equal to the characteristic of L.
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Said differently, if we assume first that ΩK/k = {0} then it follows that for every subfield k ⊆
L ⊆ K we have ΩL/k = {0}. In this case we find that K is obtained from k using only construction

(II), repeatedly. Thus, K/k is a finite separable extension.

Now suppose that dimK(ΩK/k) = r and choose elements x1, . . . , xr such that dx1, . . . , dxr are

a basis for the K-vector space ΩK/k . Let L = k(x1, . . . , xr ). We have the exact sequence of

Proposition 1.2.1

ΩL/k ⊗L K −→ ΩK/k −→ ΩK/L −→ 0.

As all dxi are in the image of the first arrow, the first arrow is surjective and consequently ΩK/L =

{0}. By the previous case treated, K is separable over L. Because K and L have the same

transcendence degree over k , and the transcendence degree of L over k is r if and only if {x1, . . . , xr}
are a transcendence basis, it follows that {x1, . . . , xr} are a separating transcendence basis for K

over k .

In summary, we have proved the following theorem.

Theorem 1.3.2. Let K/k be a finitely generated field extension. Then K/k has a separating

transcendence basis if and only if dimK(ΩK/k) = tr. deg.(K/k). If this equality holds, and say

r = dimK(ΩK/k), any subset {x1, . . . , xr} ⊂ K such that {dx1, . . . , dxr} are a basis for ΩK/k over

K is a separating transcendence basis for K/k .

1.4. Differentials for local rings. In this section we consider the differentials of a local ring (B,m)

under the assumption that there is a map k := B/m −→ B such that the composition

(1) k −→ B −→ B/m = k,

is the identity map. This situation is typical for varieties V over an algebraically closed field k . If v

is a closed point of V then kk(v) is naturally isomorphic to k .

Theorem 1.4.1. Let B be a local ring containing a field k as above (1), then

ΩB/k ⊗B k ∼= m/m2.

Proof. From Proposition 1.2.4

m/m2 δ // ΩB/k ⊗B k // Ωk/k
// 0

0

Thus, δ is surjective. To show δ is injective, we need to show that the dual map δ∗ is surjective,

where

δ∗ : Homk(ΩB/k ⊗B k, k) −→ Homk(m/m2, k).
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However, Homk(ΩB/k ⊗B k, k) = HomB(ΩB/k , k) = Derk(B, k). Given h ∈ Homk(m/m2, k) define

a derivation dh ∈ Derk(B, k) in the following way. First, note that B = k ⊕m and so we can write

any element of B as λ+m,λ ∈ k,m ∈ m. Define then

dh(λ+m) = h(m̄).

We claim that this is a k-derivation. Additivity is clear. Now, (λ1 +m1)(λ2 +m2) = λ1λ2 +(λ1m2 +

λ2m1) +m1m2 and so

dh((λ1 +m1)(λ2 +m2)) = h(λ1m2 + λ2m1 +m1m2)

= λ1h(m2) + λ2h(m1)

= (λ1 +m1)h(m2) + (λ2 +m2)h(m1)

= (λ1 +m1)dh(λ2 +m2) + (λ2 +m2)dh(λ1 +m1).

To verify it is a k-derivation, we only need to check that dh(λ) = 0, λ ∈ k , but that is clear. Finally,

we check that δ∗(dh) = h.

The derivation we defined comes from the homomorphism ΩB/k⊗B k −→ k that has the property

that dλ⊗ 1 7→ 0, λ ∈ k and dm ⊗ 1 = h(m̄) for m ∈ m. The map δ : m/m2 −→ ΩB/k ⊗B k takes

m to dm⊗ 1 and so the induced homomorphism m/m2 −→ k is m 7→ δ(m) = dm⊗ 1 7→ h(m). �

Example 1.4.2. Let k be an algebraically closed field. Suppose that V is a variety defined in Ank by

the polynomials {f1, . . . fm}. Namely, in classical algebraic geometry V is the collection of n-tuples

(v1, . . . , vn) such that fi(v1, . . . , vn) = 0 for all i = 1, . . . , m. Suppose (and that can always be

achieved by change of coordinates) that 0 = (0, . . . , 0) ∈ V . Let us consider the maximal ideal at

the point 0.

Denote by fi ,1 the linear term of fi . Note that fi ≡ fi ,1 (mod m2). We therefore find that

m/m2 = ⊕ni=1kxi/〈f1,1, . . . , fm,1〉k .

Thus,

Homk(m/m2, k) = {(v1, . . . , vn) : fj,1(v1, . . . , vn) = 0, j = 1, . . . , m}.

Note, however, that

fj,1(v1, . . . , vn) = 〈(
∂fj
∂x1

(0), . . . ,
∂fj
∂xn

(0)), (v1, . . . , vn)〉,

where the brackets on the right are “inner product”. Another way to phrase this calculation is that

the Zariski tangent space we have studied in the last term (i.e., Homk(m/m2, k) in our case) can

in this case be interpreted as the linear subspace of Ank defined by the linear equations

n∑
i=1

∂fj
∂xi

(0) · xi , j = 1, . . . , m.
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If k is the field of complex numbers, we recognize these equations as the equations for the tangent

vectors to V at 0. This strengthens our interpretation of Homk(m/m2, k) as the tangent space at

the point x corresponding to the maximal ideal m.

The moral of the story is that we have a sheaf Ω̃B/k , at this point over Spec(B) but soon in

general, that deserves the name the cotangent sheaf. It has the property that its reduction modulo

m, namely, ΩB/k ⊗B k is the dual of the Zariski tangent space.

1.5. Globalization. We have so far defined a B-module ΩB/A for a ring homomorphism A −→ B.

Through the method of constructing quasi-coherent sheaves we thus have a quasi coherent mod-

ule Ω̃B/A for a morphism SpecB −→ SpecA. It behaves “sensibly” relative to base-change and

localization (Proposition 1.1.6). We would now like to extend our construction to any morphism

f : X −→ Y of schemes, making use of Proposition 1.1.4.

Let f : X −→ Y be a morphism of schemes and ∆ : X −→ X×Y X the diagonal morphism. Recall

that ∆(X) is a locally closed subscheme of X ×Y X. Namely, there is an open subscheme W of

X ×Y X in which ∆(X) is a closed subscheme defined by a quasi-coherent sheaf of ideals I 3.

Definition 1.5.1. We define

ΩX/Y = ∆∗(I /I 2).

Note that ΩX/Y is quasi-coherent OX ∼= O∆(X)-module and if X = Spec B, Y = Spec A then

ΩX/Y
∼= ΩB/A. The following results follow from their affine counterparts by the usual topological

sheaf-theoretical arguments (namely, reduce to the affine case using general properties of sheaves

and Proposition 1.1.6).

Proposition 1.5.2. Let f : X −→ Y , g : Y ′ −→ Y be morphisms and consider the cartesian diagram,

where X ′ = X ×Y Y ′:

X ′
g′ //

f ′

��

X

f
��

Y ′
g // Y.

Then:

ΩX ′/Y ′
∼= (g′)∗ΩX/Y .

Proposition 1.5.3. Let X
f // Y

g // Z be morphism of schemes. There is an exact sequence

of OX-modules,

f ∗ΩY/Z
// ΩX/Z

// ΩX/Y
// 0.

3Recall that X −→ Y is a separated morphism, which is by-and-large the case of interest to us this semester, if
and only if W is equal to X ×Y X; that is, if and only if ∆(X) is closed in X ×Y X.
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Proposition 1.5.4. Let f : X −→ Y be a morphism of schemes and Z a closed subscheme of X

defined by an ideal sheaf I . There is an exact sequence of OZ-modules:

I /I 2 δ // ΩX/Y ⊗OZ // ΩZ/Y
// 0.
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2. Non-singular varieties

2.1. A quick reminder concerning varieties over algebraically closed fields. We give a quick and

partial resumé of some results concerning varieties over an algebraically closed field k . One should

really read through Hartshorne’s Chapter I and Mumford’s Chapter I to have anything similar to a

descent introduction. We recall the kind of varieties we have:

(1) Affine varieties. These, by definition, are closed irreducible subsets V of Ank for some n.

Namely, using that k [x1, . . . , xn] is noetherian, they are defined by the vanishing of finitely

many polynomials f1, . . . , fm of k [x1, . . . , xn] and are thought of as the sets of points V =

{(v1, . . . , vn) ∈ kn : fj(v1, . . . , vn) = 0, j = 1, . . . , m} (as opposed to considering the scheme

Spec(k [x1, . . . , xn]/I), where I = 〈f1, . . . , fm〉). As in classical algebraic geometry one only

deals with reduced schemes, the ideal I is assumed to be a radical ideal and, in fact, as

varieties are irreducible, I is a prime ideal. Closed irreducible subvarieties of V correspond

to prime ideals J containing I, namely to points of the scheme Spec(k [x1, . . . , xn]/I).

(2) Quasi-affine varieties. These are by definition open subsets of affine varieties. If U ⊂ V
is an open subset of a variety V then it follows that U is covered by open subsets of the

sort Vf , where here we are using our scheme notation: Vf = Spec (k [x1, . . . , xn]/I)f =

Spec k [x1, . . . , xn, y ]/〈I, y f − 1〉
(3) Projective varieties. They are, by definition, closed irreducible subsets of Pnk . We we have

seen that they are determined by homogenous ideals a ⊆ k [x0, . . . , xn].4 From one of our

main results in the previous semester it follows that any projective variety X is a proper

scheme over k . Namely, the morphism X −→ Spec(k) is proper, and in particular for every

variety V (affine, or projective) the morphism X × V −→ V is a closed map. In addition, X

is separated.

(4) Quasi projective varieties. These are open subsets of projective varieties. Note that these

are the most general. Any projective variety V ⊆ Pn defined by a homogenous ideal a has

a cover by affine open subvarieties V = ∪ni=0Vi , where Vi is defined by the elements of

degree 0 in the localization of I in the variable xi , namely, by I[x−1
i ]0. Any of the previous

varieties are in fact quasi-projective varieties. It follows that every quasi-projective variety

is separated and has a basis consisting of affine varieties.

All those examples, viewed as schemes, are reduced, irreducible schemes of finite type over k . One

can define an abstract variety to be a scheme which can be exhibited as a finite unions of such open

subschemes. In general, abstract varieties are not quasi-projective anymore; namely, they are not

necessarily isomorphic to subsets of any projective space. This flexibility is desired, in fact, and is

4Recall that we have seen that for any ring R closed subschemes of PnR can be defined by homogenous ideals
a ⊆ R[x0, . . . , xn]. To get a bijection one should restrict attention to such ideals that satisfy a : 〈x0, . . . , xn〉 = a.
Namely, to ideals with the property that if xi f ∈ a for every i = 0, . . . , n then f ∈ a. Note that this corrects a
statement made last semester. It is indeed true that every homogenous ideal defines a closed subscheme and that
every closed subscheme is coming from a homogenous ideal. But, as many different ideals may define the same closed
subscheme, to get a bijection one needs to restrict to “saturated” ideals.
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the reason for this more general definition. One can also define morphisms of abstract varieties in

a direct manner. The key step is the definition for a morphism of affine varieties V1 −→ V2, where

Vi ⊆ Ani . Suppose that V2 is defined by the polynomials f1, . . . , fm. Then,

Hom(V1, V2) = {(g1, . . . , gn2 ) : gi ∈ k [x1, . . . , xn1 ],∀a ∈ V1 ∀j = 1, . . . , m,

fj(g1(a), . . . , gn2 (a)) = 0}.

However, the category of abstract varieties over k is equivalent to the category of reduced, irreducible

schemes of finite type over k with k-morphisms ([M], Theorem 2, page 88).

2.2. Non-singular varieties: definition, differentials and the Jacobian criterion. k is an alge-

braically closed field.

Definition 2.2.1. Let S be a scheme over Spec(k). We say that S is regular at a point x if the

local ring OS,x is a regular local ring, namely, if dimOS,x = dimkk(x)(mx/m
2
x). We say that S is

regular (or non-singular) if it is regular at each of its points.

Theorem 2.2.2. Let S be an abstract variety.

(1) S is regular if the local ring of every closed point is regular.

(2) The local ring B of a closed point x is regular if and only if ΩB/k is a free B-module of rank

equal to dimB. Moreover, S is regular if and only if ΩS/k is a locally free module of rank

equal to dimS.

(3) Given a closed point x ∈ S, we can find a neighbourhood of x in S of the form

Spec k [x1, . . . , xn]/〈f1, . . . , fm〉, where x corresponds to the point 0, i.e., to the ideal

〈x1, . . . , xn〉. Then S is non-singular at x , namely, the local ring of x is regular, if and

only if

n − rk(
∂fi
∂xj

(0)i ,j) = dimS.

Remark 2.2.3. Before the proof recall that if V = Spec(A) is an affine variety of k , k(V ) = Frac(A)

its field of functions then we have

dim(V ) = dim(A) = tr.deg.k(k(V )) = dim(Ap) + dim(A/p),

for every prime ideal p of A. Here dim(V ) is the topological dimension and the dimension of a ring

means its Krull’s dimension.

Another tool required for the proof is Nakayama’s lemma and a corollary of which.

Lemma 2.2.4 (Nakayama). Let (A,m) be a local ring and M a finitely generated A-module. If

mM = M then M = 0.
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Corollary 2.2.5. Let M be an A module that is finitely generated. Suppose that x1, . . . , xn are

elements of M that generate the A-module M/mM. Then x1, . . . , xn generate M.

Proof. The first claim follows from a theorem stating that the localization of a regular local ring

by a prime ideal is again a regular local ring. This theorem is actually not easy to prove and refer

to [Mat] for the proof. However, given the theorem, since the local ring of any point of S can be

obtained this way (reduce to an affine variety concerning the point in question), we are done.

For the second claim we first note that it follows from the nullstellensatz that if x is a closed

point, B its local ring, then the composition k −→ B −→ B/m = k is the identity. Now, suppose

that ΩB/k is free of rank equal to dim B. Then ΩB/k ⊗B k is a k-vector space of dimension equal

to dim B but also of dimension equal to dimk(m/m2) (Theorem 1.4.1). Therefore, B is a regular

local ring.

Conversely, suppose that B is a regular local ring of dimension r . Thus, dimk(ΩB/k ⊗ k) = r .

On the other hand, if K is the fraction field of B then ΩB/k ⊗B K = ΩK/k . As k is algebraically

closed, hence perfect, K is separably generated over k and thus by Theorem 1.3.2 dimK(ΩK/k) =

tr. deg.(K/k) = dimB = r (where we have used results about dimension that we have already

mentioned in the first term).

Now, it follows from our computations of differentials for quotients of polynomial rings that ΩB/k

is a finitely generated B-module. Thus, by Nakayama’s lemma, there is a surjective homomorphism

of B-modules

Br −→ ΩB/k .

Let R be the kernel. We have an exact sequence

0 −→ R −→ Br −→ ΩB/k −→ 0.

As K is flat over B, we get an exact sequence

0 −→ R ⊗B K −→ Kr −→ ΩK/k −→ 0.

Our results about the dimension of ΩK/k imply that R ⊗B K = {0} but R ⊂ Br and so is torsion

free as B-module. This implies that R = {0} and so that ΩB/k is a free B-module.

Using localizations we conclude that if S is regular then ΩS/k is locally free at every point of S -

in the sense that if B is the local ring of that point then ΩB/k is free B-module. As we have already

used in the past, this implies that ΩS/k is locally free - in the sense of existence of an open cover of

S, S = ∪Si such that over each Si , ΩSi/k = ΩS/k |Si is a free OSi -module.

We now prove part (3). Let a = (x1, . . . , xn). We have an isomorphism

θ : a/a2 −→ kn, θ(f ) =

(
∂f

∂x1
(0), . . . ,

∂f

∂xn
(0)

)
.

Let b = 〈f1, . . . , fm〉. Note that a ⊇ b and

n − rk(
∂fi
∂xj

(0)i ,j) = n − dim θ(b).
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Let m be the maximal ideal of the point 0 of S. Then

m/m2 = a/(b + a2) ∼= (a/a2)/((b + a2)/a2).

Therefore,

dimk(m/m2) = n − dimk((b + a2)/a2)

= n − dimk θ(b)

= n − rk(
∂fi
∂xj

(0)i ,j).

If B is the local ring of 0 on S then dim(B) = dim(S) and B is regular if and only if dimk(m/m2) =

dim(B), i.e., if and only if

n − rk(
∂fi
∂xj

(0)i ,j) = dim(S).

�

We finally have a workable criterion for deciding non-singularity. Let’s look at some examples:

Example 2.2.6. Consider the cuspidal curve C given by y2−x3 in A2. Note that its field of functions

is k(x)[y ]/(y2 − x3) which is of transcendence degree 1 over k . Thus C is really of dimension 1,

justifying calling it a ‘curve’. A point P on C is singular if and only if

(−3x2(P ), 2y(P )) = (0, 0).

This only happens (in any characteristic) if P = (0, 0), which is indeed a point on the curve. Thus,

over any field k there is a unique singular point, the point P = (0, 0).

For a point P = (a, b) on the curve, the tangent space is defined by the equation−3a2x+2by = 0.

Note that this is a line at every point but (0, 0), where it is a plane.

Example 2.2.7. Let C be the nodal curve y2 − (x3 + x2) in A2. In this case

(
∂f

∂x
,
∂f

∂y
) = (−3x2 − 2x, 2y).

In characteristic different from 2, the singular points must satisfy y = 0 and thus that x = 0,−1

(else the point is not on the curve). But at x = −1, −3x2 − 2x = −1 6= 0. Thus, in characteristic

different from 2, there is a unique singular point which is the point (0, 0). At that point, the tangent

space is equal to A2. In characteristic 2 the vanishing of (−3x2− 2x, 2y) implies that x = 0, hence

that y = 0 and so, again, the only singular point is (0, 0).

Example 2.2.8. Consider the cubic curve y2z − x3 − z3 in P2. Let us determine under which

conditions it is non-singular. On the chart z 6= 0 it is given by s2 − t3 − 1 with partial derivatives

(2s,−3t2). For characteristic different than 2, 3, the vanishing of the partial derivatives implies

s = t = 0, which is not a point on the curve. In contrast, in characteristic 2, 3 there is a point on
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the curve s2−t3−1 for which both partial derivatives vanish. We thus assume that the characteristic

is different from 2, 3.

In the chart y 6= 0 we find the equation s − t3 − s3 with partial derivatives (1− 3s2,−3t2), the

vanishing of which implies t = 0 and s2 = 1/3, which is not a point on the curve. Simliarly, in the

chart x 6= 0 we find the equation y2z − 1 − z3 with partial derivatives (2yz, y2 − 3z2). We only

need to consider the situation at the point y = z = 0, as all other points were already considered

in other charts. But this point is not on the curve at all and we are done. That is, the curve is

non-singular if and only if the characteristic of the base field is different from 2, 3.

Exercise 2.2.9 (Exercises 6 - 9 in our count). Do the Exercises in Hartshorne, Chapter I, exercises

5.1, 5.2, 5.3, 5.5.

Theorem 2.2.10. Let X be an abstract variety over k . Then the set of singular points Xsing of X

is a closed proper subset of X.

Proof. As X has a finite cover by open affine subsets, we may assume that X ⊆ An is affine,

say X = Z(I), where I = (f1, . . . , fm) is a prime ideal. Suppose that dim(X) = r . Then, by

Theorem 2.2.2, the singular closed points of X are the points where

rk(
∂fj
∂xi

) < n − r.

Namely, it is the closed set defined by the vanishing of the determinant of all (n − r)× (n − r) sub

matrices.

To show this is a proper closed set consider the generic point of X. There ΩK/k is a free K-

module of rank equal to tr. deg.(K/k) = dim(X) (as k is algebraically closed, hence perfect). Thus,

ΩX/k is free of rank equal to dim(X) in an open neighbourhood U of the generic point and all the

points of U are non-singular by Theorem 2.2.2. �

2.3. The tangent cone. The tangent space informs us about where singularities occur, but it is not

informative about the type of singularity. For example, at the singular points of both the cuspidal

and the nodal curve the tangent space is two dimensional, but the behaviour of the curves at those

points seems different. The tangent cone will allow us to capture this difference. The material in

this section is given as a series of guided exercises. Let k be an algebraically closed field.

Exercise 2.3.1 (Exercise 10). Given a non-zero polynomial f ∈ k [x1, . . . , xn] write f as a sum of its

homogenous parts

f = fr + · · ·+ fN ,

where fi is the homogenous part of f of weight i and fr 6= 0. Define

f ∗ := fr ,
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and define for an ideal I of k [x1, . . . , xn],

I∗ = 〈f ∗ : f ∈ I〉.

Prove that I∗ is a homogeneous ideal. Show by example that if I = 〈f1, . . . , fm〉 then I ⊇ 〈f ∗1 , . . . , f ∗m〉,
but they may not be equal. Show by example that I need not be a radical ideal.

Show, however, that if I = 〈f 〉 is a principal ideal then I∗ = 〈f ∗〉. Calculate I∗ for the cuspical

and nodal curves.

Exercise 2.3.2 (Exercise 11). Let Y be an affine variety over k with coordinate ring k [Y ] =

k [x1, . . . , xn]/I. Assume that 0 ∈ Y . Define the tangent cone to Y at 0 as the scheme

CY,0 = Spec(k [x1, . . . , xn]/I∗).

Let us write k [x1, . . . , xn] = ⊕∞a=0k [x1, . . . , xn]a, the sum of the homogenous parts. Prove that if

I = 〈f1, . . . , fm〉 then I∗ ∩ k [x1, . . . , xn]1 = 〈f1,1, . . . , fm,1〉. Deduce that the tangent space T to the

tangent cone at 0 is equal to the tangent space TY,0 of Y at 0 and that there is a natural closed

immersion

CY,0 ↪→ TY,0.

Here are some examples:

Example 2.3.3. For the cuspidal curve Y : y2 = x3 we find that CY,0 = Spec(k [x, y ]/(y2)). It

embeds as a closed subscheme of A2 = TY,0.

For the nodal curve Y : y2 = x2(x + 1) we find that CY,0 = Spec(k [x, y ]/((x + y)(x − y)) which

is a union of two lines crossing transversely at 0. It embeds as a reduced (but reduced) closed

subscheme of A2 = TY,0.

For the cone Y : x2 + y2 = z2 in A3 we find that CY,0 = Y . The partial derivatives (2x, 2y − 2z)

vanish at 0. Thus, the tangent space at 0 is A3 in which the cone embeds as a reduced, irreducible

closed subscheme.

Exercise 2.3.4 (Exercise 12). Give an example of a curve Y in A3, passing through 0, such that

TY,0 = A3 and whose tangent space consists of lines whose linear span is TY,0. In contrast give an

example of a curve Y in A3, passing through 0, such that TY,0 = A3 and the reduced underlying

scheme of CY,0 is a single line.

Exercise 2.3.5 (Exercise 13). Let A be a local ring with maximal ideal m. Define the associated

graded ring,

gr(A) = ⊕∞a=0m
a/ma+1,

(where, by definition, m0 = A). Let k = A/m prove that gr(A) is a graded k-algebra. Prove that

if x1, . . . , xn generate m/m2 then there is an isomorphism

gr(A) ∼= k [x1, . . . , xn]/I∗,
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where I∗ is some homogenous ideal of k [x1, . . . , xn], where the isomorphism is as graded rings.

Suppose next that Y is an affine variety defined by an ideal I and that 0 ∈ Y . Let A = OY,0, with

maximal ideal mA, where m = (x1, . . . , xn)/I. Prove that

gr(A) ∼= k [x1, . . . , xn]/I∗,

where I∗ is the ideal generated by the leading homogenous terms of the elements of I. Conclude,

CY,0 ∼= Spec(gr(A)).

The preceding exercise has the important conclusion that the tangent cone is intrinsic; it can

be defined as Spec(gr(A)) and thus does not require introduction of coordinates. In particular, we

have an elegant extension of the definition. For every abstract variety Y over k and a closed point

y ∈ Y define CY,y ∼= Spec(gr(A)), where A = OY,y .

For the following lemma see [Eis], Exercise 13.8.

Lemma 2.3.6. Let A be a noetherian local ring then dim(A) = dim(gr(A)).

Corollary 2.3.7. Let Y be an abstract variety over k and y ∈ Y a closed point. Then

dim(CY,y ) = dim(Y ).

Suppose now that Y is non-singular at y . Thus, dimTY,y = dim(Y ) = dimCY,y and, as

CY,y ↪→ TY,y we conclude that CY,y = TY,y and CY,y is reduced.

Conversely, suppose that CY,y = TY,y then dim(Y ) = dim(CY,y ) = dim(TY,y ) and so Y is non-

singular at y . To summarise:

Corollary 2.3.8. Y is non-singular at y if and only if CY,y = TY,y .

Exercise 2.3.9 (Exercise 14). The Cayley cubic is a singular surface given in P3 by the equation
1
x0

+ 1
x1

+ 1
x2

+ 1
x3

= 0, which we can write in polynomial form by multiplying by x0x1x2x3. Note that

there is an action of S4 on this surface.

Find the singular points of this surface. There are 4 of them. Show that any two singular points

lie on a line lying on the surface. This gives 6 lines. Find the tangent cone at each singular point.

Prove that there are at least 3 more lines on the Cayley cubic. One of them is given by the equations

x0 + x1 = x2 + x3 = 0. In fact, these 9 lines are all the lines lying on the Cayley cubic, but this

requires some work. Find the overall configuration of intersections between the 9 lines.

The Cayley cubic is the unique singular cubic in P3, up to isomorphism, with 4 ordinary double

points and no other singular points (4 ordinary double points is in fact the maximal number of

ordinary double points possible for a cubic surface).
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3. Rational maps and birational equivalence

Once more k is an algebraically closed field. To simplify matters, in this section we shall only

consider quasi-projective varieties over k . Since Pnk is proper, it is separated and thus every quasi-

projective variety is separated. Consequently, if ϕi : X −→ Y, i = 1, 2 are morphisms between

quasi-projective varieties such that ϕ1|U = ϕ2|U for some non-empty open subset U of X, then

ϕ1 = ϕ2. More precisely, the set of points of X for which ϕ1 = ϕ2 is a closed set.

Definition 3.0.10. A rational map X
ϕ //___ Y is an equivalence class of pairs (U,αU), where U ⊆ X

is an open non-empty set and αU : U −→ Y is a morphism. The equivalence relation is defined by

decreeing that (U,αU) ∼ (V, αV ) if αU |U∩V = αV |U∩V . We call ϕ dominant if for some U (hence

for any U) the closure of αU(U) = Y .

There is a well defined notion of composition of dominant rational maps X
ϕ //___ Y

ψ //___ Z that

allows for the following definition.

Definition 3.0.11. A birational map X
ϕ //___ Y is a dominant rational map such that there is a

dominant rational map Y
ψ //___ X such that ψ ◦ ϕ = 1X and ϕ ◦ ψ = 1Y (equalities as rational

maps). We say that X and Y are birationally equivalent and write X ∼ Y if there is a birational

morphism X //___ Y .

Now, given a variety X, we may associated to it its field of functions k(X), which is, equivalently,

(i) the local ring of the generic point of X, (ii) The fraction field of any open affine subvariety of

X, (iii) the fraction field of the local ring of any point x of X. It is a field that is finitely generated

over k .

Given a dominant rational map X
ϕ //___ Y , the generic point of Y is necessarily the image of

the generic point of X (to see that most easily, reduce to the case where X and Y are affine) and

so we have an induced map ϕ∗ : k(Y ) −→ k(X).

Lemma 3.0.12. Let ϕi : X
ϕ //___ Y be dominant rational maps such that ϕ∗1 = ϕ∗2 then ϕ1 = ϕ2

as rational maps. Any ring homomorphism k(Y ) −→ k(X) comes from a dominant rational map

X
ϕ //___ Y .

Proof. Let U be a non-empty open set on which both ϕi are defined. We note that the subset of U,

{ϕ1 = ϕ2}, includes the generic point and is closed, hence equal to U. Thus, ϕ1 = ϕ2 are rational

maps.

For the second claim, take any open affine Spec(A) in Y , where A is a finitely generated k-

algebra: say g1, . . . , gt are generators. Then A ↪→ k(Y ) ↪→ k(X) = lim
−→
OX(U), the limit taken

over all non-empty open sets U of X. Under the composition, gi 7→ hi ∈ k(X) and so there exists
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an open, and thus open-affine, set U such that hi ∈ OX(U), i = 1, . . . , t. This gives us a morphism

U −→ Spec(A), and thus a rational map X
ϕ //___ Y that induces ϕ. �

Theorem 3.0.13. There is an anti-equivalence of categories between:

(a) the category of quasi-projective varieties and dominant rational maps;

(b) finitely generated field extensions K/k with k-algebra homomorphisms.5

Proof. We have already constructed a function (a) 7→ (b) and we have shown that it is fully-faithful.

The only thing remaining is to show essential surjectivity. Namely, that every finitely generated field

extension K/k arises from some quasi-projective variety. Indeed, if K is generated by g1, . . . , gn as

a k-algebra the consider the map

k [x1, . . . , xn] −→ K, xi 7→ gi .

The kernel is an ideal I, which is prime and defines an irreducible affine variety X. The function

field of X is the field of fractions of k [x1, . . . , xn]/I which is, on the one hand, contained in K but,

on the other hand, contains generators for K/k , hence equal to K. �

Corollary 3.0.14. The following are equivalent for two varieties X, Y over k .

(1) X ∼ Y ;

(2) k(X) ∼= k(Y ) as k-algebras;

(3) there exists non-empty isomorphic open sets U ⊆ X and V ⊆ Y .

Proof. The equivalence of (i) and (ii) is the theorem. That (iii) implies (i) follows from the definitions

directly. Suppose that (i) holds then there is an open non-empty subset U0 ⊆ X and a morphism

ϕ : U0 −→ Y and a non-empty open subset V0 ⊆ Y and a morphism ψ : V0 −→ X such that

whenever the compositions ϕ ◦ψ and ψ ◦ϕ are defined, they are the identity. Let U = ϕ−1(V0) and

V = ϕU. The map ϕ : U −→ V is surjective by definition and ψ is defined on V . Thus, ϕ : U −→ V

is an isomorphism. �

Corollary 3.0.15. Every variety of dimension n is birational to a hypersurface in Pn+1. In particular,

any curve is birational to a plane curve and any surface is birational to a surface in P3.

Proof. Let Y be a variety and K = k(Y ). As k is algebraically closed, K has a separating transcen-

dence basis {x1, . . . , xn} and [K : k(x1, . . . , xn)] <∞ (being a finitely generated algebraic extension).

By the primitive element theorem there is an irreducible polynomial f (y) ∈ k(x1, . . . , xn)[y ] such

that K = k(x1, . . . , xn)[y ]/〈f (y)〉.
Suppose that f =

∑
aiy

i , ai ∈ k(x1, . . . , xn). We can multiply f by a non-zero polynomial

a ∈ k [x1, . . . , xn] (which is a unit of k(x1, . . . , xn)) without changing the ideal 〈f (y)〉 and thus we may

as well assume each ai ∈ k [x1, . . . , xn]. Therefore, K is the fraction field of k [x1, . . . , xn, y ]/〈f (y)〉.
5By that we mean that there are elements g1, . . . , gt in K such that the minimal subfield of K containing k and all

the gi is K. This is different than saying the K is a k algebra of finite type.
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This defines a hypersurface in An+1 whose function field is K, and by taking the closure in Pn+1 we

get a projective hypersurface. �
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4. Curves

Although our main interest is to start the study of curves, we need some algebraic preliminaries.

The local ring of a point on a curve will turn out to be a discrete valuation ring, which is a very

powerful result. To understand such rings and how to prove that the local rings are such, we require

some knowledge of valuation rings.

4.1. Valuation rings.

Definition 4.1.1. Let K be a field and G a linearly ordered abelian group6. Usually the group law

on G is written additively. A valuation of K with values in G is a function

v : K× −→ G,

such that for all x, y ∈ K×:

(1) v(xy) = v(x) + v(y);

(2) v(x + y) ≥ min{v(x), v(y)}.

Remark 4.1.2. It is easy, and useful, to check that a, b ∈ G and a ≥ 0, b ≥ 0 implies a+ b ≥ 0 and

−a ≤ 0. Also, one deduces from the definition that v(1) = 0 = v(−1).

Example 4.1.3. Here are the two standard examples:

(1) Let p be a prime number. Define a valuation on Q, vp : Q× −→ Z, by vp(x) = r if x = pr · ab ,

where p - ab. The valuation ring defined below - the elements of non-negative valuation -

is Z(p), the localization of Z at the multiplicative set Z − (p). That is, Z(p) = { ab : a, b ∈
Z, p - b} and its maximal idea is pZ(p) = {pab : a, b ∈ Z, p - b}.

(2) Let F be a field and let f (t) be an irreducible monic polynomial of F [t]. Define vf :

F (t)× −→ Z, by vf (g) = r if g = f r · ab where a, b ∈ F [t], f - ab. The valuation ring is the

localization F [t](f (t)) and its maximal ideal is f (t) · F [t](f (t)).

Lemma 4.1.4. Let v be a valuation on K. Let

R = {x ∈ K : x = 0 or v(x) ≥ 0}.

Then R is a local ring with maximal ideal

m = {x ∈ K : x = 0 or v(x) > 0}.

It has the property that for every x ∈ K either x ∈ R or x−1 ∈ R (or both).

Conversely, let R be an integral domain with field of fractions K. Suppose that for all x ∈ K,

either x or x−1 are elements of R (or both). Then R is a valuation ring.

6Thus G is a linearly ordered set and if a ≥ b then a + c ≥ b + c for all c.
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Proof. The fact that R is a ring and m is an ideal follow directly from the definition and the remark

following it. If x ∈ R − m then v(x) = 0 and thus v(x−1) = v(1) − v(x) = 0 − 0 = 0. It follows

that x−1 ∈ R. That is, every element of R not in m is a unit. Thus, R is a local ring. Finally, as

v(x−1) = v(1)− v(x) = −v(x) it follows that for every element x of K either x or x−1 are in R.

Conversely, let R be a domain with the stated properties. We build a valuation on K that would

produce R as its valuation ring. Let

Γ = K×/R×,

which is an abelian group, written multiplicatively. For ā, b̄ ∈ Γ, say that

ā ≥ b̄ if ab−1 ∈ R.

This is well defined, meaning independent of the chosen representatives for ā, b̄. We note that:

(1) ā ≥ ā;

(2) If ā ≥ b̄ and b̄ ≥ c̄ then ab−1 and bc−1 are in R and thus so is ac−1 = (ab−1)(bc−1).

That is, ā ≥ c̄ .

(3) If ā ≥ b̄ and b̄ ≥ ā then both ab−1 and ba−1 are in R. Namely, ab−1 ∈ R× and so

b̄ = b̄ · ab−1 = ā in Γ.

(4) For any ā, b̄, either ā ≥ b̄ or b̄ ≥ ā.

(5) Finally, if ā ≥ b̄ and c̄ any element then āc̄ ≥ b̄c̄ as ac(bc)−1 = ab−1 ∈ R.

Thus, Γ is a linearly ordered abelian group. Define now a function

v : K× −→ Γ, v(a) = ā.

We claim that v is a valuation. Indeed, that v(ab) = v(a)v(b) is clear. Suppose that v(a) ≥ v(b),

namely, that ab−1 ∈ R. To show v(a + b) ≥ v(b) we need to show that (a + b)b−1 ∈ R. But

(a + b)b−1 = 1 + ab−1. Thus, we have shown that v(a + b) ≥ min{v(a), v(b)}. �

Definition 4.1.5. Let K be a field. Define an order on the set of local rings that are contained in

K as follows. Say that (A,mA) ≤ (B,mB) if A ⊆ B and mB ∩ A = mA (equivalently, mA ⊆ mB).

Theorem 4.1.6. A valuation ring of K is a maximal element of the set of local rings of K. Any

maximal element is in fact a valuation ring.

Proof. In fact the proof is not that easy and we will have to sacrifice too much class time to explain

it. We refer to [AM], Theorem 5.21. Here we only prove the easy part:

Let (R,mR) be a valuation ring and suppose that (R,mR) ≤ (S,mS). Let x ∈ S. If x ∈ R we

are done. Else, x−1 ∈ R, and in fact, x−1 ∈ mR (else, x−1 is a unit of R and so x ∈ R leading us

to the previous case). But then x−1 ∈ mS, which implies that x 6∈ S. Contradiction. Thus, every

x ∈ S belongs to R and so R = S. �

Definition 4.1.7. A valuation v : K× −→ G is called discrete if it is surjective and G is isomorphic

to Z as an ordered abelian group.
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One of the main results in this section is the following theorem:

Theorem 4.1.8. Let A be a noetherian local domain of dimension 1. Let m be its maximal ideal

and k = A/m. The following are equivalent:

(1) A is a discrete valuation ring.

(2) A is integrally closed in its fraction field K.

(3) m is a principal ideal.

(4) A is a regular local ring, that is, dimk(m/m2) = 1.

To prove the theorem we will use Nakayama’s lemma; In addition, the following observations will

be useful.

(1) Let aCA be a non zero ideal then a ⊇ mr for some r . Indeed,
√
a is the intersection of

prime ideals, by a general result about commutative rings we proved last term. But there is

only one non-zero prime ideal, m. Thus,
√
a = m. As A is noetherian, m is finitely generated

and it follows that a ⊇ mr for a large enough integer r .

(2) For all n ≥ 0, mn 6= mn+1. Else, we would have mmn = mn, which implies by Nakayama that

mn = 0. This contradicts the integral domain assumption (as m 6= 0 by the dimension 1

hypothesis).

Proof. (1) ⇒ (2).

In fact, any valuation ring A is closed in its field of fractions K. If x ∈ K is integral over A, then x

satisfies xn + an−1x
n−1 + · · · + a0 = 0, for some ai ∈ A. If x ∈ A we are done. Otherwise 1

x ∈ A
and we find that

x = −(an1 + · · ·+ a1(
1

x
)n−2 + a0(

1

x
)n−1) ∈ A.

(2) ⇒ (3).

Let a ∈ m, a 6= 0. There exists some n such that (a) ⊇ mn but (a) 6⊇ mn−1. Choose then

b ∈ mn−1 − (a) and let x = a/b. We will show that m = (x).

If x−1 ∈ A, i.e. b/a ∈ A, then b ∈ (a). So that can’t happen. Thus x−1 6∈ A and therefore

x−1 is not integral over A. Now, if x−1m ⊆ m then, as m is a finitely generated A-module (A is

noetherian), if follows that x−1 is integral over A by a well-known criterion. Thus, x−1m 6⊆ m. On

the other hand x−1m = b
am ⊆ A, because bm ⊆ mn ⊆ (a) = aA. Thus, we must have x−1m = A

and it follows that m = xA.

(3) ⇒ (4)

If m = (x) then m2 = (x2) and m/m2 ∼= k · x is one dimensional (as m 6= m2). Thus, A is a regular

local ring.
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(4) ⇒ (1)

First, as A is a regular local ring of dimension 1 there is x ∈ m such that m/m2 = k · x . By

Nakayama’s lemma, m = (x). Thus, m is principal. We shall now show that any non-zero ideal is a

power of m, hence principal too.

Let a 6= 0 be a proper ideal of A. Then a ⊆ m and a ⊇ mn for some n. It follows that there

is an r such that a ⊆ mr = (x r ), but a 6⊆ mr+1 (else, we would also get that a ⊆ mr ⊆ mn for r

big enough, which would lead to mn = mr for r sufficiently large, which would imply mn = mn+1).

Thus, there is an element a ∈ a such that a = ux r and a 6∈ (x r+1); that is, u 6∈ (x). But that

implies that u is a unit of A, which gives x r ∈ a. Consequently, a = (x r ).

Now, given a ∈ A we have (a) = (x r ) for some r ≥ 0. Define then

v(a) = r.

It is easy to check that this gives a valuation on K, when defining v(a/b) = v(a)− v(b), making A

into a discrete valuation ring. �

We would often be interested in the situation where k ⊂ K is a subfield and we consider valuations

that are trivial on k . The local ring of such a valuation is a valuation ring and so a maximal local

ring of K relative to the order we defined above. On the other hand, given a local ring of K that

contains k , note that it is the same to say that it is maximal among all local rings of K, or maximal

among all local rings of K that contain k . And in this case it is a valuation ring such that the

valuation on k is trivial. We therefore conclude,

Corollary 4.1.9. Let k ⊂ K be a subfield. There is a bijection between valuation of K whose

valuation is trivial on k (considered up to equivalence of the value group of the valuation) and local

rings of K that are maximal, relative to domination, among all local rings of K that contain k .

4.1.1. Geometric applications.

Corollary 4.1.10. Let X be a non-singular quasi-projective curve over an algebraically closed field k .

Let x0 ∈ X be a closed point. Then OX,x0
is a discrete valuation ring with residue field k . Denote

the valuation vx0 .

Given f ∈ k(X), the function field of X (which is the local ring of the generic point of X), call

vx0 (f ) the order of vanishing of f at x0.

Proof. As X is non-singular, all the local rings are regular. The local ring of a closed point is a

regular local ring of dimension 1, hence a discrete valuation ring. �

More generally, given a variety V over an algebraically closed field k and a point x on it, OV,x can

be calculated using any affine chart. Thus, we may assume V = Spec R is an affine variety and x

corresponds to a prime ideal p. We have already used in the past that

dim(V ) = dim(A/p) + ht(p).
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Note also that ht(p) = dim(Ap). Thus, if p is of height 1, namely, corresponds to a closed irreducible

subvariety Z ⊂ V of codimension 1, and if p is a regular point, which would be the case if, say, V is

non-singular, then Ap is a discrete valuation ring. The associated valuation v satisfies that v(f ) is

the order of vanishing of f along Z.

Example 4.1.11. Take X = A1
k with coordinate t and x0 = 0 = 〈t〉. Let f be a polynomial and

write f = ar t
r + ar+1t

r+1 · · ·+ ar+nt
r+n where ar 6= 0. Then v0(f ) = r . This valuation extends to

K = k(t).

The same applies to any other point α ∈ A1
k , which corresponds to the maximal ideal 〈t − α〉.

Similarly, for f = ar (t − α)r + · · ·+ ar+n(t − α)r+n with ar 6= 0 we have vα(f ) = r .

There is yet another valuation on K, v∞. It measures the order of vanishing at infinity. Namely,

if we view K as the function field of P1
k this is precisely the valuation corresponding to the point at

infinity. This valuation is characterized by

v∞(t−1) = 1.

This valuation satisfies the relation

v∞(f (t)) = v0(f (1/t)).

Thus, for example v∞( 1
t+1 ) = v0( t

t+1 ) = v0(t)− v0(1 + t) = 1.

An interesting point to note is that by considering all the valuations on K we were able to discover

that there is a missing point, i.e. the point ∞.

Example 4.1.12. Consider the local ring A at 0 on the curve y2 = x3. This ring is Noetherian of

dimension one, being the localization of a Noetherian ring of dimension one in a maximal ideal.

The Jacobian criterion shows that the point 0 is singular. Thus, the conditions specified in

Theorem 4.1.8 fail. It is interesting to see how. Firstly, the maximal ideal is m = 〈x, y〉 (mod I),

where I = 〈y2 − x3〉. Thus, we find that

m/m2 ∼= k · x ⊕ k · y ,

has dimension 2. Thus, the ring is not regular and, at the same time, we see that m cannot be a

principal ideal. We also note that, as expected, A is not integrally closed. Let t = yx−1. Then

t2 = y2x−2 = x and thus t2 − x = 0. Thus, t is integral over A, but t doesn’t belong to A.

Finally, A is not a dvr. Although we can define a function v on A by v(y) = 3 and v(x) = 2

and it extends naturally to a function on A (and its field of fractions), A is not the valuation ring of

v ; The valuation ring contains at least k [x, y , t]/(y2 − x3), which is isomorphic to k [t]. As k [t] is

integrally closed it follows that the valuation ring is precisely k [x, y , t]/(y2 − x3).

Exercise 4.1.13. Do the exercises [H] II.4.5 (a), (b).

Exercise 4.1.14. This exercise is taken from [AM] Exercises 28 and 32, page 72.
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Let Γ be a totally ordered abelian group. A subgroup ∆ of Γ is called isolated in Γ if, whenever

0 ≤ β ≤ α and α ∈ ∆ then β ∈ ∆. (Perhaps a better name would have been convex.)

(1) Let A be a valuation ring with fraction field K and value group Γ (in particular, v : K∗ → Γ

is surjective). Let p be a prime ideal of A. Show that v(A − p) is the set of non-negative

elements of an isolated subgroup ∆ of Γ. Show further that the mapping so defined of

Spec(A) into the set of isolated subgroups of Γ is bijective. (One defines the rank of the

valuation as the length n of a maximal chain of isolated subgroups ∆0 ( · · · $ ∆n. Note

that this is therefore just the Krull dimension of A).

(2) Deduce from this correspondence that the set of prime ideals of A is totally ordered.

(3) If p is a prime ideal, prove that A/p and Ap are valuation rings as well. What are the value

groups for these valuations?

Exercise 4.1.15. (Example of a valuation ring of rank 2). Consider the abelian group Z2 with the

lexicographic order: (a, b) < (a′, b′) if either a < a′ or a = a′ and b < b′. Show that this is a linearly

ordered abelian group. Find its isolated subgroups.

We now proceed to finding a field with a valuation in this group. Let K be the field of formal

power series in two variables and complex coefficients satisfying the following restrictions: every

element of K is a power series
∑
r≥a(x r

∑
s≥b(r) cr,sy

s), where a is an integer and b(r) is an integer

depending on r .

(1) Show that K is a field.

(2) Given an element of K as above, define its valuation as the minimal (r, s) for which cr,s 6= 0.

(3) Find the valuation ring and its prime ideals.

4.2. Curves: The idea, the goal and some consequences. Let Y be an affine curve with coordi-

nate ring A(Y ). We are familiar with the correspondence

{closed points y ∈ Y } ←→ {maximal ideals of A(Y )},

given by y 7→ my . If Y is projective, we have a difficulty constructing a similar correspondence. Of

course, we could use the homogenous coordinate ring of Y and its maximal ideals, but unlike in the

affine case, the homogenous coordinate ring depends on the embedding of Y in a projective space

and typically two different embeddings do not yield isomorphic rings. Nevertheless, we note that

there is another approach that works in the affine case. There is an injective map

Y ↪→ {local rings of k(Y )}, y 7→ OY,y .

This map is indeed injective, because for different points we localize A(Y ) at different maximal

ideals to obtain the local rings. Note that we can recover the maximal ideals by mY,y ∩ A(Y ). This

approach generalizes well to the case where Y is quasi-projective as the local ring of a point is an
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intrinsic notion that doesn’t depend on the projective embedding. Thus, for Y quasi-projective, we

have a function

Y −→ {local rings of k(Y )}, y 7→ OY,y .

Lemma 4.2.1. This map is injective.

Proof. Let P 6= Q be distinct points of Y and say Y ⊆ Pn. We claim that there exists a function f

that is zero at P and non-zero at Q. Let g = 1/f . Then g ∈ OY,Q and g 6∈ OY,P . This shows that

the local rings are distinct. Now to the construction of f : Think about P and Q as vectors in An+1.

As linear functionals separate vectors, there is a linear functional φ that vanishes at P and not at

Q and there is a linear functional ψ that vanishes at neither. We can write φ = a0x0 + · · ·+ anxn,

ψ = b0x0 + · · ·+ bnxn and we let f = φ
ψ = a0x0+···+anxn

b0x0+···+bnxn . �

Let K/k be a function field of dimension 1; that is K/k is a finitely generated field extension

such that the transcendence degree of K over k is 1. These are precisely the fields arising the field

of rational functions of a curve Y over k . Call a dvr R ⊂ K a dvr of K/k if the valuation gives value

0 to k× and the fraction field of R is K (which is, in fact, always the case, but we shall not need to

use that).

Consider now a particular case where Y is a non-singular curve over k . In that case, we have an

injection

Y ↪→ {dvr’s of k(Y )/k}, y 7→ OY,y .

One of the main points of this chapter is that if Y is projective, this is a bijection. This suggest

that, in some sense, a projective non-singular curve Y should be thought of as the collection of dvr’s

of k(Y )/K. After developing a language allowing us to make sense of this idea, we will be able to

prove one of the main results of this chapter. Namely:

The following three categories are equivalent:

(1) Projective non-singular curves and dominant morphisms.

(2) Quasi-projective curves with dominant rational maps.

(3) Function fields K/k of dimension 1 and k-algebra homomorphisms.

We remark that the equivalence of (2) and (3) - to be precise, an anti-equivalence - is already known

to us from our discussion of rational morphisms and birational equivalence. There is also a canonical

function from (1) to (2): A projective curve is in particular a quasi-projective curve and a dominant

morphism is an example of a dominant rational map.

Let us now illustrate what the equivalence means. For example, it implies the following: Given

any quasi-projective curve Y , there is a smooth projective curve X, such that X ∼ Y , equivalently

k(X) = k(Y ). Moreover, X is unique up to isomorphism. Further, given a dominant rational map

Y1
f //___ Y2 , and smooth projective curves Xi ∼ Yi , there exists a unique morphism φ : X1 −→ X2
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such that the following diagram commutes

X1
φ //

���
�
� X2

���
�
�

Y1
f //___ Y2

In particular, if Y1, Y2 are themselves smooth projective curves and Y1
f //___ Y2 is a rational map

then f extends uniquely to a morphism Y1 −→ Y2.

For example, we can use these statements to conclude that if Y is a smooth projective curve and

Y0 ⊆ Y is an affine curve then any automorphism Y0 −→ Y0 extends uniquely to an automorphism

Y −→ Y .

Before we start, we remark that any dominant morphism X −→ Y , where X −→ Spec(k) is

proper, is surjective (as the image is closed and dense). In particular, any dominant morphism

between projective curves (singular or not) is surjective.

Remark 4.2.2. One may ask whether the approach taken here for curves can be generalized to higher

dimensional varieties. Let us explain one aspect of the complications arising. It follows from our

main results that every function field of dimension 1 is the function field of a unique non-singular

projective curve C and, moreover, given any projective curve C′ with function field k(C) there is a

dominant birational morphism C → C′. Already for surfaces the situation is very different.

Let S be a non-singular projective surface and k(S) its function field. There can certainly be

other non-isomorphic non-singular projective surfaces S′ with the same function field such that,

although, S and S′ are birational, there is no dominant morphism S → S′ or S′ → S. Nevertheless,

at least for surfaces we have a very good understanding how all such surfaces are related to each

other. Yet, fix such a surface S. By taking an irreducible curve C on S we get a discrete valuation

associated with it (and recall that scheme-theoretically we can think about C as a point, viz. the

generic point of C). But there are infinitely many discrete valuations rings of k(S)/k that do not

arise this way. For example, take S and blow-it up at a point s0. This is a process we shall discuss

later, but for now let us allow that it provides a nonsingular projective surface S′ and a birational

morphism π : S′ → S that is an isomorphism outside π−1(s0) and π−1(s0) is an irreducible curve C.

The valuation ring of C is a discrete valuation ring of k(S′) = k(S), but “is not visible” on S itself.

The same process can now be repeated for S′ and any point s ′0 on it, whether lying on C or not,

and so on! It is not clear, even if we look at the set of all valuation rings of k(S)/k , which model

it should prefer. No model will capture, for example, all its discrete valuation rings.

4.3. Abstract non-singular curves. Let K/k be a function field of dimension 1; as always, k is

an algebraically closed field. Let CK be the set of dvr’s of K/k . The following lemma will be used

repeatedly.
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Lemma 4.3.1. The following holds:

(1) Let x ∈ K. Then {R ∈ CK : x 6∈ R} is a finite set.

(2) Let y ∈ K, y 6= 0. Then {R ∈ CK : y ∈ mR} is a finite set.

Proof. The case x = 0 is trivial. Suppose that x 6= 0 and put y = 1/x . If x 6∈ R then y ∈ mR, and

vice-versa. Therefore, it is enough to prove the second statement of the lemma.

If y ∈ k×, then y ∈ R× for any R ∈ CK , so the set {R ∈ CK : y ∈ mR} is empty. Let then

y ∈ K − k . Since k is algebraically closed, y is transcendental over k . If y ∈ mR then, in particular,

k [y ] ⊂ R ⊂ K.

Let B be the integral closure of k [y ] in K. Since K/k(y) is algebraic and finitely generated, B is

a finitely generated k-algebra that is a finite k [y ]-module, by the “finiteness of integral closure”

theorem in algebra (see [H] Theorem 3.9A). Moreover, the quotient field of B is K (every element

of K is integral over some localization of k [y ] - look at the minimal polynomial of that element

over k(y)). As all the local rings of B at prime ideals are noetherian, dimension 1 and integrally

closed they are regular local rings. Thus, B corresponds to a smooth affine curve Y with A(Y ) = B

and k(Y ) = K. (Namely, Y = Spec B and A(Y ), the affine coordinate ring of Y , is just another

notation for Γ(Y,OY ).)

Using the notation NK(−) to denote normal closure in K, we note that k [y ] ⊂ R implies that

B = NK(k [y ]) ⊆ NK(R) = R, because R is integrally closed and its fraction field is K. We conclude

that B ⊂ R for any dvr R of K/k such that y ∈ mR. Let

nR = mR ∩ B.

The ideal nR is a prime ideal of B, which is a Dedekind ring, namely a noetherian integrally closed

domain of dimension 1. Therefore nR is a maximal ideal, corresponding to some point P ∈ Y . We

have

OY,P = BnR ⊆ R.

Note that by Theorem 4.1.8, BnR is a dvr of K/k too. Since dvr are maximal local rings relative

to domination and R dominates BnR , we have that BnR = R. Thus, y ∈ mR implies that y ∈ mP .

That is, y vanishes at P . But y 6= 0 so it vanishes at finitely many points. �

The proof gives also the following conclusion.

Corollary 4.3.2. Any dvr of K/k is the local ring of some point on a smooth affine curve Y with

k(Y ) = K. In particular, R/mR = k .

To define abstract non-singular curves - or AC for short - we consider the following space (in

fact, a special case of AC).

• The points of the space are CK . It is a space with infinitely many points as revealed by the

proof of Lemma 4.3.1.
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• The topology is the co-finite topology.

• We define a sheaf of functions O: for U ⊆ CK we let

O(U) = ∩R∈UR.

We note that by said lemma, the function field of this space, namely lim
−→ U 6=∅

O(U), is just K. Also,

the local ring of a point R, namely lim
−→ U s.t. R∈U

O(U) = R (use Lemma 4.3.1).

Now, every element of f ∈ O(U) defines a “real” function f : U −→ k by the formula

f (R) = f (mod mR) ∈ R/mR = k

(we shall refer to f itself, temporarily, as “abstract” function). The “real” function f determines

the “abstract” function f ; indeed, if f and g define the same “real” function, then f − g ∈ mR for

all R ∈ U, which is an infinite set. By Lemma 4.3.1, f − g = 0. We can therefore easily identify

“abstract” functions with “real” functions.

Definition 4.3.3. An abstract non-singular curve, or AC for short, is a non-empty open set U of

CK (for some function field K/k of dimension 1) with the induced topology and sheaf of regular

functions. It is thus a locally ringed space.

We will see shortly that we may think about AC as a curve but until we have established that,

if we want to consider morphisms between varieties and AC’s, we have to enlarge the category of

varieties by including also all AC for any function field K/k of dimension 1.

If V1, V2 are objects are objects of this enlarged category then a morphism f : V1 −→ V2 is a

continuous function such that for all U ⊆ V2 open and a “real” function g : U −→ k , the “real”

function g ◦ f : f −1(U) −→ k is a regular function. That means that if V1 is curve, this “real”

function arises from an “abstract” function in the manner discussed above. We get a category this

way that contains the category of varieties.

4.4. Curves and abstract curves.

Proposition 4.4.1. Every non-singular quasi-projective curve Y is isomorphic to some AC.

Proof. Let K = k(Y ) and U ⊆ CK be the set

U = {OY,P : P ∈ Y }.

We shall show below that U is open. Suppose that for the time being. Then U is an AC. Define

ϕ : Y −→ U, P 7→ OY,P .

As we have noted before, this is a bijection. Let V ⊆ Y be open, then

O(V ) = ∩P∈YOY,P .
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(This just expresses the fact that being regular is a local property.) It follows that

O(V ) = O(ϕ(V ))

and therefore that ϕ is an isomorphism.

Now, to show U is open it is enough to show that CK − U is finite and so it is enough to show

that U contains a non-empty open set. We may therefore assume that Y is affine. In this case the

proof of Lemma 4.3.1 shows that

U = {dvr R of K/k : R ⊃ A(Y )}.

Let x1, . . . , xn be generators of A(Y ) as a k-algebra. Then,

U = {R ∈ CK : xi ∈ R, i = 1, . . . , n} = ∩ni=1{R ∈ CK : xi ∈ R}.

By Lemma 4.3.1, each set {R ∈ CK : xi ∈ R} is co-finite and so U is co-finite too. �

The following proposition, besides being important for the development of our final result, is of

great interest because it provides an effective procedure for extending morphisms.

Proposition 4.4.2. Let X be an AC, P ∈ X and Y a projective variety. Any morphism

ϕ : X − {P} −→ Y

extends uniquely to a morphism X −→ Y .

Proof. Suppose that Y ⊆ Pn, then the morphism ϕ : X − {P} −→ Y induces a morphism ϕ :

X − {P} −→ Pn. Suppose that this morphism can be extended to ϕ : X −→ Pn, then ϕ−1(Y ) is

closed and contains X−{P}, hence equal to X (closed sets, except for X itself, are finite). Therefore

the morphism ϕ : X −→ Pn necessarily factors through Y and gives us an extension ϕ : X −→ Y .

Note that this extension is unique, because two morphisms agreeing on an open dense set, X−{P}
in our case, are equal everywhere.

Thus, we may consider the problem of extending a morphism ϕ : X−{P} −→ Pn to a morphism

ϕ : X −→ Pn.

Let U ⊆ Pn be the open set whose points are {a ∈ Pn : ai 6= 0, i = 0, . . . , n}. We may

assume that ϕ(X − {P}) ∩ U 6= ∅. Indeed, if not, then ϕ(x − {P}) ⊂ ∪ni=0Z(xi). As X − {P} is

irreducible (proper finite sets are finite, after all) so is ϕ(x − {P}) and thus, there is an i such that

ϕ(x − {P}) ⊆ Z(xi) ∼= Pn−1. Thus, making use that the case of n = 0 it trivial and arguing by

induction, we may assume this doesn’t happen and so that ϕ(X − {P}) ∩ U 6= ∅.
Let fi j = ϕ∗(xi/xj). This is a regular function of ϕ−1(U), which is a non-empty open set. Thus,

fi j ∈ K. Let us denote the valuation on P (P , recall, is a dvr) by v , and let ri = v(fi0). Then

v(fi j) = v(fi0/fj0) = ri − rj .

Choose an a such that

v(fa0) = min{v(f00), v(f10), . . . , v(fn0)}.
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Then,

v(fia) = ri − ra ≥ 0,∀i .

That is, f0a, . . . , fna ∈ P . Extend ϕ by defining

ϕ(P ) = (f0a(P ), . . . , fna(P )).

This is well-defined as all the functions fia are regular at P and not all vanish at P : faa ≡ 1. We

need to show ϕ is a morphism. To begin with, to show that ϕ pulls-back regular functions to regular

functions, it is enough to deal with an arbitrarily small open set containing ϕ(P ).

Note that ϕ(P ) ∈ V := {x ; xa 6= 0} and that is an affine open subset of Pn with affine coordinate

ring k [x0/xa, . . . , xn/xa]. As ϕ∗(xi/xa) = fia is regular at P , and regularity at any other point of

ϕ−1(V ) is already known, ϕ∗ takes regular functions on V to regular functions on ϕ−1(V ). Given

a V1 ⊆ V open and g ∈ O(V ) it follows easily, by writing g locally as a fraction of regular functions

on V , that ϕ∗(g) is regular on ϕ−1(V1).

Finally, to show ϕ is continuous, we need to show that the pre-image of a closed set is closed.

Note that ϕ(X − {P}), as well as its closure, is connected and irreducible. It is thus either a

point or a curve. The first case is trivial. In the second case, as “most” closed sets are finite, a

quick examination of the situation reveals that the only problem may occur when there is closed set

Z ⊇ ϕ(X − {P}) such that ϕ(P ) 6∈ Z. But then, if we define a function g by g(Z) ≡ 0, g(P ) = 1,

then g is a regular function on ϕ(X). Thus, ϕ∗(g) is regular on X; but this is a function that is

zero on X − {P} and 1 at P , and that’s a contradiction. �

Here are some remarks concerning Proposition 4.4.2:

(1) The proposition applies to the case where X is a quasi-projective smooth curve, because we

know such are isomorphic to abstract curves.

(2) The proposition may fail if Y is not projective. Let X = P1, P = (1 : 0), Y = A1 and

ϕ : P1 − {(1 : 0)} −→ A1, (x : y) 7→ x/y .

Then ϕ doesn’t extend to P1 as any morphism from a projective variety to an affine variety

is constant.

(3) The proposition may fail when dim(X) > 1. For example, let X = A2, P = (0, 0), Y some

projective closure of BlP (A2). Let

ϕ : A2 − {(0, 0)} −→ Y, (a1, a2) 7→ (a1, a2; a1 : a2) ∈ BlP (A2) ⊂ Y.

This ϕ is an isomorphism from A2 − {(0, 0)} to the open set BlP (A2)− E (E - the special

fibre) that cannot be extended to X.

(4) The proof of Proposition 4.4.2 makes use of the fact that we can write a function into a

projective space in many ways. If locally around P ,

Q 7→ (f0(Q) : · · · : fn(Q)),
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then we may say that this is also the map (up to rational equivalence)

Q 7→
((

f0
fa

)
(Q) : · · · :

a
1 : · · · :

(
fn
fa

)
(P )

)
.

The index a was chosen so that to make this expression well defined at P , and hence locally

around P . This proof is very useful for explicit computations.

For instance, consider the nonsingular elliptic curve X = Z(g(x, y , z)) ⊆ P2
x,y ,z given by

y2z − (x3 + z3) = 0. We define a morphism

ϕ : X − {(0 : 1 : 0)} −→ P1, (x : y : z) 7→ (x : z).

We know now that this morphism can always be extended to X and how to do it. The proof

tells us to consider the two functions 1, zx at the local ring of the point P = (0 : 1 : 0). If
z
x is regular at P then extend ϕ by ϕ(P ) = (1 : zx (P )). Else, necessarily x

z is regular at P

and extend ϕ by ϕ(P ) = ( xz (P ) : 1). Note that if both x
z and z

x are regular, then indeed

(1 : zx (P )) = ( xz (P ) : 1).

We have phrased this that way just to indicate that the method is completely general. In

our case, passing to the affine chart y = 1, we have the relation z = z3 + x3. Let v denote

the valuation of the point P . We clearly have v(z) > 0 and v(x) > 0. If v(x) ≥ v(z) then

v(z) = v(z3 + x3) ≥ v(z3) = 3v(z) which is a contradiction. Thus, v(x) < v(z) and so

v(z) = 3v(x). (Another way to perform these calculations is to note that x3 = z(1 − z2)

and 1 − z2 is a unit at P . Thus, 3v(x) = v(z).) As the maximal ideal at P is clearly

generated by x and z there is no choice but v(x) = 1, v(z) = 3; in particular, v(z/x) = 2.

Thus, the function z/x is regular at P and the extension we are looking for is P 7→ (1 : 0).

Theorem 4.4.3. The abstract curve CK is isomorphic to a projective non-singular curve Y .

Proof. Every point R ∈ CK has an open neighbourhood UR isomorphic to an affine non-singular

curve Y R. As CK − UR is finite, we can write

CK = ∪mi=1Ui , Ui ∼= Y ◦i ⊆ Yi ,

where Y ◦i is a non-singular curve and Yi its closure in some projective space Pni . By Proposition 4.4.2,

the morphism ϕi : Ui −→ Yi extends to a morphism

ϕi : CK −→ Yi .

Consider the product
∏m
i=1 Yi which is a closed irreducible subset of Pn1×· · ·×Pnm and so a projective

variety. We have a morphism

ϕ = (ϕ1, . . . , ϕm) : CK −→
m∏
i=1

Yi .

Let Y be the closure of ϕ(CK). Note that Y ⊂
∏m
i=1 Yi and so the projection maps pi :

∏m
i=1 Yi −→ Yi

are defined on Y . ϕ(CK) is dense in Y and has dimension 1 as its projection onto Yi is dominant
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(for any i). Y is thus a curve and k(Y ) ⊆ K. Our goal is to show that the morphism ϕ : CK → Y

is an isomorphism.

Let R ∈ CK . Then R ∈ Ui for some i . We have the following commutative diagram

CK
ϕ // Y

pi
��

Ui
?�

OO

ϕi

open immers.
// Yi

All the morphisms are dominant and we conclude that

R = OUi ,R ∼= OYi ,ϕi (R) ⊆ OY,ϕ(R) ⊆ OCK ,R = R.

As ϕi is an isomorphism, we get equalities through out, and so OY,ϕ(R)
∼= R. This implies that

k(Y ) = K and that ϕ is injective (recall, that if x, y ∈ Z, a quasi-projective variety, then OZ,x =

OZ,y ⇔ x = y).

The morphism ϕ is also surjective: Let P ∈ Y . We claim that there exists a dvr R of K/k such

that R ⊇ OY,P . Indeed, as Y is a curve, there exists an open set U ⊆ Y that is affine and such that

P ∈ U. Let Ũ be its normalization in k(Y ). We have a finite birational morphism f : Ũ −→ U. Let

P̃ be a point of Ũ such that f (P̃ ) = P . Then, OY,P = OU,P ⊆ OŨ,P̃ , which is a dvr R since Ũ is a

non-singular curve. We obtain then a point R ∈ CK such that

OY,ϕ(R) = R ⊇ OY,P .

We claim that this implies P = ϕ(R); that is, if x, y are points on a curve Z and OZ,x ⊆ OZ,y then

x = y . For that, it is enough to show that if x 6= z then there exists a function on Z that vanishes

at x and not at y to obtain a contradiction. Repeat the argument of Lemma 4.2.1.

At this point we know that ϕ : CK −→ Y is a bijective morphism. But, we can cover CK and

Y by open sets Ui and ϕ(Ui) respectively, on which ϕ restricts to an isomorphism, because the

composition Ui −→ CK
ϕ−→ Y

pi−→ Yi is the open immersion ϕi . Namely, the inverse of ϕ|Ui is the

morphism ϕ−1
i ◦ pi . Thus, ϕ is an isomorphism. �

Corollary 4.4.4. Any AC is isomorphic to some non-singular quasi-projective curve.

Proof. We have U ⊆ CK ∼= Y , where Y is a non-singular projective curve and so U can be identified

with an open subset of Y and therefore is a quasi-projective non-singular curve. �

Corollary 4.4.5. Every non-singular quasi-projective curve Y ◦ is isomorphic to an open subset of a

non-singular projective curve Y .

Proof. Indeed, by Proposition 4.4.1, Y ◦ is an AC. Use the previous corollary. �

Corollary 4.4.6. Every curve Y ′ is birationally equivalent to a non-singular projective curve Y ,

Y ′ ∼ Y .
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Proof. Indeed Y ′ ∼ Y ◦, where Y ◦ is the non-singular locus of Y ′. Use the previous corollary. �

4.5. An equivalence of categories.

Theorem 4.5.1. The following categories are equivalent:

(1) Projective non-singular curves and dominant morphisms.

(2) Quasi-projective curves with dominant rational maps.

(3) Function fields K/k of dimension 1 and k-algebra homomorphisms.

Proof. We already know the equivalence of (2) and (3) as a special case of Corollary 3.0.14; the

rest follows from our results above. �

4.5.1. Normalization. Let X be a quasi-projective curve. Then there is a quasi-projective non-

singular curve and a finite birational morphism X̃ −→ X. To show that, it is enough to consider

the case where X is projective, the general case follows by restricting to a subset. In that case,

let X̃ be the non-singular projective model of X. The inclusion K(X) ⊆ K(X̃) produce a rational

morphism X̃ −→ X, which, by Proposition 4.4.2, extends to a morphism f : X̃ −→ X. As the

inclusion of function fields is actually an equality, this morphism is birational. Further, X̃ is normal,

being non-singular. The morphism f is in fact surjective. Given a point x ∈ X, choose a dvr R of

K/k such that OX,x ⊆ R. R corresponds to a point t ∈ X̃ ∼= CK . Consider f (t). If f (t) 6= x , we

can find a rational function g on X that vanishes at f (t) and is invertible at x . Then f ∗(g) vanishes

at t and so is in the maximal ideal of R, but is a unit in OX,x . A contradiction.

We can cover X by open affine subsets U such that f −1(U) is affine. But then f : f −1(U) −→ U

produces an injection of rings A(U) ⊆ A(f −1(U)). Passing to integral closure in K(X) we get

B(U) ⊆ A(f −1(U)), as A(f −1(U)) is integrally closed, being a ring of regular functions of a non-

singular affine curve, and where we have let B(U) be the integral closure of A(U). We claim that

B(U) is equal to A(f −1(U)).

Let t be a point of A(f −1(U)) and R the corresponding local ring. Let R1 be the local ring of

f (t). Then R1 ⊆ R and both are dvr of K/k . We saw that this implies R = R1 (see the proof of

Lemma 4.3.1). This, in turn implies that the map f : f −1(U) −→ U is injective because if f (t1) =

f (t2) then t1, t2 have the same local ring and so are equal. Thus, the inclusion B(U) ⊆ A(f −1(U))

is surjective too. We have equality. That means that locally X̃ is the normalization of X and so X̃

is the normalization of X.

4.6. Morphisms between curves.

Lemma 4.6.1. A proper curve C, namely a curve for which the structural morphism C −→ Spec(k)

is proper, is a projective curve and vice-versa.
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Proof. If C is projective then it is a closed subscheme of Pnk . As Pnk −→ Spec(k) is a proper

morphism, so is C −→ Spec(k).

Suppose now that C −→ Spec(k) is proper. C is an open subset of a projective curve C̄ with the

same field of functions k(C). The tautological map,

C × C̄ −→ C̄,

is closed as C −→ Spec(k) is proper. The subset C × C ⊆ C × C̄ is closed as it is equal to

C̄ × C̄ ∩ C × C̄. But its image under the morphism above is C, which is closed in C̄ if and only if

C = C̄. �

Proposition 4.6.2. Let X, Y be non-singular projective curves over k and

f : X −→ Y,

a dominant morphism. Then f is a finite flat morphism.

Proof. We have already noted that f is surjective. Let x ∈ X and y = f (x). Then OY,y is a discrete

valuation ring and OX,x is an OY,y -module. It is thus flat over OY,y if and only if it is torsion-free. But

this is clear as both are contained in the same integral domain k(X) (via OY,y ↪→ k(Y ) ↪→ k(X)).

Now, as X −→ Y −→ Spec(k) is a factorization of the proper morphism X −→ Spec(k) one

concludes that X −→ Y is proper as well (cf. [H], Corollary II.4.8). In addition, it is clear that every

point of Y has finitely many pre-images so X −→ Y is quasi-finite too. At this point we could have

used a general result that a proper quasi-finite morphism of locally noetherian schemes X −→ Y is

finite (theorem of Chevalley). This is proved usually as a rather easy consequence of Zariski’s main

theorem that we did not have the occasion to discuss. But this is an over-kill in our case and we

can provide a different argument. We still need to rely on some results in algebra we hadn’t proved

but conceptually it is an easier proof.

Note that k(X) is a finite algebraic extension of k(Y ). Let V = Spec(B) be any open affine

subset of Y and let A be the integral closure of B in k(X). It is a finite B-module (cf. [H] I.3.9.A).

On the other hand, the local rings of Spec(A) are dvr’s, so we may think about U = Spec(A) as

an open subset of Ck(X) = X. Furthermore, U = f −1(V ). Indeed, from the perspective of abstract

curves, U is the set of valuation rings of k(X)/k that contain A. But as each valuation ring is

integrally closed we can also say that U are the valuation rings that contain B. However, the set of

valuation rings of a field K that contain a subring B is exactly the integral closure of B in K (cf.

[H] II Theorem 4.11 A).

That way, we get a finite cover of Y = ∪Vi such that X = ∪f −1(Vi) and each f −1(Vi) −→ Vi is

a finite morphism. It follows that f is a finite morphism. �

Corollary 4.6.3. Let f : X → Y be a dominant morphism of projective non-singular curves. Let

Y 0 ⊂ Y be an affine curve then f −1(Y 0) is an affine curve. In particular, let f : X → P1 be a

rational non-constant function then f −1(A1) is an affine curve.
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Proof. In fact, the proof of the Proposition shows that if Spec(A) ⊆ Y then f −1(Spec(A)) =

Spec(B), where B is the integral closure of A in k(X). We may also argue as follows: a finite

morphism has the property that the pre-image of any affine subset is affine. This gives the first

claim. For the second, first note that if f ∈ k(X) is non-constant then f certainly gives a rational

map X //___ P1 , which is in fact a morphism to A1 when we remove the poles of f from X. Thus,

f extends to a morphism X → P1 and we apply then previous claim. �

Remark 4.6.4. Later we will be able to apply that to prove that any quasi-projective curve that is

not projective is affine. In particular, removing one point (or more) from a projective curve yields

an affine curve. What we are missing is the fact that if X is a projective curve, x0 ∈ X, then there

is a non-constant function f ∈ k(X) whose only poles are at the point x0. This is a consequence of

the Riemann-Roch theorem.

4.6.1. Degree. Let f : X −→ Y be a dominant morphism between projective non-singular curves.

Define the degree of f as

deg(f ) := [k(X) : k(Y )].

This is a finite number, as k(X) and k(Y ) are both of transcendence degree 1 over k and finitely

generated over k . As f is finite-flat, we know from the first semester that for every point y ∈ Y we

have

deg(f ) =
∑
f (x)=y

degOY,y (OX,x).

If we write f −1(y) scheme-theoretically as a kk(y)-algebra say Ay . Then

deg(f ) = dimkk(y)(Ay ).

Furthermore, it follows from Theorem 4.5.1 that deg(f ) = 1 if and only if f is an isomorphism.

Proposition 4.6.5. Let X be a non-singular projective curve and f ∈ k(X) a non-singular rational

function. Define the divisor of f as

(f ) :=
∑

P∈X(k)

vP (f )[P ].

The degree of (f ), namely
∑
P vP (f ), is 0.

Proof. We know that the degree of f over 0 and over ∞ are equal. Namely, we know that

dimkk(y)(Ay ) is constant as y ranges over P1. Now the fibre Ay is the spectrum of an Artinian

k-algebra and factors according to the maximal ideals that correspond to the actual points in X

that map to y . Namely, Ay ∼=
∐
f (x)=y OX,x/mP1,yOX,x . The only thing remaining is to relate

the length of OX,x/mP1,yOX,x to vx(f ). However, mP1,yOX,x is a principal ideal of OX,x and it is

determined by the valuation of a generator of it. A generator of it is simply f ∗(π), where π is a

local uniformizer at the point y . The confusing thing is actually the identification of k(P1) with

k(t). The identification is so that t is a uniformizer at 0. Then f is f ∗(t). At ∞ it is u = 1/t that
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is a uniformizer and we have f ∗(u) = f ∗(1/t) = 1/f ∗(t), as f ∗ is a ring homomorphism. Thus, at

every point x mapping to ∞ we have vx(f ∗(u)) = −vx(f ). �

Example 4.6.6. Hyperelliptic curves. We ask to classify all the diagrams

f : X −→ P1,

where X is a non-singular projective curve and f is a surjective morphism of degree 2. Such a

curve X is called hyperelliptic. Note that what we are doing is classifying all pairs (X, f ) up to

isomorphism, which is not the same as classifying all X up to isomorphism. Using Theorem 4.5.1,

this is the same as classifying all quadratic extensions

k(t) = K(P1) ⊂ K.

The discussion brakes now naturally into two cases.

(1) The characteristic of k is not 2. In this case, Kummer’s theory applies. Such extensions

correspond canonically to non-trivial elements of k(t)×/k(t)×2. To a polynomial g(t),

which is not a square, one associate the curve y2 = g(t), equivalently, the function field

k(t)[y ]/(y2 − g(t)).

(2) The characteristic of k is 2. Here one uses Artin-Schreier theory. Such extensions correspond

canonically to nontrivial elements in k(t)/S, where S = {f 2−f : f ∈ k(t)}. To a polynomial

g(t) one associates the curve y2−y = g(t), that is, the function field k(t)[y ]/(y2−y−g(t)).

Finally we list some exercises about curves.

Exercise 4.6.7. Show that the affine curves given by y = x2 and xy = 1 are birational but not

isomorphic.

Exercise 4.6.8. Show further, that for every irreducible quadratic polynomial f (x, y) ∈ k [x, y ] the

conic section defined by f (x, y) = 0 in A2 is isomorphic to precisely one of the curves above and

give a criterion to determine which. (This is [H] Ex. I 1.1, which is much easier to do once we have

all the theory we have developed!)

Exercise 4.6.9. Show that the group PGL2(k) := GL2(k)/k∗ acts faithfully as automorphisms of

P1
k via the formula (

a b

c d

)
t :=

at + b

ct + d

(Möbius transformations), where we have identified the function field of P1
k with that of A1

k =

Spec k [t]. Show further that any automorphism of P1
k arises this way. That is

Autk(P1
k) = PGL2(k).



42 EYAL GOREN, MCGILL UNIVERSITY

(It is also true that Aut(Pnk) = PGLn+1(k).)

Exercise 4.6.10. Let P1, . . . , Pa be distinct closed points of A1
k and Q1, . . . , Qb another distinct set

of distinct points of A1
k . Prove that if A1 − {P1, . . . , Pa} ∼= A1 − {Q1, . . . , Qb} then a = b. Show

that the converse may fail - what is a minimal counter-example?

Exercise 4.6.11. Consider the projective curve Cd : xd + yd + zd = 0 in P2
k (the Fermat curve).

Assume k has characteristic 0 (to simplify the calculations). Show that the rational map (x : y :

z) 7→ (x : y) defines a dominant morphism Cd −→ P1
k . Calculate the degree of this map. Determine

all points (x : y) in which the closed points of the fibre have cardinality smaller than the degree and

determine precisely the cardinality of the fibre at those points.

The curve C has a large group of automorphisms. Which of those automorphisms commutes

with the morphism Cd −→ P1? Is the field extension k(Cd) ⊇ k(P1) Galois?

Exercise 4.6.12. Show that the non-singular curve associated to the cuspidal curve y2 = x3, as well

as to the nodal curve y2 = x2(x + 1), is P1. In both cases provide a surjective birational morphism

from P1 to the closure of the curve in P2, namely to y2z − x3 = 0 and y2z − x2(x + 1) = 0.

To continue further our study of curves we need the machinery of cohomology, which is likewise

instrumental in studying varieties in general. Therefore, we will now take a rather long break from

curves and varieties and go back to sheaf theory.
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5. Cohomology of sheaves

Our purpose in this section is to give a coherent description of cohomology of sheaves on schemes

that is also efficient. We will be citing many facts; in fact, almost anything that we think we can

cite without making the exposition too vague, we shall. Our main interest is to have a working

knowledge of cohomology. Experience shows that to a large extent this allows one to consider many

of the statements in cohomology as a black box. Nonetheless, we don’t want to be that reckless

and, for some applications, one really needs to understand how the constructions go. So some

compromise is called for.

Most of the exposition is based on Hartshorne’s book. Although, when we later on return to

cohomology to introduce spectral sequences, we shall be following Mumford’s “second red book”.

5.1. Abelian categories. Let C be a category. There is a notion of C being an abelian category.

One assumes that C has a zero object and that finite products and co-products exist in C: HomC(A,B)

is an abelian group for any two objects of C, composition is additive relative to this structure and

morphisms have kernels and cokernels. It is this last requirement that makes this notion a bit of

a headache. There is no a-priori notion of a sub object and morphisms are not functions, a priori.

Thus, one needs to invent a notion of kernel. If f : A −→ B is a morphism, its kernel (which is

assume to exist) is an object K together with a morphism i : K −→ A such that the composition

K −→ A −→ B is the zero map and, moreover, given any morphism i ′ : K′ −→ A such that the

composition K′ −→ A −→ B is zero, the morphism i ′ factors through a unique morphism K′ −→ K.

In short, this is hardly elegant. The same goes for a definition of co-kernel. Thus, we will assume

that we are in situation where the kernel is always a sub object (and that this statement makes

sense) and the cokernels are quotient objects. The prototypical example of an abelian category

is the category of modules over a given ring R (not necessarily commutative). The embedding

theorem says that every (small) abelian category is equivalent to a full sub-category of the category

of modules over a ring R. This justifies our pedestrian point of view that allows for kernels and

cokernels to always be viewed as sub and quotient objects, respectively.

The basic example of the category of modules over a ring R allows one to show that the category

of sheaves of abelian groups on a topological space X, and the category of quasi-coherent sheaves

on a locally ringed space (e.g., a scheme), are abelian categories. We have discussed in the past

the correct definition of a kernel of a morphism of schemes (the straightforward construction) and

co-kernel (sheafify the pre-sheaf of co-kernels).

Definition 5.1.1. A complex A• in an abelian category C is a sequence of objects and morphisms

of C,

· · · // Ai
d i // Ai+1 d i+1

// Ai+2 // · · · ,
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such that d i+1 ◦ d i = 0 for all i . If A• is a complex, we define

Hi(A•) = Ker(d i)/Im(d i−1)

and call it the i-th cohomology group of A•.

Definition 5.1.2. A morphism of complexes f • : A• −→ B• is a collection of morphisms {f i :

Ai −→ Bi} such that

f i+1 ◦ d i = d i+1 ◦ f i .

f • induces a homomorphism

Hi(A•) −→ Hi(B•), ∀i ∈ Z.

The following diagram makes the above definition and induced maps on cohomology easier to

check:

· · · // Ai
d i //

f i
��

Ai+1 d i+1
//

f i+1

��

Ai+2 //

f i+2

��

· · ·

· · · // Bi
d i // Bi+1 d i+1

// Bi+2 // · · ·

Suppose that

0 −→ A• −→ B• −→ C• −→ 0

is an exact sequence of complexes; that is, for every i the sequence 0 −→ Ai −→ Bi −→ C i −→ 0

is exact. Then there is a long exact sequence of cohomology groups

· · · EDBC
����

Hi(A•) // Hi(B•) // Hi(C•) EDBC
�� δi

��
Hi+1(A•) // Hi+1(B•) // Hi+1(C•) EDBC

�� δi+1

��
· · ·

The maps δi appearing here are derived from the snake lemma applied to the diagrams

0 // Ai //

d i
��

Bi //

d i
��

C i //

d i
��

0

0 // Ai+1 // Bi+1 // C i+1 // 0
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5.2. Resolutions. An object I in an abelian category C is injective if the functor HomC(−, I), which

is always left exact, is exact. Namely, given a short exact sequence in C, 0 −→ A1 −→ A2 −→ A3 −→ 0,

we have an exact sequence of abelian groups

0 // HomC(A3, I) // HomC(A2, I) // HomC(A1, I) // 0.

Otherwise said, I is injective if and only if

A1 ↪→ A2 ⇒ HomC(A2, I)� HomC(A1, I).

Definition 5.2.1. Let A be an object in C. An injective resolution of A is an exact sequence in C,

0 // A
ξ // I0 // I1 // I2 // · · · ,

where each I j is an injective object. If every object of C has an injective resolution we say that C

has enough injectives.

The main results are the following. Let R be a commutative ring. The category of R-modules has

enough injectives. In fact, one first proves it for the case R = Z, and the general case is deduced

from that.

An abelian group I is injective if and only if it is divisible. Namely, for every positive integer m and

any element a ∈ I there is an element b ∈ I such that mb = a. That injective implies divisible is an

easy exercise. The other direction is not. Given the relationship between “injective” and “divisible”,

one deduces that (arbitrary) direct sums and quotients of divisible modules are divisible. So, for

example, Q,Q/Z and Qr ⊕ (Q/Z)s are injective Z-modules.

Exercise 5.2.2. Prove that every abelian abelian group can be embedded in an injective Z-module.

(Hint: start by writing A as a quotient of a free abelian group). Deduce that the category of abelian

groups has enough injectives.

The general case now follows (and that is at a level of an exercise) from the case of abelian groups

as follows. Let M be an R-module and let D be a divisible abelian group in which M embeds as an

abelian group. There is a natural map M → HomZ(R,D) taking m ∈ M to the homomorphism φm,

where φm(x) = xm. One then proves that HomZ(R,D) has a natural R-module structure, that

the map M → HomZ(R,D) is an injective R-module homomorphism and that HomZ(R,D) is an

injective R-module. This last point is proven via canonical identifications between Hom’s (namely,

HomR(A,HomZ(R,D)) = HomZ(A,D)) by reducing to the case of abelian groups.

As one can imagine, we can boot-strap those results to prove that the category of sheaves of

abelian groups on a topological space has enough injectives, or that the category of OX-modules

on a scheme X, has enough injectives ([H] III 2.2).
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5.3. Right-derived functors and cohomology. We finally arrive to one of the key definitions in

cohomology of sheaves. Let C,D, be abelian categories and let

F : C −→ D

be a covariant, left-exact, additive functor. Assume that C has enough injectives. The right-derived

functors RiF, i ≥ 0 of F ,

RiF : C −→ D,

are defined as follows. Given an object A ∈ C, we choose an injective resolution

0 // A
ξ // I0 // I1 // I2 // · · · ,

and let I• be the complex

I• : 0 // I0 // I1 // I2 // · · · ,

where I0 is considered as the degree 0 term of this complex. We apply F and get another complex,

this time in D,

F (I•) : 0 // F (I0)
d0
// F (I1)

d1
// F (I2)

d2
// · · ·

We let

RiF (A) := Hi(F (I•)) :=
Ker(d i : F (I i) −→ F (I i+1))

Im(d i−1 : F (I i−1) −→ F (I i))
.

Here are the key properties of this construction:

(1) The definition of RiF (A) is independent of the resolution up to a natural isomorphism. (This

requires the notion of homotopic resolutions; any two injective resolutions are homotopic.)

(2) For every i , RiF : C −→ D is a covariant additive functor and, in particular, RiF (A⊕B) =

RiF (A)⊕ RiF (B).

(3) There is a natural isomorphism R0F ∼= F .

(4) A short exact sequence 0 −→ A −→ B −→ C −→ 0 induces a long exact sequence

0 −→ F (A) −→ F (B) −→ F (C)
δ0

−→ R1F (A) −→ R1F (B) −→ . . .

RiF (C)
δi−→ Ri+1F (A) −→ Ri+1F (B) −→ . . .

(5) For any injective object I, RiF (I) = {0} for all i > 0.

The proof of (1) and (4) requires some substantial effort, although (3) is easy: As F is left exact, the

sequence 0→ F (A)→ F (I0)→ F (I1) is exact and thus F (A0) = Ker(F (I0)→ F (I1)) = R0F (A).

An object J for which RiF (J) = {0} for all i > 0 is called F -acyclic. Every injective object

is F -acyclic as we may choose the resolution 0→ I → I0 = I → 0→ 0→ . . . to compute its
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cohomology. For any F as above, in fact. Now, another argument in homological algebra gives the

following. If 0→ A→ J0 → J1 → J2 → · · · is a resolution of A by F -acyclic objects then

RiF (A) =
Ker(F (J i)→ F (J i+1))

Im(F (J i−1 → F (J i)))
.

Thus, it is not necessary to use injective resolutions to calculate the functors RiF . This will be

significant below when we compare two ways to calculate the cohomology of sheaves. We end this

section be giving two examples of functors that are covariant, left-exact and additive.

Lemma 5.3.1. Let X be a scheme. The functor of global section

Γ : MOD(X)→ Ab.Gps., F 7→ Γ(X,F ),

is an additive left-exact covariant functor. We also denote RiΓ(−) by Hi(X,−).

Let f : X → Y be a morphism of schemes. The functor

f∗ : MOD(X)→MOD(Y )

is an additive left-exact covariant functor.

Proof. The only issue is to check that these functors are left exact. Let

0 // A
α // B

β // C // 0

be a short exact sequence of sheaves of OX-modules. Recall that that means that A (U) =

Ker(B(U)→ C (U)) for every open set U and in particular α is injective on each A (U). Also,

as Ker(B(U)→ C (U)) is already a sheaf, equal to the sheafification of U 7→ A (U), which is

already a sheaf, we have A (U) = Ker(B(U)→ C (U)) for all U. In particular for U = X. Thus,

the sequence

0→ A (X)→ B(X)→ C (X)

is exact, as was to be shown.

Now for f∗. We recall that the pair (f ∗, f∗) is an adjoint pair ([H] II.5, page 110) of functors

between abelian categories. Therefore, f∗ is left-exact (and f ∗ is right-exact). �

5.4. Flasque sheaves. Let F be a sheaf of abelian groups on a topological space X. We say that

F is flasque if for every inclusion of open sets V ⊆ U the restriction map

F (U)→ F (V )

is surjective.

Theorem 5.4.1. Let X be a ringed space. Let F be a flasque sheaf of OX-modules then F is

Γ-acyclic. That is,

Hi(X,F ) = 0, ∀i > 0.
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Proof. Let I be an injective object of MOD(X) into which F embeds and let G = I /F .

Lemma 5.4.2. The sheaves I and G are flasque.

Lemma. Denote by j the inclusion map j : V → U. We have the operation j! of extension by zero

from sheaves on V to sheaves on U. Namely, if J is a sheaf on V we define j!J to be the sheaf

on U associated to the presheaf with the values

W 7→

{
0 W 6⊆ V
J (W ) W ⊆ V.

Exercise 5.4.3. Prove that

(j!J )P =

{
0 P 6∈ V
JP P ∈ V.

and that j!J restricted to V is J .

Now, apply this construction twice. First, extend by zero OX |U to X and secondly extend by

zero OX |V to X. Call these sheaves i!OU and i!OV , respectively. Note that there is a natural map

of sheaves

0→ i!OV → i!OU ,

and this sequence is exact, as we quickly using stalks. Thus, as I is injective, we have an exact

sequence

(2) Hom(i!OU ,I )→ Hom(i!OV ,I )→ 0.

We claim that

Hom(i!OU ,I ) = I (U).

Indeed, given ϕ ∈ Hom(i!OU ,I ) we have ϕU(1) ∈ I (U), where here 1 is the identity element of

i!OU(U) = OX(U). Note that ϕU(1) determines not only the map ϕU by OX(U)-linearity, but by

functoriality all the maps ϕW for W ⊆ U and so (examine behaviour on stalks) the map ϕ. This

allows us also to build the converse map, associating to an element t of I (U) the unique map ϕ

such that ϕU(1) = t. Thus, (2) says that

I (U)→ I (V )→ 0

is exact, and so that I is flasque.

To show G is flasque, we consider the exact sequence

0→ F → I → G → 0.

We claim that for every open set U, the following sequence is exact:

(3) 0→ F (U)→ I (U)→ G (U)→ 0.

We only need to show that I (U)→ G (U)→ 0 is exact, namely, that I (U)� G (U).
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Let s ∈ G (U) and let Σ = {(V, σ) : V ⊂ U, σ ∈ I (V ), σ 7→ s|V }. Note that by basic properties

of maps of sheaves, Σ is non-empty. In fact, for every P ∈ U there is an element of the form (V, σ)

in Σ such that P ∈ V . Σ is naturally ordered by inclusion and satisfies Zorn’s lemma and thus has a

maximal element (V, σ). Suppose that V 6= U and choose some P ∈ U − V and an element (V1, σ1)

of Σ such that P ∈ V1. We have that (σ − σ1)|V ∩V1
7→ 0. As F is flasque, we can extend the

element (σ − σ1)|V ∩V1
to V1 and use it to modify σ1, thus achieving that σ = σ1 on V ∩ V1. We

can now glue those sections to a section on V ∪ V1 that maps to s|V ∪V1
and that’s a contradiction

to the maximality of (V, σ).

We now conclude that G is flasque: for V ⊆ U this follows from the following diagram:

I (U) // //

����

G (U)

��
I (V )

(3) // // G (V )

�

At this point, we have the exact sequence of flasque sheaves

0→ F → I → G → 0,

in which I is injective, hence Γ-acyclic. Consider the long exact sequence in cohomolgy

0→ Γ(F )→ Γ(I )→ Γ(G )→ H1(X,F )→ H1(X,I ) = 0.

Using the result above (see (3)), Γ(I )→ Γ(G ) is surjective and so it follows that H1(X,F ) = 0.

For all flasque sheaves F . Now we have,

0 = H1(X,G )→ H2(X,F )→ H2(X,I ) = 0.

The first term is zero because G is flasque. The last term is zero because I is Γ-acyclic. Thus,

also H2(X,F ) = 0 for all flasque sheaves F . Arguing thus by induction we get that Hi(X,F ) = 0

for all i > 0. �

Remark 5.4.4. Theorem 5.4.1 applies for sheaves of abelian groups on a topological space X. Indeed,

we can always endow X with the constant sheaf Z, making it a ringed space and making all abelian

sheaves into sheaves of OX-modules.

Theorem 5.4.5 (Grothendieck). Let X = Spec A be an affine scheme, where A is a noetherian

ring. Then for all F a quasi-coherent module,

Hi(X,F ) = 0, ∀i > 0.

Proof. As F is quasi-coherent, it is the sheaf associated to the A-module M = Γ(F ). Choose a

resolution of M by injective A-modules

0→ M → I0 → I1 → I2 → · · ·
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Using the equivalence of categories between A-modules and quasi-coherent sheaves, one concludes

that the sequence of sheaves

0→ F = M̃ → Ĩ0 → Ĩ1 → Ĩ2 → · · ·

is an exact sequence of sheaves. However, the sheaves Ĩ j , although they are injective objects of

QCOH(X), they need not be injective in the category MOD(X) (which is really where we want to

calculate cohomology as natural OK-modules arising in applications need not be quasi-coherent.) It

is therefore not clear if they are even flasque - our proof of “injective ⇒ flasque” used sheaves of

the form i!OV , for an open set V that are rarely flasque.

As it turns out, the sheaves Ĩ j are indeed flasque, but that is a non-trivial point requiring that the

ring A is noetherian. See [H] III 3.4 for details. We can therefore compute the cohomology of F

(in MOD(X), or even AB(X)) using the resolution Ĩ• and we find by applying Γ the complex

0→ I0 → I1 → I2 → . . . ,

which is exact, except at I0. Hence, Hi(X,F ) = 0 for i > 0. �

We would be remiss if we didn’t mention (without proof, unfortunately) the following theorem of

Serre.

Theorem 5.4.6 (Serre; c.f. [H] III 3.7). Let X be a noetherian scheme. The following are equivalent:

(1) X is affine;

(2) Hi(X,F ) = 0 for all quasi-coherent sheaves F and i > 0.

In addition, we have the following very important theorem.

Theorem 5.4.7 (Grothendieck’s vanishing theorem; [H] III, 2.7). Let X be a noetherian topological

space of dimension n. Then, for an abelian sheaf F ∈ AB(X),

Hi(X,F ) = 0, i > dim(X).

Remark 5.4.8. Although this is a powerful theorem, the proof is not very deep, but is incredibly

clever. It uses various reductions and induction arguments that eventually reduce everything to a

computation of cohomology of constant sheaves, or their extension by zero.

The first step is reduction to the case where X is irreducible. If Y is an irreducible component of

X and U = X − Y , one lets FU ,FY be the extension by zero of the restriction of F to U and Y

respectively to obtain

0→ FU → F → FY → 0.

By taking cohomology and making an argument that identifies the cohomology of FY with F |Y and

FU with FŪ (the topological closure of U of X), one reduces to Ū. As Ū has one less irreducible

component, eventually one reduces to the case X is irreducible.
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Then, an induction argument on the dimension of X takes place. The case of X irreducible of

dimension 0 is easy as there are no open sets but X and ∅. And so F is just an abelian group and

resolution is a resolution as an abelian group, etc.

When X is irreducible of dimension n there is another reduction taking place. One shows that

F is the direct limit of sheaves of the form Fα, where α is a finite set of sections αi ∈ F(Ui) and

one takes the sub sheaf of F generated by those sections. An argument with long exact sequences

in cohomology applied to 0→ Fα → Fα∪αn+1 → F{αn+1} → 0, reduces to the case of a sheaf on

X generated by one section α ∈ F (U). Change notation and call that sheaf F . Then, one has an

exact sequence

0→ R → ZU → F → 0.

And so one has to study the case of ZU and its various subsheaves. This is a rather explicit

calculation (that uses various tricks; in particular, in examining the various possibilities for R one is

able to use the induction hypothesis on dim(X)), but, so to say, “mystery dispelled”.

5.5. C̆ech cohomology. The discussion here is quite general and applies to any topological space

and a sheaf of abelian groups. The calculation of the cohomology by means of C̆ech cocyles for

a given open cover is a powerful and useful technique. The thorny issue is to determine when the

calculation actually gives the cohomology of the sheaf as we have previously defined it. We provide

a criterion in Theorem 5.7.1.

5.5.1. The topological setting. Let X be a topological space and {Ui : i ∈ I} an open cover of X.

We assume that the set I is well-ordered (sometimes called ‘linearly ordered’). Given i0, i1, . . . , ip ∈ I
with i0 < i1 < · · · < ip, we write

Ui0i1···ip = Ui0 ∩ Ui1 ∩ · · · ∩ Uip .

Let F ∈ AB(X) be a sheaf of abelian groups on X. Define the C̆ech cocyles of dimension p ≥ 0

as

Cp({Ui},F ) =
∏

i0<i1<···<ip

F (Ui0i1···ip).

Example 5.5.1. To illustrate, suppose X = U0 ∪ U1 then

C0 F (U0)×F (U1)

C1 F (U0 ∩ U1)

Cp, p ≥ 2 0

We shall denote an element α of Cp({Ui},F ) by (αi0i1···ip). We now define a boundary map

d : Cp → Cp+1
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by

(4) (dα)i0i1···ip+1
=

p+1∑
k=0

(−1)kαi0···îk ···ip+1
.

It’s a standard fact that d2 = 0 (if you have seen homology in a course in topology, it is exactly the

same proof).

We have therefore obtained a complex:

0 // C0({Ui},F )
d // C1({Ui},F )

d // C2({Ui},F )
d // . . .

Definition 5.5.2. The p-th C̆ech cohomology group of the cover {Ui} is

H̆
p

({Ui},F ) := Hp(C•({Ui},F )) =
Ker(d : Cp → Cp+1)

Im(d : Cp−1 → Cp)
.

Proposition 5.5.3. H̆
0

({Ui},F ) = Γ(F ) = F (X).

Proof. This just expresses that fact that given an open cover, the global sections are precisely the

sections over the open sets of the cover that agree on intersections. This is part of the definition

of a sheaf. �

Example 5.5.4. Referring back to our example we find that for α = (α0, α1), d : C0 → C1 is given

by (dα)01 = α1 − α0. All d : C i → C i+1 are zero for i > 0 due to the simple fact that in our

example C i = 0 for i > 1.

As we have already remarked (and will prove later) if X is a projective non-singular curve over an

algebraically closed field k then X −{x0} is affine for every point x0 ∈ X(k). It follows that such X

can always be covered by two open affine subsets. Thus, C̆ech cohomology for this cover of quasi-

coherent sheaves, and in fact for any affine cover (using Theorem 5.7.1), vanishes in dimension

greater than 1. This is a special case of Theorem 5.4.7.

Remark 5.5.5. At the level of our survey, the definition of C̆ech cohomology groups for a cover

suffices. One can of course wonder if there is a way to get a definition that is independent on the

cover by taking some sort of limit over all open covers. This indeed can be done. See [H] III Exercise

4.4 and also 4.5 (for motivation) and 4.11 (for why it is a reasonable construction).

5.6. Examples of C̆ech cohomology. We calculate a few examples, already in the setting that

interests us. That is, for certain schemes.

Example 5.6.1. • OX for X = P1
k . We take k to be an algebraically closed field and we take

the standard cover of P1
k as U0 ∪U1, where if the coordinates of P1 are (x0 : x1), Ui is the open set

xi 6= 0. Thus,

U0 = P1
k − {0}, U1 = P1

k − {∞}.
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Writing the function field of P1 as k(x), where x = x1/x0 we have

O(U0) = k [x ], O(U1) = k [1/x ].

We find that

O(U01) = F [x ][x−1] := {f (x)/xd : f (x) ∈ k [x ]}.

Now, H̆
0

(O) (where we omit the open cover from the notation) are the global sections of O. We

may view those as morphisms P1
k → A1

k . As P1
k is proper and connected, the image is closed and

connected, hence constant. That is

H̆
0

(P1
k ,Ok) = {0}.

We can also see this more directly. The elements in H0 are k [x ] ∩ k [1/x ] = k .

Let us now calculate H̆
1

(P1
k ,O). We need to calculate the quotient

O(U0 ∩ U1)/{α1 − α0 : αi ∈ O(Ui)}.

We have O(U0 ∩ U1) = {f (x)/xd : f (x) ∈ k [x ]} and we need to find the quotient by the group

{g(x)−h(1/x) : g, h ∈ k [x ]}. The elements h appearing there are precisely the quotients r(x)/xd :

r(x) ∈ k [x ], deg(r) ≤ d . Thus, if the degree of h is d we get g(x)− h(1/x) = (xdg(x) + r(x))/xd

and so we find all polynomials in O(U0 ∩ U1). It follows that

H̆
1

(P1
k ,O) = {0}.

• ΩX/k for X = P1
k . Let us now consider the cohomology of the sheaf of differentials Ω := ΩP1

k/k
.

We note that U0
∼= Spec k [s], s = x1

x0
, U1
∼= Spec k [t], t = x0

x1
are both the affine space. Thus,

Ω(U0) = k [s] · ds, Ω(U1) = k [t] · dt, Ω(U0 ∩ U1) = k [s±1] · ds,

where for the last equality we used localization. We have

H̆
0

(P1
k ,Ω) = {(α0, α1) : αi ∈ Ω(Ui), α0|U0∩U1

= α1|U0∩U1
}.

Writing α1 = f (s)ds, α2 = g(t)dt we get that α2 = g(1/s)d(1/s) = −g(1/s)s−2ds on U0 ∩ U1,

which is never of the form f (s)ds unless f = g = 0. Thus,

H̆
0

(P1
k ,Ω) = {0}.

For H̆
1

(P1
k ,Ω) we need to mod out the differentials k [s±1]·ds by differentials of the form (−g(1/s)s−2−

f (s))ds. We conclude an isomorphism,

H̆
1

(P1
k ,Ω) ∼= k, f (s)ds 7→ res(f (s)ds).

Here f (s) is of the form
∑b
i=−a ais

i , ai ∈ k and the residue of the differential f (s)ds at zero is

res(f (s)ds) = a−1.
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Exercise 5.6.2. Assume for simplicity that the base field k is algebraically closed of characteristic

zero. Calculate the zero-th and first cohomology of the projective non-singular plane curve

C : x3 + y3 + z3 = 0,

for the sheaves OC ,ΩC/k , using the affine cover of C induced from the standard affine cover of P2
k

by three copies of A2
k (note that C is in fact covered already by any two of these three open sets,

which simplifies the calculations). We provide some hints: (i) The dimension of all these cohomology

groups is 1. (ii) Note that choosing an affine model s3 + t3 + 1 = 0, where s = x/z, t = y/z any

differential on C can be written as f (s, t)ds, with f (s, t) ∈ k(C)×. (iii) Show that the differential

ω := t−2ds = −s−2dt is a holomorphic global differential and calculate its divisor. Namely, for

every point P ∈ C, choose a local uniformizer at P , say wP and express this differential in the

local ring as g · dwP and find the valuation of g. (iv) Using this, show that any other non-zero

holomorphic differential is a scalar multiple of ω.

Exercise 5.6.3. Calculate H̆
1

(A2
k −{0},OX) using the cover x 6= 0 and y 6= 0 (that are both affine).

Show that it is not zero. More precisely, show that it is isomorphic
⊕

i ,j<0 k ·
1
x iy j

. Using that

this C̆ech cohomology actually calculates H1(A2
k − {0},OX), and comparing with Theorem 5.4.6,

conclude again that A2
k − {0} is not affine.

Example 5.6.4. Skyscrapers sheaves and their cohomology.

Let X be a scheme and Z ⊂ X a closed subscheme. Let F be a sheaf on Z and let i : Z → X be

the closed immersion. The sheaf i∗Z is a sheaf on X and has the property that (i∗F )P is {0} if

P 6∈ Z and is FP if P is in Z. Moreover, if F is a OZ-module then i∗F is a sheaf of OX-modules.

(It is naturally a sheaf of i∗OZ-modules, but i∗OZ = OX/I , where I is the quasi-coherent ideal

sheaf on X defining Z.) Cf. [H] Exercises 1.17, 1.19, 1.21.

Now suppose that Z is a point on X. For any abelian group A, viewed as the constant sheaf on Z,

we have the sheaf iP (A), where iP is really i∗ for the closed immersion i : {P} → X. In particular,

we have the structure sheaf of {P}, which is just kk(P ) (the residue field of the local ring of P ).

The sheaf iP (kk(P )) (or more generally iP (A)) is called a skyscraper sheaf. It has the property that

iP (A)(U) = A if P ∈ U ,and is otherwise 0. In particular, it has zero stalks at every point different

from P and its stalk at P is A. Cf. [H] II, Exercises 1.17, 1.19, 1.21.

Now lets look at all that for a variety X over an algebraically closed field k and P a closed point

of X; its residue field is k . For every open subset U such that P 6∈ U we have iP (k) = 0 and the

ideal sheaf defining P , say IP (a dangerous notation...) satisfies IP (U) = OX(U). on the other

hand, let U be an open affine subset, U = Spec(R), such that P ∈ U. Then IP corresponds to

a maximal ideal m of R; its value on U is just m. The value of iP (k) on U is just k and the short

exact sequence 0→ IZ → OX → i∗OZ → 0, valid for any closed immersion i : Z → X, specializes

for Z = {P} and X as above over the set U to 0→ m̃→ R̃→ iP (k)→ 0 and by passing to global

sections to 0→ m→ R→ k → 0.
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Let X be a variety over k (for simplicity). We claim that

H̆
i
(X, iP (k)) =

{
k i = 0,

{0} i > 0.

To prove that, take an affine open cover {U0, U1, . . . , Un} of X such that P ∈ U0 and ∪ni=1Ui =

X−{P}; such exists since X is quasi-compact. Note that for p > 0 the complex Cp is identically zero

as iP (k)(U) = 0 for any open set not containing p. The complex C0 is simply k × {0} × · · · × {0}

and d : C0 → C1 must be the zero map. We get that H̆
0

(X, iP (k)) = k . We could have used

also Proposition 5.5.3 to deduce that. We remark that Exercise 5.7.2 also yields this computation

immediately.

5.7. Cohomology and C̆ech cohomology. The following theorem is very important. It allows one

to calculate cohomology of quasi-coherent sheaves in examples. We have already seen some.

Theorem 5.7.1. Let X be a noetherian separated scheme. Let {Ui} be an open affine cover of X

and let F be a quasi-coherent sheaf on X. Then,

H̆
i
({Ui},F ) ∼= Hi(X,F ).

Proof. We will need several facts. Most were already proven, the others are left as exercises.

• Let X be a separated scheme, U1, U2 open affine subsets of X then U1 ∩ U2 is affine.

(Exercise; cf. [H] II Exercise 4.3)

• H̆
0

({Ui},F ) ∼= H0(X,F ). (Already proven).

• Every quasi-coherent sheaf F embeds in a quasi-coherent flasque sheaf I . ([H] III 3.6)

• Cohomology in the category of quasi-coherent sheaves, or OX-modules, or abelian sheaves

can be calculated using resolutions by flasque sheaves. The cohomology groups of a flasque

sheaf I , Hi(X,I ), vanish for i > 0 (Theorem 5.4.1). It is also a fact that H̆
i
(X,I ) = 0

for i > 0 ([H] III 4.3).

We consider thus a resolution of F ,

0→ F → I → G → 0,

where I is flasque and quasi-coherent (and so also G is quasi-coherent). For every U = Ui0i1···ip we

have the initial part of the long exact sequence in cohomology:

0→ F (U)→ I (U)→ G (U)→ H1(U,F |U) = 0,

where the latter is zero because U is affine, being an intersection of affine open subsets, and F is

quasi-coherent. Taking the product, we conclude that the following sequence is exact:

0→ C•({Ui},F )→ C•({Ui},I )→ C•({Ui},G )→ 0.
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As I is flasque H̆
1

(X,I ) = 0 and so, taking the cohomology of the sequence, we get an exact

sequence

0→ Γ(F )→ Γ(I )→ Γ(G )→ H̆
1

(X,F )→ 0.

As well,

H̆
p

(X,G ) ∼= H̆
p+1

(X,F ), ∀p ≥ 1.

The same holds with usual cohomology:

0→ Γ(F )→ Γ(I )→ Γ(G )→ H1(X,F )→ 0,

and

Hp(X,G ) ∼= Hp+1(X,F ), ∀p ≥ 1.

We conclude that H1(X,F ) ∼= H̆
1

(X,F ) and we then argue by induction on p that Hp(X,F ) ∼=
H̆
p

(X,F ). At the induction step we use that G is also quasi-coherent and thus Hp+1(X,F ) ∼=

Hp(X,G ) ∼= H̆
p

(X,G ) ∼= H̆
p+1

(X,F ). �

Exercise 5.7.2. Let f : X → Y be an affine morphism of noetherian separated schemes over k . Let

F be a quasi-coherent sheaf on X. Prove that

Hi(X,F ) ∼= Hi(Y, f∗F ).

(On a separated scheme the intersection of affine subsets is affine. For the notion of affine mor-

phisms see [H] II, Exercise 5.17. You may freely use it.) Here are two cases where this exercise

applies: (i) The closed immersion of a point of X into X; (ii) Any non-constant morphism between

projective, possibly singular, curves (any finite morphism of schemes is affine).

5.8. Some key theorems in cohomology. The following theorems are important and deep. Un-

fortunately, we cannot cover their proof in this course. See [H] for the proofs.

Definition 5.8.1. Let X be a non-singular n-dimensional variety over an algebraically closed field k .

The canonical sheaf (or dualizing sheaf) of X is

ωX =

n∧
ΩX/k .

Note that ωX is a line bundle.

Theorem 5.8.2 (Serre’s duality). Let X be a non-singular n-dimensional variety over an algebraically

closed field k . For every locally free sheaf F on X there is a canonical isomorphism

Hi(X,F ) ∼= Hn−i(X,F ∗ ⊗ ωX).



NOTES - ALGEBRAIC GEOMETRY II 57

Example 5.8.3. Suppose that X is a curve. Then, for every invertible sheaf F we have

Γ(X,F ) ∼= H1(X,F ∗ ⊗ΩX/k).

In particular, taking F = OX we find that

k ∼= Γ(X,OX) ∼= H1(X,ΩX/k)

and that

Γ(X,ΩX) ∼= H1(X,OX).

Compare this with the calculation of the dimensions of these cohomology groups carried out in

Example 5.6.1

Definition 5.8.4. The genus of a non-singular projective curve X is, alternatively, dimk(Γ(X,ΩX))

(the dimension of the global holomorphic differentials on X) or dimx(H1(X,OX)).

Theorem 5.8.5 (Serre). Let X be a projective scheme over k . Let F be a coherent sheaf over X.

Then, for every i ≥ 0, Hi(X,F ) is a finite dimensional k vector space.
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6. Curves

6.1. Divisors, Principal divisors, Pic. Ernesto Mistretta had covered most of what we need here,

so we will be rather brief, essentially providing a resumé of his lectures.

Let X be a non-singular quasi-projective variety over k , an algebraically closed field. By an

irreducible effective divisor D on X we mean a closed irreducible sub variety of X of codimension 1.

We will also refer to this as a primitive divisor. Let ξD be the generic point of D then OX,D = OX,ξD
is a regular local ring of dimension one, hence a dvr. Let vD be the corresponding valuation. If

U = Spec(A) ⊂ X and U ∩D 6= ∅ then U ∩D corresponds to a prime ideal p (which is the generic

point of D) and OX,D = Ap.

Fact: D is locally principal. That means that X = ∪iUi , each Ui open affine, Ui = Spec(Ai) and

D ∩ Ui = {fi = 0} for some fi ∈ Ai . This implies, but is stronger than, fiApi = piApi , where D ∩ Ui
is defined on Ai by the prime ideal pi .

A divisor on X is a formal sum
∑
D aD[D], where the summation is over primitive divisors and aD ∈ Z

and are zero except for finitely many D. To a function f ∈ k(X), f 6= 0, we can associate a divisor

div(f ) = (f ) =
∑
D

vD(f )[D].

Such divisors are called principal divisors. They form a group denoted Prin(X).

Fact: This is a divisor. Namely, vD(f ) = 0 except for finitely many D.

We say that D1 ≥ D2 if D1 −D2 =
∑
D cD[D] and all cD ≥ 0.

Fact: f is a regular function on X iff (f ) ≥ 0. Furthermore, that much is also true on any non-empty

open set U of X.

For X a projective variety, we get an exact sequence of groups

0→ k(X)×/k× → Div(X)→ Pic(X)→ 0,

where we define Pic(X) = Div(X)/Prin(X).

Example 6.1.1. Pic(Pn) ∼= Z.

Let H be the hyperplane xn = 0. We show that H is a generator for Pic(Pn). Let D be a primitive

divisor, then D = {f (x0, . . . , xn) = 0} for some irreducible homogenous polynomial of degree d

(View D in An+1; as k [x0, . . . , xn] is a UFD any prime ideal of height 1 is principal. Thus, in

An+1, D is defined by a polynomial f (x0, . . . , xn), which is necessarily homogenous because it has
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the property that f (α0, . . . , αn) = 0 if and only if f (λα0, . . . , λαn) = 0 for all λ ∈ k .) Thus,

D = (x−dn f (x0, . . . , xn)) + dH.

It remains to show that for every d ≥ 1, dH is not principal. But if dH = (g) for some non-

zero function g, then g is a regular on Pn, hence a constant, and vanishes along H. This is a

contradiction.

Example 6.1.2. Let X be a non-singular projective curve. Then there is a surjective group homo-

morphism

Pic(X)
deg−→ Z, deg(

∑
aD[d ]) =

∑
aD.

It is well-defined because on a projective curve, deg((f )) = 0 for every function f . One lets Pic0(X)

be the kernel of the degree map; it is a subgroup of Pic(X). It is a hard theorem that Pic0(X) is the

k points of a projective connected algebraic group (a so-called abelian variety) of dimension equal

to g(X), the genus of X; it is called the Jacobian variety of X.

6.2. Locally free sheaves. We had an impromptu discussion about locally free sheaves, how to

describe them using Cech cocyles H̆
1

(X,GLn(OX)) and natural operations on sheaves, such as

tensor products, direct sum, exterior products, dual. In particular, isomorphism class of invertible

sheaves, namely, the locally free sheaves of rank 1 form an abelian group isomorphic to H̆
1

(X,O×X).

Under the correspondence, the group operations on invertible sheaves are

• Multiplication: F1 ⊗OX F2.

• Identity: OX .

• Inverse: F∨1 .

An interesting result is that the group of invertible sheaves is isomorphic to Pic(X), namely to

divisors up to principal divisors.

6.2.1. From divisors to invertible sheaves. We associate to a divisor D a locally free sheaf OX(D).

For an open set U let

OX(D)(U) = {f ∈ k(X) : (f ) ∩ U ≥ −D}.

Namely, on the open set U, the divisor of f is greater or equal to the divisor −D restricted to

U, −(D ∩ U). This already gives a sheaf of OX-modules: One has (f1 + f2) ≥ (f1) + (f2) and

(−f ) = (f ) which gives a structure of an abelian group. If g ∈ OX(U) and f ∈ OX(D)(U) then

(gf ) = (g) + (f ) ≥ (f ) and so we get an OX-module structure.

If D1 = D + (g) there is an isomorphism

OX(D1)
×g // OX(D) , f 7→ gf .

Indeed, suppose (f ) ≥ −D1 on an open set U then (f g) = (f ) + (g) ≥ −D1 + (g) = −D.
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This also shows that OX(D) is locally principal. Indeed, locally D is the divisor of a function g.

The argument above shows that multiplication by g−1 gives an isomorphism OX → OX(D) on that

open set.

6.2.2. From invertible sheaves to divisors. Let F be an invertible sheaf. Choose a non-empty open

set U and an isomorphism ϕ : F |U ∼= OU . Then the function 1 corresponds to a section s of F

that does not vanish on U. The section s extends to a meromorphic section on X. That is, suppose

that U1 is another open set and ϕ1 : F |U1
∼= OU1

is a trivialization. Then s|U∩U1
corresponds to an

invertible function in O(U ∩ U1) that extends to a meromorphic function fU1
in k(X). We extend

the section s to U1 by fU1
s. In such a way we can associate to s a divisor (s). This divisor is

trivial on U and on U1 is the divisor of fU1
. We note that the functions fU1

depend on the choice

of trivialization, but nonetheless, the divisor (s) we get this way by covering X by open sets U1 is

well-defined, because the transition maps between different open sets are given by regular functions

that are none-vanishing on the intersections hence do not affect the divisor. Denote by D = (s).

Let t ∈ F (V ). Assume for simplicity that F is trivial on V (else pass to cover, etc.) then t/s

corresponds to a function on V that is independent of the trivialization chosen. This function h

satisfies on V that (h) = (t/s) = (t) − (s) ≥ −D. That is h ∈ OX(D). The converse also holds

and we conclude:

Let s be a meromorphic section of F , D = (s) the divisor of s. Then

F ∼= OX(D).

In this was we have passed from invertible sheaves to divisors.

6.2.3. Functoriality. It remains to check thatOX(D1+D2) ∼= OX(D1)⊗OXOX(D2) andOX(−D) =

OX(D)−1. This is not hard to verify from the definitions.

6.3. Linear systems. We content ourselves here mainly with definitions. The concept of a linear

system is very useful and geometrically enlightening, but we will see that later.

Let D0 be a divisor on X, where as usual X is a projective non-singular variety. There is a bijective

map

P(Γ(X,OX(D0)))⇔ {D ≥ 0 : D ∼ D0},

given by

f 7→ (f ) +D0.

(Here we use ∼ to denote that two divisors are equal in Pic(X), namely, they differ by a principal

divisor; this is also called “linearly equivalent”). In particular, the system of effective divisors linearly

equivalent to D0 has a structure of a projective space of dimension h0(X,OX(D0)) − 1. This is

called a complete linear system and one denotes it by |D0|. A linear system d is by definition a linear

subspace of P(Γ(X,OX(D0))). A point P of X is called a base-point of the linear system d is any

D ∈ d contains P .
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6.4. Examples.

6.4.1. X = P1 × P1. Some divisors that are easy to observe are the lines {α} × P1 and P1 × {α}
and the diagonal ∆ that is equal to the image of the diagonal embedding P1 → P1 × P1. Let, for

example, D be the divisor {0} × P1. Writing the function field k(X) as k(x, y), we can write any

polynomial f (x, y) in k [x, y ] as

f (x, y) =
∑
i≥0

ai(y)x i , ai(y) ∈ k [y ],

and then

vD(f ) = min{i : ai(y) 6= 0}.

In the same coordinates, the diagonal ∆ is defined by x − y . That is, x − y is a uniformizer of the

local ring OX,∆. Choose any unit of that ring, for example x + y . Then we can expand a polynomial

f as

f (x, y) =
∑
i

ai((x + y))(x − y)i ,

where the ai are polynomials and

v∆(f ) = min{i : ai(y) 6= 0}.

Recall the Segre embedding,

Pm × Pn → PN , N = (m + 1)(n + 1)− 1,

given by

(x0 : · · · : xm; y0 : · · · : ym) 7→ (· · · : xiyj : · · · ).

If we let zi j be the coordinates on PN then the image is defined by the quadratic equations

zi jzk` = zi`zkj , ∀i , j, k, `,

and the Segre embedding is a closed immersion. In particular, we have

P1 × P1 ∼= Q ↪→ P3,

where Q is the quadratic surface

Q : z00z11 − z01z10 = 0.

Fix (α : β) ∈ P1. The family of lines {(α : β)} × P1 we obtain in Q are

{βz00 − αz10 = 0} ∩Q,

while the lines P1 × {(α : β)} are given by

{βz00 − αz01 = 0} ∩Q.

Taking a homogenous degree polynomial f (zi j) we get a divisor on Q by

div(f ) ∩Q.
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In the model of P1 × P1 this correspond to

div(f (x0 : x1; y0 : y1)),

where f (x0 : x1; y0 : y1) is bi-homogenous of degree d . This divisor can be reducible or irreducible.

For example, taking f = z00z11+z01z10 that corresponds to 2x0x1y0y1 = 0 gives us 4 lines on P1×P1;

taking f = z2
00 +z2

11 +tz00z01 that corresponds to x2
0 y

2
0 +x2

1 y
2
1 +tx2

0 y0y1 gives an irreducible divisor,

unless t = 0. (One way to check that is to first verify irreducibility under x1 = y1 = 1 and then

check that only finitely many points are “hidden” in the complement in P1×P1 of this open chart.)

For t = 0 we get a reducible divisor (x0y0 + ix1y1)(x0y0− ix1y1) = 0, whose 2 components intersect

at the two points (1 : 0; 0 : 1), (0 : 1; 1 : 0).

6.4.2. X = P2. Every irreducible divisor D is the zero locus of an irreducible homogenous polynomial

f (X, Y, Z). If Di is defined by fi = 0 and D1 6= D2 then the number of intersection points of D1

and D2, counted with multiplicities, is deg(f1) · deg(f2). This is Bezout’s theorem.

Let f , g ∈ k(P2) = k(x, y) be the functions f (x, y) = x/y and g(x, y) = x . The relation to the

homogenous coordinates X, Y, Z is that x = X/Z, y = Y/Z. Thus,

div(f ) = D1 −D2, div(g) = D1 −D3,

where

D1 = {X = 0}, D2 = {Y = 0}, D3 = {Z = 0}.

6.4.3. Y = BlP (P2). Consider now Y , the non-singular projective surface obtained as the blow-up

of P2 at the point P = (0 : 0 : 1). It is birational to P2 and so k(Y ) = k(x, y) as well. What is the

divisor of f and g on Y ?

Denote π : Y → P2 the projection and let E = π−1(P ) be the exceptional divisor. It is irreducible

and isomorphic to P1. We have

π : Y − E
∼=−→ P2 − {P}.

Using the last isomorphism, we see that the real calculation to be done is on Y 0 = Bl0(A2) = Y −D̃3

and the functions f , g. From the definitions we get

Y 0 = {(x, y ; u : v) : xv = yu} ⊆ A2 × P1.

Moreover,

E = {(0, 0; u : v)}.

We have

Y 0 = U ∪ V,

where

U = {(x, y ; u : 1) : x = yu}, E ∩ U = {y = 0},

and

V = {(x, y ; 1 : v) : xv = y}, E ∩ V = {x = 0}.
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Remark that U ∼= A2
y,u by (x, y ; u : 1) 7→ (y , u), and under this isomorphism E corresponds to

{y = 0}, f corresponds to the function (yu)/y = u and g to the function yu. Thus, div(f ) ∩ U
corresponds to {u = 0} = D̃1 ∩ U and div(g) ∩ U corresponds to E + {u = 0} = E + D̃1 ∩ U.

Similarly, V ∼= A2
x,v by (x, y ; 1 : v) 7→ (x, v) with E corresponding to {x = 0}. The function f

corresponds to the function 1/v and so div(f )∩V = −{v = 0} = −D̃2. The function g corresponds

to x and div(g) ∩ V = {x = 0} = E.

We conclude that on Y ,

div(f ) = D̃1 − D̃2, div(g) = E + D̃1 − D̃3.

6.4.4. Blow up of the projective plane at six points. Consider 6 distinct points {P1, . . . , P6} of the

projective plane P2, such that:

• No 3 points lie on a line;

• Not all points lie on a single conic.

Here by a conic we mean the vanishing locus of any homogeneous non-zero quadratic polynomial

f (x0 : x1 : x2). In particular, f may be reduced and even the square of a linear form.

Lemma 6.4.1. There is a unique conic passing through P1, . . . , P5. This conic is necessary irre-

ducible.

Proof. That the conic is irreducible follows from counting. If not, it defines either a union of 2 lines,

or a single line (with multiplicity 2) and in either case on one of the lines we would have at least 3

of the points.

We first show that such a conic exists. The space of all quadratic polynomials is a 5-dimensional

complete linear system; such a polynomial is given as

a0x
2 + a1xy + a2y

2 + a3xz + a4yz + a5z
2,

and its divisor is linearly equivalent to the divisor 2D0, for example, where D0 = {x0 = 0}. That

linear system is then P5 where we associate to the polynomial the point (a0 : · · · : a5). The condition

that a point Pi lies on the conic then translates into a linear condition `i = 0 on the coefficients ai .

A conic passing through P1, . . . , P5 is given by a point on `1 = · · · = `5 = 0 that has dimension at

least 0 (and in particular is non-empty!). Indeed, in affine coordinates we intersect 5 hyperplanes

`i = 0 getting a linear subspace of dimension at least 1 that corresponds to that mentioned point

in P5. That shows that such a conic exists. We next show uniqueness.

Let C (P1, . . . , Pi) be the family of conics passing through P1, . . . , Pi . It can be viewed of as the

linear system in P5 given by the vanishing of `1, . . . , `i and we shall refer to its dimension in that

sense. Thus, for i = 0, it has dimension 5 and for i = 1 is has dimension 4 (as it is the subspace of

P5 defined by the vanishing of `1). We have the following table, that we explain just following it:
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C (P1) C (P1, P2) C (P1, P2, P3) C (P1, . . . , P4) C (P1, . . . , P5)

dimension ≤ 4 dim’l ≤ 3 dim’l ≤ 2 dim’l ≤ 1 dim’l ≤ 0 dim’l

member L2
13 = 0 L2

12 = 0 L12L13 L12L34

not a base point P2 P3 P4 P5

In the table we have used the notation Li j to denote the linear form in 3 variables describing the

line in P2 passing through Pi and Pj . In the first column we note that the linear L2
13 is in the linear

system C (P1) and that P2 doesn’t line on this line. Thus, the linear system C (P1, P2) is of strictly

smaller dimension than that of C (P1), giving us the estimate that its dimension is ≤ 3. Similarly,

we note that L2
12 is in the linear system C (P1, P2), but that P3 doesn’t lie on it, and therefore the

linear system C (P1, P2, P3) is of smaller dimension; that is, C (P1, P2, P3) is of dimension at most

2. And so on. �

Let us then take six points {P1, . . . , P6} satisfying that no 3 are on a line and not all lie on a

single conic and blow up P2 at those points, arriving at the surface

X = Bl{P1,...,P6}(P
2).

We note that X has the following properties:

(1) X is an irreducible non-singular projective surface.

(2) X is birational to P2.

(3) X has 6 lines given by the exceptional divisors E1, . . . , E6.

(4) X has 15 =
(

6
2

)
lines L̃i j .

(5) X has 6 lines C̃i , where Ci is the unique conic in P2 passing all the points Pj except the

point Pi .

Here “line” means a non-singular curve of genus 0 and for any Y ⊂ P2 we let Ỹ the Zariski closure

of Y − {P1, . . . , P6} in X. A famous theorem (that I hope we will have time to discuss this term)

says that every such X is isomorphic to a non-singular cubic surface in P3 and, conversely, any

non-singular cubic surface in P3 arises this way.

Let us now specialize even further. Consider the regular icosahedron in R3.

The line connecting a vertex of it to the centre passes through precisely one

addition vertex. Thus, this give us six lines. We think about these lines as

points in P2(R) ⊆ P2(C) and we blow up P2(C) at these points, getting a

surface X called the Clebsch surface. It has several interesting properties:

• As all the blow-ups is it non-singular projective surface birational to

P2.

• It has the model: {
∑4
i=0 xi = 0,

∑4
i=0 x

3
i = 0} in P4. This model show that the symmetric

group S5 acts faithfully on X.

• It has the model
∑3
i=0 x

3
i − (

∑3
i=0 xi)

3 = 0 in P3. This model, obtained from the one in P4

by eliminating x4, exhibits X as a non-singular cubic surface in P3.
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• The action of the icosahedral group A5 on the icosahedron, which is induced from an orien-

tation preserving linear transformations in GL3(R), induced the action of A5 ⊂ S5, defined

above. If we allow also non-orientation preserving automorphisms of the icosahedron, we

get a group isomorphic to A5×Z/2Z. Indeed, once we know that the orientation preserving

automorphisms are A5, we can choose multiplication by −1 as a non-orientation preserving

automorphism7 and conclude that the full group of automorphisms of the icosahedron is

A5 × {±1}. Note however that the projective transformations we get are just the images

of A5 as diag(−1,−1,−1) is trivial in PGL3(C).

It is known that the full automorphism group of the Clebsch surface is S5, where the

action of A5 is explained by the icosahedron, but the additional symmetries are not.

6.5. Euler characteristic. Let X be a projective variety. Let F be a coherent OX module. Then,

by a result of Serre, Hi(X,F ) are finite dimensional; we denote the dimension hi(X,F ). We define

the Euler characteristic of the sheaf F ,

χ(F ) =

dim(X)∑
i=0

(−1)ihi(X,F ).

Lemma 6.5.1. χ is additive on short exact sequences. That is, if

0→ F1 → F → F2 → 0,

is an exact sequence of sheaves, then

χ(F ) = χ(F1) + χ(F2).

Proof. Let d = dim(X). We have a long exact sequence of vector spaces:

0→ H0(X,F1)→ H0(X,F )→ . . . → Hd(X,F2)→ 0.

As with any long exact sequence of vector spaces, the dimensions counted with alternating signs

give zero. Thus,

h0(F1)− h0(F ) + h0(F2)− h1(F1) + · · ·+ (−1)dhd(F2) = 0.

But, this just the identity 0 = χ(F1)− χ(F ) + χ(F2). �

Example 6.5.2. Let X be a non-singular projective curve and let F = OX(D), where D is a divisor

on X. Then,

χ(OX(D)) = h0(X,O(D))− h1(X,OX(D))

= h0(X,O(D))− h0(X,OX(K −D)).

7One knows that the vertices are (0,±1,±φ), where φ is the golden ratio and their cyclic permutations, a set that
is preserved by multiplication by −1.
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In the above, K denotes a canonical divisor and we have used Serre to relate the two expressions for

χ(OX(D)). Recall how K is defined. One chooses a rational section s of ωX/k , which, since X is

a curve, is an invertible sheaf isomorphic to ΩX/k , and one lets K = div(s). If t is another rational

section then t/s is a rational function and so K is defined up to a principal divisor. Let’s look at

some particular instances.

X is the projective line P1. Let x0, x1 be the coordinates on the projective line. It contains the

affine line A1 with coordinate z = x1/x0 and we choose the differential dz . On A1 the differential

dz is regular and non-vanishing. Let u = x0/x1, then P1 = A1
z ∪ A1

u, as usual. We have dz =

d(1/u) = −u−2du, which has a pole of order 2 at the point “at infinity” P∞ = (1 : 0). Thus,

(dz) = −2[P∞].

Note that H0(P1, ωP1/k) ∼= H0(P1,OP1 (K)) = {f ∈ k(P1) : (f ) ≥ 2[P∞]} = {0}. Thus, In

particular, find that χ(P1,O) = 1− 0 = 1.

For general information we remark that the general theorem is

χ(Pn,O) = 1, ∀n.

X is the elliptic curve y2z = x3 + z3. For simplicity assume that the characteristic is not 2, 3 so

that the curve is non-singular. An affine piece of the curve is given by X0 : y2 = x3 + 1. Note that

2ydy = 3x2dx . Let ω be the differential form

ω =
dx

2y
=
dy

3x2
.

The two expressions together show that ω is a regular differential (there are not points on the curve

where both x and y are zero). Moreover, it is non-vanishing (check!). There is but one point on X

that is not in X0, namely the point (0 : 1 : 0) at this point we have local coordinates u, v related to

x, y by u = x/y, v = 1/y and the curve is given by the equation

v = u3 + v3.

This equation gives us the identity dv(1− 3v2) = 3u2du. We calculate, that 2ω = du − u
v dv and

then that

2ω =

(
1−

3u3

v(1− 3u2)

)
· du.

We have the identity u3

v = 1−v2 that shows that at the point (0 : 1 : 0) (= (0, 0) in the coordinates

u, v) the function u3/v is regular and equal to 1. Using this, we find that
(

1− 3u3

v(1−3u2)

)
is regular

and non-vanishing at (0 : 1 : 0). Thus, we find that the empty divisor is a canonical divisor on X.

(This is true, in fact, for any curve of genus 1.) As H0(X,ωX) ∼= H0(X,OX), we find

χ(X,O) = 0.
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In general, for a non-singular projective curve X:

χ(X,OX) = 1− g(X),

by definition of g(X). Thus, our examples above show that g(P1) = 0 and g(X) = 1, where X is

the elliptic curve y2 = x3 + 1.

Example 6.5.3. We now look at the case of surfaces. Let X be a projective non-singular surface.

Then,

χ(OX(D)) = h0(OX(D)) + h0(OX(K −D))− h1(OX(D)).

Let look at the example of P2 and calculate the canonical divisor for it. In fact, it is equally easy to

calculate the canonical divisor for Pn.

Proposition 6.5.4. Let X = Pn. Let H be a hyperplane of X then −(n+ 1)H is a canonical divisor.

Proof. Over the affine open Un := Spec Rn = Spec k [ x0
xn
, . . . , xn−1

xn
] we have

ΩUn/k =

n−1∑
i=1

Rnd(
xi
xn

),

and

ωUn/k =

n∧
ΩUn/k = Rn · d(

x0

xn
) ∧ · · · ∧ d(

xn−1

xn
).

Let ω = d( x0
xn

)∧· · ·∧d( xn−1

xn
), viewed as a rational differential form on Pn. The form ω is regular and

non-vanishing on Un. We need to calculate if it has zeros or poles on the complement H := Pn−Un,

which is a primitive divisor. Let U0 := Spec R0 = Spec k [ x1
x0
, . . . , xnx0

]. Similarly, ΩPn/k |U0
=

⊕ni=1R0 · d( xix0
), ωPn/k = R0 · d( x1

x0
) ∧ · · · ∧ d( xnx0

). Note that the complement of U0 ∪ Un has

codimension 2 in Pn and so “no divisors can hide there”. Namely, the only calculation that we need

to do is to see whether ω has zeros or poles along H; H is defined in U0 by the equation xn
x0

= 0.

Writing xi
xn

= xi
x0

( xnx0
)−1, one finds that

d(
xi
xn

) = (
xn
x0

)−1 −
xi
x0

(
xn
x0

)−2d

(
xn
x0

)
.

Substituting this below, and using dt ∧ dt = 0, we find

ω = d(
x0

xn
) ∧ · · · ∧ d(

xn−1

xn
)

=

(
xn
x0

)−n [(
xn
x0

)−1

d

(
xn
x0

)
∧

(
d

(
x1

x0

)
−
x1

x0

(
xn
x0

)−1

d

(
xn
x0

))
∧ · · · ∧

(
d

(
xn−1

x0

)
−
xn−1

x0

(
xn
x0

)−1

d

(
xn
x0

))]

=

(
xn
x0

)−n−1

· d
(
xn
x0

)
∧ d

(
x1

x0

)
∧ · · · ∧ d

(
xn−1

x0

)
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Thus, ω has a pole of order n + 1 along H. �

Consequently,

H0(Pn, ωPn/k) = H0(Pn,O(−(n + 1)H)) = {f ∈ k(Pn) : (f ) ≥ (n + 1)H} = 0},

because such a function f has (f ) ≥ 0, in particular, so is a regular constant on Pn, namely a

constant; this function also satisfies (f ) ≥ (n + 1)H, which is impossible unless f = 0.

Now, one can prove using Cech cohomology that H̆
1

(P2,O) = {0}. This might be quite doable

using a cover of P2 with three affine planes, but I hadn’t tried. The proof in the general case, which

deals with Pn, is in [H], but I suspect that the case of n = 2 can be done more simply. At any rate,

granted that we find that

χ(P2,OP2 ) = 1.

6.5.1. Definition of arithmetic and geometric genus. Let X be a non-singular projective variety. We

define the arithmetic genus of X as

pa(X) = (−1)dim(X)(χ(OX)− 1);

we define the geometric genus of X as

pg(X) = h0(X,ωX/k).

Here are two examples:

(1) If X is a curve the we saw that χ(OX) = 1−g(X), where g(X) = h0(X,ωX/k), by definition.

It follows that pa(X) = pg(X) = g(X).

(2) IF X = P2 then by our calculations pa(X) = pg(X) = 0.

We remark that in general, even for non-singular projective surfaces X, pa(X) 6= pg(X).

6.6. The Riemann-Roch theorem for curves.

Theorem 6.6.1. Let X be a non-singular projective curve over an algebraically closed field k . Let

D be a divisor on X and g the genus of X. Then,

χ(O(D)) = deg(D) + 1− g.

Note that χ(O(D)) = h0(X,O(D))−h1(X,O(D)) which is equal by Serre’s duality to h0(X,O(D))−
h0(X,O(K−D)), where K is a canonical divisor on X. Thus, another formulation of the Riemann-

Roch theorem is

h0(X,O(D))− h0(X,O(K −D)) = deg(D) + 1− g.

Proof. Begin with the case where D is the empty divisor. The formula then reads

h0(X,O)− h1(X,O) = 1− g.

However, H0(X,O) = k and h1(X,O) = g, by definition. So the formula checks.
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We now prove that given a divisor D and a point P ∈ X(k), the theorem holds true for D if an

only if it holds true for D − [P ] and that suffices to prove the theorem. More precisely, we show

that χ(O(D− [P ])) + 1 = χ(O(D)); as deg(D− [P ]) + 1 = deg(D) that suffices to show that the

theorem holds for D iff it holds for D − [P ].

Consider the exact sequence

0→ O(−[P ])→ O → iP (k)→ 0,

where O(−[P ]) is the ideal sheaf of functions vanishing on [P ] to order at least 1 and it defines the

closed immersion i = iP : P → X. Here iP (x) is the extension by zero of the sheaf of functions k

on P . Cf. Example 5.6.4. Tensor this sequence by the sheaf O(D).

First, note that O(D)⊗ iP (k) = iP (k). Indeed, for an open set U not containing P both sheaves

take value 0. For an open set U that contains P , and small enough so that O(D) is trivial, both

sides give the value k . That is, both sheaves have stalks k at the point P .8

As OD is locally free, and exactness is measured locally, the sequence stays exact and we get

0→ O(D − [P ])→ O(D)→ iP (k)→ 0.

Apply the Euler characteristic to get

χ(O(D − [P ])) + χ(iP (k)) = χ(O(D)).

However, we have calculated before that χ(iP (k)) = 1 (Example 5.6.4) and so the proof is complete.

�

6.7. Consequences of Riemann-Roch. Let us apply the Riemann-Roch theorem to the canonical

class K. On the one hand,

χ(O(K)) = h0(X,ΩX/k)− h0(X,O) = g − 1.

On the other hand, Riemann-Roch gives

χ(O(K)) = deg(K) + 1− g.

Therefore, quite unexpectedly, we get:

Corollary 6.7.1. deg(K) = 2g − 2.

Exercise 6.7.2. Consider the meromorphic differential dx on the plane curve xd + yd + zd = 0, for

d > 0. Find its divisor K. Calculate the degree of K and conclude that the genus of the curve is

(d − 1)(d − 2)/2.

Consider now the case of divisors D of large degree.

8One can also use [H], II Ex. 1.19.
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Corollary 6.7.3. Let D be a divisor of degree deg(D) > 2g − 2. Then

dimk H
0(X,O(D)) = deg(D) + 1− g.

Proof. This follows from the fact that if F is a divisor of negative degree then H0(X,O(F )) = {0},
because div(f ) ≥ −D implies deg(div(f )) > 0, which is impossible. We apply it to the divisor K−D
and conclude H0(X,O(K−D)) = {0}. By Riemann-Roch dimk H

0(X,O(D)) = deg(D)+1−g. �

Corollary 6.7.4. Let X be a non-singular projective curve, n ≥ 1 an integer and {x1, . . . , xn} distinct

points on X. Then X − {x1, . . . , xn} is an affine curve.

Proof. We do the case n = 1, leaving the general case as an exercise. Consider the divisor D = (2g+

1)[x1], where g is the genus of X. It follows from Corollary 6.7.3 that dimH0(X,O(D)) = g+2 ≥ 2.

Thus, there is a non-constant function on X with a pole at [x1] and non-where else. It defines a

morphism f : X → P1. As f is finite flat, we have seen in Corollary 4.6.3 that f −1(A1) = X −{x1}
is affine. �

Corollary 6.7.5. Let X be a non-singular projective curve of genus 0 then X ∼= P1.

Proof. Choose a point t ∈ X and apply Corollary 6.7.3 to the divisor [t] of degree 1 > 2g(X)− 2.

We have dimH0(X,O([t])) = 2 and so there is a function f on X whose polar divisor is precisely [t].

We view f as a morphism f : X → P1. It is a surjective morphism of degree 1 between non-singular

projective curves and so k(X) = k(P1) and it follows that X ∼= P1. �

Remark 6.7.6. Recall from the first term our discussion of moduli spaces of curves. The result

above says that the coarse moduli space of curves of genus 0 is a single point. It goes back to

Riemann that the coarse moduli space of curves of genus 1 (with a marked point) is 1 dimensional

curve isomorphic to A1 (this may be due to Klein) and that the moduli space of curves of genus g

is of dimension 3g − 3, if g ≥ 2.

6.7.1. An observation regarding Pic0(X). Let X be a smooth non-singular curve of genus g. Recall

that Pic0(X) was defined as the group of divisors of degree 0 on X modulo principal divisors. If X

has genus 0 then Pic0(X) = {0} and that’s an easy exercise in polynomials of one variable. If X has

positive genus g, it is a major theorem that Pic0(X) is an abelian connected algebraic group (those

are known as abelian varieties), which is projective of dimension g. It is also called the Jacobian

variety of X and denoted Jac(X). People that know Lie groups will be able to conclude that if the

ground field k is C then Pic0(X)(C) ∼= Cg/Λ as an analytic Lie group, where Λ is a lattice in Cg

(a discrete abelian subgroup of rank 2g). Moreover, there is a morphism X ↪→ Jac(X) which is a

closed immersion. We describe it at the level of sets.

Choose a base point P0 ∈ X and consider the map

ϕP : X → Pic0(X), P 7→ [P ]− [P0].
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This is an injective map: suppose that [P ]− [P0] = Q− [P0] in Pic0(X). Then [P ]− [Q] = 0 there

and that means that there is a function f ∈ k(X)× such that (f ) = [P ]− [Q]. As f has one zero,

and it’s a simple zero, we conclude that the morphism f : X → P1 is an isomorphism and that says

that X has genus 0, contrary to our assumption.

Note that the map constructed thus is canonical up to the choice of base point P0. A choice

of another base point [P1] amount to shifting the image of X in Pic0(X). To be precise: ϕP +

T[P1]−[P0] = ϕP1
where T[P1]−[P0] is the translation map T[P1]−[P0](D) = D + [P1]− [P0].

If one considers the map

ϕP : Xg−1 → Pic0(X), ϕP (P1, . . . , Pg−1) = [P1] + · · ·+ [Pg−1]− (g − 1)[P ],

after moding out by the action of Sg−1 on the source, one finds a birational morphism onto the

image. The image is an ample divisor on Pic0(X) called the theta divisor. It is well-defined up to

translation and so up to algebraic equivalence (see Mistretta’s lectures for this notion of algebraic

equivalence). Altogether this gives a morphism, called the Torelli morphism,

Mg → Ag,

from the moduli space of projective non-singular curves of genus g to the moduli space of principally

polarized abelian varieties of dimension g. We are not going to explain the notion of “principal

polarization” but only remark that the theta divisor defines one. The Torelli morphism is known to

be a proper and injective (Torelli’s theorem) and is in fact a closed immersion in characteristic 0

(and not in general) by a theorem of Oort and Steenbrink.

6.7.2. The Weierstrass form of an elliptic curve. Let us consider now a curve E of genus 1. Pick

a point t ∈ E and consider the divisors [t], 2[t], 3[t]. The pair (E, t) is called an elliptic curve.

Corollary 6.7.3 gives

dimH0(E,O([t])) = 1

dimH0(E,O(2[t])) = 2

dimH0(E,O(3[t])) = 3

As the scalars belong to H0(E,O([t])) we conclude that H0(E,O([t])) = k . Further, we conclude

that there is a function on E, call it x such that the polar part of its divisor satisfies (x)∞ = −2[t].

Similarly, there is a function y with (y)∞ = −3[t]. Now consider the functions

{1, x, y , x2, xy , y2, x3} ⊂ H0(E,O(6[t])).

As there are 7 functions and dimH0(E,O(6[t])) = 6 there is a linear relation between them. As the

functions 1, x, y , x2, xy are linearly independent (consider the valuation of such a linear combination

at the point t), and stay so if we throw in either y2 or x3, in that linear relation the coefficients of
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both x3 and y2 are not zero. After rescaling, we conclude an equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

We get a rational morphism E − − > P2, u 7→ (x(u), y(u)) and the image in contained in the

projective curve

(5) Y : y2z + a1xyz + a3yz
2 − x3 − a2x

2z − a4xz
2 − a6z

3 = 0.

As E is non-singular and Y is a projective curve, we conclude a dominant morphism E → Y .

It remains to show that this is an isomorphism. We first prove it is a birational morphism. We

need to show that [k(E) : k(x, y)] = 1. However, the function x defines a morphism x : E → P1 of

degree 2 (as it takes the value ∞ exactly twice) and the function y defines a morphism y : E → P1

of degree 3. That is, [k(E) : k(x)] = 2, [k(E) : k(y)] = 3 and so [k(E) : k(x, y)] = 1. At this

point, it will be enough to show that Y is non-singular.

Suppose that Y had a singular point. We will show then that Y is birational to P1. It then follows

that P1 is isomorphic to E (as they have the same function field k(x, y)), which is a contradiction

since P1 has genus 0 and E has genus 1.

Suppose Y has a singular point. By a linear change of coordinates that doesn’t change the form

of the equation, although it changes the constants ai , we may assume that the singular point is

(0, 0). It follows that 2y + a1x + a3 and a1y − (3x2 + 2a2x + a4) vanish at (0, 0), which implies

a3 = a4 = 0 and a6 = 0 as well, because (0, 0) is on the curve. Thus, necessarily Y has the form

Y : y2 + a1xy = x3 + a2x
2.

Let t = y/x . Then t2 + a1t − a2 = x and tx = y . That shows that k(x, y) = k(t), and Y is

birational to P1.

We conclude that every elliptic curve (E, t) of genus 1 is isomorphic to a plane curve in Weierstrass

form with the point t corresponding the (0 : 1 : 0).

6.8. The Hurwitz genus formula. Our purpose in this section is to prove that following theorem

(in fact, a more general version of which):

Theorem 6.8.1 (Hurwitz). Let f : X → Y be a surjective separable morphism that is tamely ramified

between non-singular projective curves over an algebraically closed field k . Then

2g(X)− 2 = deg(f )(2g(Y )− 2) +
∑
P∈X

eP − 1.

Recall that eP is the ramification index at a point P . We will recall the definition below and we

shall show that eP = 1 except for finitely many points and so the sum on the right makes sense. To

say f is tamely ramified means that if char(k) = p > 0 then p - eP for all P . Finally, f is separable

if k(X) is a separable field extension of k(Y ). Thus, at this point, at least the statement of the
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Hurwitz genus formula is understood. Before beginning the proof, we take a detour and explain the

situation over the complex numbers.

6.8.1. The genus formula for complex algebraic curves. In this section, we will be assuming much

we didn’t prove. But I think that the intuition gained justifies that.

Over the complex numbers, X(C) and Y (C) are compact complex surfaces, in fact Riemann surfaces.

2g(X) − 2 is minus the topological Euler characteristics. That is, if we triangulate X(C) then the

formula

2− 2g(X) = ] vertices− ] edges + ] faces,

holds. For example, the following diagram is a triangulation of a torus (a torus has genus 1). One

should be glueing opposite sides to get the torus and in particular all vertices marked by the same

letter are identified:

•A a

c

•C a

|||||||| •A

c
||||||||

•B

c

•D

|||||||| •B

c
||||||||

•A a •C a •A

The Euler characteristic formula gives 4− 12 + 8 = 0.

Similarly, here is a triangulation of a sphere:

•C
γ

BBB

BB

•B
β||

|||

BBBBBBB •D
δ

BBB

BBB
|||||||

•A
α|||

|||

α
BBB

BBB

•F •E

•B
β

BBB

BBB

|||||||
•D

δ|||

|||
BBBBBBB

•C
γ|||

|||

The Euler characteristic formula gives 6− 12 + 8 = 2.

Now, as f : X → Y is analytic, if P ∈ X is a ramification point of order e, one can choose local

analytic coordinates at P and Q = f (P ) such that the map is given there by z 7→ ze (thought of

now as a map of the open unit disc to itself). Suppose that Y is triangulated so that the ramification

points RY = {Q1, . . . , Qt} of f on Y are among the vertices. We have

2− 2g(Y ) = ] VY − ] EY + ] FY .

As f is a covering map X − f −1(RY )→ Y − RY , we get an induced triangulation of X for which

] EX = deg(f ) · ] EY , ] FX = deg(f ) · ] FY ,
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but the formula for the vertices must take into account ramification and we find

deg(f ) · ] VY − ]VX =

t∑
i=1

∑
f (P )=Qi

(eP − 1) =
∑
P∈X

(eP − 1).

Therefore,

deg(f )(2− 2g(Y )) = deg(f )(] VY − ] EY + ] FY )

= ] VX − ] EX + ] FX + deg(f )] VY − VX

= 2− 2g(X) +
∑
P∈X

(eP − 1).

This is Hurwitz’s formula.

6.8.2. Preparations for the algebraic proof.

Divisors and closed subschemes of curves. Let D =
∑t
i=1 ni · [Pi ], ni > 0, be an effective divisor

on a projective non-singular curve X over an algebraically closed field k . The ideal sheaf OX(−D)

defines a closed subscheme Z of X, where

0→ OX(−D)→ OX → OZ → 0,

where as usual OZ really means i∗OZ with i : Z → X the closed immersion. The scheme Z is

supported on {P1, . . . , Pt} and

OZ = ⊕ti=1iPi (OPi/m
ni
Pi

).

Conversely, let Z be a closed non-empty subscheme of X, Z 6= X. By definition, for some coherent

ideal sheaf I we have

0→ I → OX → OZ → 0.

If Zred = {P1, . . . , Pt} then at Q 6∈ {P1, . . . , Pt} we have IQ = OX,Q (because OZ,Q = 0). For

Q = Pi , IQ is an ideal of the dvr OX,Q. It cannot be the zero ideal. One checks that in that case

I = 0 in an open neighbourhood of Q which implies that Z contains an open subset of X and so,

being closed, Z = X. Thus, IQ = mniQ for some ni > 0. We recognize that I is nothing but the

sheaf OX(−D), where D =
∑t
i=1 ni [Pi ].

We have set a bijection between closed subschemes Z $ X and effective divisors D on X.

Pulling back divisors. Let f : X → Y be a surjective morphism of projective non-singular curves.

Let Q ∈ Y . Recall that if t is a local uniformizer at Q, that is, t is a function in k(Y ) such that

tOY,Q = mQ, then for a point P ∈ X such that f (P ) = Q, f ∗(t) · OX,P = mePP for some positive

integer eP , called the ramification index at P . We proved:∑
f (P )=Q

eP = deg(f ).
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Define

f ∗([Q]) =
∑

f (P )=Q

eP · [P ],

and extend by linearity to a homomorphism

f ∗ : Div(Y )→ Div(X).

This homomorphism has the property

deg(f ∗D) = deg(f ) deg(D).

In particular it takes degree zero divisors to degree zero divisor. Evidently, for g ∈ k(Y )× with divisor

D we have

div(f ∗D) = div(g ◦ f ).

One concludes induced homomorphisms

Pic(Y )→ Pic(X), Pic0(Y )→ Pic0(X).

6.8.3. The proof of Hurwitz’s genus formula. We begin with the following result concerning differ-

entials.

Lemma 6.8.2. Let f : X → Y be a separable surjective morphism of non-singular projective curves

over k . There is an exact sequence

(6) 0→ f ∗ΩY/k → ΩX/k → ΩX/Y → 0.

Proof. From general principles (Proposition 1.5.3), we have an exact sequence

f ∗ΩY/k → ΩX/k → ΩX/Y → 0.

It remains to show that the first arrow is injective. But, both f ∗ΩY/k and ΩX/k are invertible sheaves

on X. In particular, if P is a closed point of X and η its generic point, we have a commutative

diagram:

(f ∗ΩY/k)P //

��

(ΩX/k)P

��
(f ∗ΩY/k)η // (ΩX/k)η

and the vertical arrows are injective. Thus, it is enough to prove that (f ∗ΩY/k)η → (ΩX/k)η is

injective. Under the separability assumption, we have proved (see page 9) that (f ∗ΩY/k)η =

Ωk(Y )/k ⊗k(Y ) k(X) = Ωk(X)/k and Ωk(X)/k(Y ) = 0. Thus, at the generic point, we have an

exact sequence of k(X)-module:

k(X)→ k(X)→ 0→ 0,

for which the first arrow must be injective (in fact an isomorphism). �
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Under the same assumptions on f : X → Y we next prove:

Lemma 6.8.3. The sheaf ΩX/Y is supported on the ramification points P of X, the points such

that eP > 1. In particular, there are finitely many ramification points.

Proof. Locally on Y , ΩY/k |U = OU · dy just because it is locally free. Let Ũ = f −1(U). As we have

seen while studying curves, it is also affine. And we may shrink U so that also ΩX/k |Ũ = OŨ · dx .

On the other hand f ∗(ΩY/k |U) = OŨ · f
∗dy and we may write f ∗dy = h · dx for some h ∈ O(Ũ).

Thus, on the open set U − div(h), we have an isomorphism between f ∗ΩY and ΩX .

Since Y is quasi-compact, it is covered by finitely many such U and so, outside a finite set f ∗ΩY

and ΩX are isomorphic. This shows that ΩX/Y is supported on finitely many points.

More precisely, let P ∈ Ũ and Q = f (P ). In the notation above we may assume that y is a

uniformizer at Q and x a uniformizer at P (else replace them by y − y(Q), etc.). Then,

f ∗dy = d(f ∗y) = d(xeP · u),

where u is a unit of OX,P . But,

d(xeP · u) = eP · xeP−1u · dx + xeP du.

Therefore,

vP

(
f ∗dy

dx

)
= vP (h),

and, (1) whenever f is tamely ramified at P , which includes all points where eP = 1,

vP

(
f ∗dy

dx

)
= eP − 1;

(2) whenever f is wildly ramified,

vP

(
f ∗dy

dx

)
≥ eP .

In particular, the sheaf ΩX/Y is supported exactly at the ramification points. �

Define the ramification divisor R as the effective divisor on X given by∑
P∈X

`((ΩX/Y )P ) · [P ],

where `((ΩX/Y )P ) is the length as an OX,P -module, which is also its dimension as a k-vector space.

Our calculations above show the following:

• R is supported exactly on the ramification points. That is, the point P ∈ X such that

eP > 1.

• At every tamely ramified point P , `((ΩX/Y )P ) = eP − 1.

• At every point P , in the notation above, `((ΩX/Y )P ) = vP (eP · xeP−1u + xeP dudx ).

• ΩX/Y = OX/OX(−R). We may think about R as a closed subscheme i : Z → X.
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The exact sequence in (6) reads then as follows:

0→ f ∗ΩY/k → ΩX/k → i∗OZ → 0.

If we tensor by Ω−1
X/k

we get

0→ f ∗ΩY/k ⊗OX Ω−1
X/k
→ Ox → i∗OZ → 0.

(The sheaf i∗OZ doesn’t change; cf. the proof of the Riemann-Roch formula.) Consequently,

f ∗ΩY/k ⊗OX Ω−1
X/k
∼= O(−R).

But, if ΩY/k
∼= OY (KY ) then f ∗ΩY/k

∼= OX(f ∗(KY )). And thus f ∗ΩY/k ⊗OX Ω−1
X/k
∼= OX(f ∗(KY )−

KX). Taking degrees we find − deg(R) = deg(f ∗(KY )−KX) = deg(f )(2g(Y )− 2)− (2g(X)− 2).

In conclusion,

2g(X)− 2 = deg(f )(2g(Y )− 2) +
∑
P∈X

`((ΩX/Y )P ).

And we have found much information about `((ΩX/Y )P ). In particular, if f is tamely ramified,

2g(X)− 2 = deg(f )(2g(Y )− 2) +
∑
P∈X

(eP − 1).

6.9. Examples and applications of the Hurwitz genus formula.

Example 6.9.1. The curve C : xd + yd = zd in P2
k . Assume that the characteristic of the field k

doesn’t divide d . Then the curve is non-singular and has genus

(d − 1)(d − 2)

2
.

Indeed, we have seen in assignments that the morphism (x : y : z)→ (x : y) from C to P1 is a

surjective morphism of degree d (and thus a separable morphism) ramified at d points. At each

ramification point P , eP = d . We apply the Hurwitz formula for tamely ramified morphisms to

conclude that 2g(C)− 2 = d · (−2) + d(d − 1), from which the formula follows.

We remark that in fact every non-singular curve of degree d in P2 has genus (d−1)(d−2)
2 .

Example 6.9.2. Wild ramification. The situation in the case where the ramification is not tame

(one says that the point is then wildly ramified) is more delicate. We provide a simple, yet typical,

example.

Let k be an algebraically closed field of characteristic p. Consider the morphism

f : P1
k → P1

k , f (x) = xp − x.

It corresponds to the inclusion of functions fields k(x) ⊇ k(t), where t = xp − x . Thus, k(x) =

k(t)[y ]/(yp − y − t) and the polynomial yp − y − t has derivative relative to y equal to −1.

Therefore, this is a separable polynomial and f is a separable morphism. Furthermore, deg(f ) = p.
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The morphism f is unramified over A1. Indeed, given t ∈ A1 and y solving yp−y = t, for all i ∈ Fp
we have

(y + i)p − (y + i) = yp − y + (ip − i) = t,

as well. That is, there are p points lying above t and so the morphism is unramified above any

t ∈ A1(k). As there is a unique point left, we conclude that e∞ = p, where ∞ is the point in

P1 − A1. Note that the usual Hurwitz formula doesn’t hold

−2 = 2 · 0− 2 6= p · (2 · 0− 2) + e∞ − 1 = −p − 1.

Indeed, we are in the case of wild ramification: p|e∞. We must use the ramification divisor and

calculate the length of ΩX/Y at ∞, where X = Y = P1.

Write x = X/Y . The morphism f is given in homogenous coordinates by

(X : Y ) 7→ (Xp − Y p−1X : Y p).

Taking the parameter u = Y/X around ∞ we find that f is given in that chart by

u 7→ up ·
1

1− up−1
.

Note that ∞ corresponds here to the point u = 0 and 1
1−up−1 is a unit at 0. One computes, using

p = 0 in k , that

f ∗du = −u2p−2 ·
1

1− up−1
du.

Therefore

R = (2p − 2)[∞], deg(R) = 2p − 2.

The Hurwitz formula works now:

−2 = 2 · 0− 2 = p · (2 · −2) + deg(R) = −2p + (2p − 2).

Application 1. Let f : X → Y be a surjective (separable) morphism of non-singular projective

curves of degree greater than 1. Then

g(X) ≥ g(Y ).

If g(X) = g(Y ) then either g(X) = 0 or g(X) = 1 and in the latter case f is unramified.

Indeed, this follows from analyzing the Hurwitz genus formula. We assume that f is separable since

this is the only case we dealt with but in fact the statements hold in general.

Suppose first that g(Y ) ≥ 2. Then

2g(X)− 2 = deg(f )(2g(Y )− 2) + deg(R) ≥ deg(f )(2g(Y )− 2).

As 2g(Y ) − 2 > 0 we get g(X) > g(Y ). Similarly, for g(Y ) = 1 we get 2g(X) − 2 = deg(R) ≥ 0

and so g(X) ≥ 1 = g(Y ). In the case g(Y ) = 0 the inequality is trivial.
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We saw that equality can only hold for g(X) = g(Y ) = 0 or for g(X) = g(Y ) = 1, and in that

case it follows that deg(R) = 0 and so that f is unramified.

Application 2 - Luroth’s theorem. Any subfield of k(x) containing k is a purely transcendental

extension of k .

Let k(x) ⊇ L ⊇ k . We may assume L 6= k and thus L is a function field of transcendence degree

1, corresponding to some non-singular projective algebraic curve Y . The inclusion k(Y ) ⊂ k(x) =

k(P1) corresponds to a surjective morphism P1 → Y . Thus, g(P1) ≥ g(Y ). That is, Y has genus 0.

It is therefore isomorphic to P1 (over k) and so L = k(Y ) ∼= k(P1
k) is a purely transcendental

extension of k .

Application 3 - hyperelliptic curves. Assume that the characteristic of k is not 2 and let

X0 : y2 = f (x),

be the affine curve in A2
k , where f (x) is a separable polynomial in k [x ] of degree r . Note that X0

is non-singular as (2y , f ′(x)) = (0, 0) at x0 implies that x0 is a double root of f , contrary to our

assumption. Let X be a non-singular projective model of X0. Thus, X0 ⊂ X.

The morphism

ϕ : X0 → A1, ϕ((x, y)) = x,

is a surjective morphism of degree 2. It extends to a surjective morphism

ϕ : X → P1.

Note that if f (α) 6= 0 then (α,±
√
f (α)) are two distinct points of X0 and so every pre-image of α

lies in X0 and the map is unramified there. If f (α) = 0 then f (x) = (x − α)g(x) and g is a unit of

the local ring of (α, 0) ∈ X0. As y2 = f (x), we see that y is a uniformizer at (α, 0) and f (x), and

so x − α, vanish to order 2 there. Thus, ϕ is ramified at (α, 0). It follows that all the pre-images

of α lie also in this case in X0 and ϕ has a unique pre-image Pα := (α, 0) of α and ePα = 2. It

follows also that ϕ−1(∞) = X −X0 and X −X0 consists of 1 or 2 points.

Hurwitz formula implies in general that for tamely ramified morphisms f : X → Y ,
∑
P∈X(eP −1)

is even. As in our case eP = 1, 2, we conclude that the number of ramification points is even and

the r roots of f are among them. Therefore, if f has even degree r = 2g+2, we must have ϕ−1(∞)

consisting of two points, both unramified, and the Hurwitz genus formula gives g(X) = g. If f has

odd degree r = 2g + 1 then there is one point at infinity and it is a ramification point. We obtain

in this case g(X) = g. In particular, we always have g(X) = bdeg(f )−1
2 c.
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6.10. More about topology and complex curves. To be added (hopefully!)

• { compact Riemann surfaces } ↔ { projective non-singular curves over C}
• Using topology to construct coverings of a projective non-singular curve over C.

• Belyi’s theorem.
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7. Morphisms to projective spaces

7.1. Graded rings, ideals etc. Let Γ be an abelian group. A Γ-graded ring S is a commutative

ring with 1 together with a decomposition into abelian groups,

S = ⊕γ∈ΓSγ ,

such that for all γ1, γ2 in Γ, we have

Sγ1Sγ2 ⊆ Sγ1+γ2 .

By a graded ring S we will mean a Z-graded ring S such that Sn = 0 for n < 0. Thus, S = ⊕n≥0Sn.

Note: S0 is a subring and S is an S0-algebra.

An element of S is homogenous if it belongs to some Sγ . An ideal aCS is homogenous if, letting

aγ = a ∩ Sγ , we have

a = ⊕γ∈Γaγ .

This is equivalent to requiring that a is generated by homogenous elements. One checks that a

homogenous ideal a is prime if and only if for every two homogenous elements f , g of S if f g ∈ a

then either f ∈ a or g ∈ a.

If a is a homogenous ideal then S/a = ⊕γ∈ΓSγ/aγ is naturally a Γ-graded ring. Let T be a

multiplicative set of homogenous elements of S. Then the localization S[T−1] is also a Γ-graded

ring, where

S[T−1]γ =
⋃
δ∈Γ

{
f

g
: f ∈ Sγ+δ, g ∈ Sδ

}
.

(One needs to check that this is well defined under f
g = f1

g1
.)

The basic example of a graded ring is of course the ring of polynomials S = A[x0, . . . , xn] over

a ring A. It has a natural grading where S0 = A and Sd is the A-linear span of the monomials of

degree d .

7.2. Proj S. Similar to the case of rings A to which we associated an affine scheme Spec A, we

associate here a scheme Proj S to a graded ring S. The construction has some built-in functoriality,

but it is not as perfect as in the affine case and, as we shall see, determining morphisms to Proj S

is a more involved business.

Let S be a graded ring. The homogenous ideal

S+ = ⊕d>0Sd

is sometimes called the irrelevant ideal. Define first Proj S as a set:

Proj S = {pCS : p a homogenous prime ideal and p 6⊇ S+}.
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Next, we define a topology on Proj S. Let a be a homogenous ideal of S and let

V (a) = {p ∈ Proj S : p ⊇ a}.

Note: We get the same collection of sets V (a) if we let a be any ideal. Indeed, V (a) = V (a′),

where a′ is the homogenous ideal generated by the homogenous elements f of S such that f is

a homogenous “part” of some element of a. That much is clear from the definition. Moreover,

we can take a to simply be any set of elements of S, as then V (a) = V (〈a〉) = V (〈a〉′). This is

sometimes convenient.

A calculation similar to the affine case shows that the sets V (a) satisfy the axioms for closed sets

of a topology. For f a homogenous element of S let D+(f ), or D+(f ;S) if needed, be the following

set

D+(f ) = {p ∈ Proj S : f 6∈ p}.

As the complement of D+(f ) is V (〈f 〉), D+(f ) is an open set. In fact, it is easy to check that the

sets D+(f ), as f ranges over all homogenous elements of S, are a basis for the topology on Proj S.

In order to define a sheaf on Proj S we need the following construction. Let p be a prime ideal; let

S0
(p),

denote the subring of degree 0 elements of the Z-graded ring obtained by localizing S at all ho-

mogenous elements of S−p (our notation differs a little from Hartshorne’s here). This is local ring,

whose maximal ideal is generated by elements of the form a/t where a, t are homogenous elements

of the same degree, a ∈ p, t 6∈ p.

Similarly, let h be a homogenous element of S and let S0
h denote the subring of degree 0 elements

of the localization of S at the element h. 9

Let us now define the sheaf of rings O on Proj S. Let U ⊆ Proj S be an open set. Let

O(U) = {f : U →
∐
p∈U

S0
(p) : f (p) ∈ S0

(p) and f is “locally-global”},

where by “locally-global” we mean the following: for all p ∈ U there is an open set V ⊆ U such that

p ∈ V and there are elements a, b ∈ Sn for some n, such that f = a/b, viewed in S0
(q), for all q ∈ V

(and, in particular, b 6∈ q,∀q ∈ V ). The verification that this is a sheaf of rings is not hard and goes

very similarly to the affine case. The sheaf O has the following properties (see [H] II, 2.5):

(1) Op
∼= S0

(p);

(2) (D+(h),OD+(h)) ∼= Spec S0
h ;

(3) Proj S is a scheme.

9We would have to refer in times to the localization of S at h itself and not just to its degree 0 elements. We
will denote this localization Sh. This is bad notation as Sh means also the elements of degree h in S. Hopefully, the
correct interpretation can be understood from the context.
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Example 7.2.1. Let A be a ring and let

S = A[x0, . . . , xn]

be the polynomial ring in n+1-variables over A. S is naturally graded (so that S0 = A, S1 = ⊕ni=0Axi

and so on). We have

Proj S = ∪ni=0D+(xi),

as the complement of the union consists of homogenous prime ideals p that contain xi for all i , and

hence contain S+, but those were excluded from Proj S. Further,

(D+(xi),OD+(Xi )) ∼= Spec(A[x0, . . . , xn][x−1
i ]0) = Spec A

[
x0

xi
, . . . ,

xn
xi

]
.

We therefore see that

Proj S ∼= PnSpecA,

as previously defined. We usually denoted the right-hand side PnA and we shall continue to do so.

7.3. Morphisms. Let

ϕ : S → T

be a graded homomorphism of graded rings. That is, ϕ is a ring homomorphism with the additional

property ϕ(Sd) ⊆ Td for all d ≥ 0. Let

U = {p ∈ Proj T : p 6⊇ ϕ(S+)} = {p ∈ Proj T : ϕ−1(p) 6⊇ S+}.

The set U is an open set as its complement is V (ϕ(S+)); as such it inherits a subscheme structure

from Proj T . We claim that there is a natural morphism

Proj T

|
⋃
U

f // Proj S,

given on sets by

p 7→ f (p) := ϕ−1(p).

The following formulas are easy to check:

• for aCS homogenous ideal, f −1(V (a)) = V (ϕ(a));

• for g ∈ S homogenous, f −1(D+(g,Proj S)) = D+(ϕ(g),Proj T ) ∩ U.

In particular, f is continuous.

The definition of the map on the level of sheaves is done like in the affine case. Let V ⊆ Proj S be

an open set and g ∈ O(V ). Define f ∗g on f −1(V ) as follows: for q ∈ f −1(V ) let p = f (q) = ϕ−1(q).

We have a natural ring homomorphism

ϕ(a) : S0
(p) → T 0

(q).
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Then, we define

f ∗g(q) = ϕ(q)(g(f (q))) = ϕ(q)(g(p)).

Of course one needs to check that this works, but I leave that to you. On the level of stalks the

induced maps that we get are as expected:

OProj S,p

ϕ(q) // OU,q
|| ||

S0
(p) T 0

(q)

We now put additional assumptions on the graded homomorphism ϕ. Suppose that for some d > 0

the radical of the ideal of T generated by Td is T+. This happens, for example, whenever T is a

quotient of a polynomial ring A[x0 . . . , xn]. Assume further that ϕ : S → T is surjective in degree d .

In this case U = Proj T (prime ideals not in U contains ϕ(S+), hence ϕ(Sd) = Td and so contain

T+), and so we get a morphism

f : Proj T → Proj S.

Now, suppose that ϕ is surjective; even without the assumption above we find that U = Proj T . We

claim that f is a closed immersion. Indeed, let h ∈ S homogenous. Then f −1(D+(h,Proj S)) =

D+(ϕ(h),Proj T ); both source and target are affine and the induced morphism

Spec T 0
ϕ(h) → Spec S0

h ,

is induced by the surjective ring homomorphism

ϕ : S0
h → T 0

ϕ(h).

It is a closed immersion. In fact, we can be more precise: let a = Ker(ϕ). Then the kernel of

ϕ : S0
h → T 0

ϕ(h) is a[h−1]0, the degree zero elements in the localization of a at h. Moreover, f is

globally a closed immersion, that is, it is also injective onto its image, as our considerations were

done using an open cover of Proj T .

One easy way to arrive at the setting we discuss here is to take T = S/a, where a is a homogenous

ideal. This gives us a closed immersion

Proj(S/a)→ Proj(S).

One can show that every closed subscheme of Proj(S) arises this way ([H] II 5.16). But, careful,

different ideals a may define the same closed subscheme (cf. [H] II, Exe. 3.12).

Example 7.3.1. (The d-uple embedding). Let d > 0 an integer. Let S = ⊕∞n=0Sn and let

S(d) = ⊕∞n=0Sdn. There is a natural graded homomorphism

S(d) → S.
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Using considerations similar to those above, as the radical of S
(d)
+ = S+, we get a morphism

f : Proj S → Proj S(d).

This morphism is an isomorphism. In fact, this will follow from the argument about it being an

isomorphism on a cover of the image and the pre images of it, but it is instructive to see why it’s

a bijection. First we check that it is injective. Let f (q) = f (p) then qdn = pdn for all n ≥ 0. Let

g ∈ qn then gd ∈ qdn = pdn and so g ∈ p, and vice-versa. As q, p are generated by homogenous

elements q = p. Next, we show f is surjective. Let b be a homogenous prime ideal of S(d). Let a

be the radical of the ideal 〈b〉 of S generated by b. We first claim, that 〈b〉dn = bdn. This follows

by using 〈b〉 is the abelian group generated by the products (⊕Sa)(⊕bdn). We next show that the

same hold for the radical. Indeed, suppose that some homogenous element f of a belongs to Sdn.

Then, for some g, we have f g ∈ Sdgn ∩ 〈b〉 = bgdn and so f belongs to the radical of b in S(d),

which is b itself, as it is a prime ideal.

Now, let h ∈ S(d). We observe that f induces a morphism D+(h, S(d))→ D+(h, S). Moreover,

the sheaves of functions are respectively (S
(d)
h )0 and S0

h . We claim that these rings are the same.

As localization is exact, we have an inclusion (S
(d)
h )0 → S0

h . Let g/hn be an element of degree zero

in S0
h . Then this forces g to live in degree dn and so g/hn ∈ (S

(d)
h )0.

Now let S = A[x0, . . . , xn] with the natural grading and denote by {Mα : 0 ≤ α ≤
(
d+n
n

)
− 1} the

monomials of degree d in the n + 1 variables xi . We have established an isomorphism:

PnA ∼= Proj S ∼= Proj S(d).

We have S(d) = A[{Mα}] where we now give each Mα weight 1. Let N =
(
d+n
n

)
− 1. We thus have

a graded surjective ring homomorphism

A[y0, . . . , yN ]→ S(d), yi 7→ Mi .

Thus, we get a closed immersion

PnA ∼= Proj S(d) ↪→ PNA .

This is precisely the d-uple embedding that we had already seen.

Remark 7.3.2. Consider the case of a field k and the structure of

S(2) = k [x2
0 , x0x1, x

2
1 ]

for n = 1. This ring is isomorphic to k [y0, y1, y2]/(y2
1 − y0y2). This ring is not isomorphic to

S = k [x0, x1] as the affine variety it defines is a cone with singularity at the origin, while S defines

the affine variety A2
k that is non-singular. We thus conclude that if X = Proj S, the isomorphism

class of the homogenous coordinate ring S is not determined by X, unlike in the affine situation.
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7.4. Quasi-coherent shaves on Proj S. The purpose here is to associated to certain modules M

over a graded ring S quasi-coherent sheaves M̃ on Proj S, in similarity to the affine case.

Let S = ⊕nSn be a Z-graded ring and let M be a graded S-module. That is, M is an S-module

equipped with a decomposition into abelian groups

M = ⊕n∈ZMn,

such that for all d, n we have

SdMn ⊆ Md+n.

If T ⊆ S is a multiplicative set of homogenous elements, M[T−1] is an S[T−1] module. It is a

graded module, where elements of the form m
t , with m ∈ Mn, t ∈ Sd ∩ T are given degree n − d .

One needs to check that this is actually well-defined, etc., but we don’t do that here. Our key

example is the following:

Fix d ∈ Z. Let S be a graded ring and let M = S as an S-module but with new “artificial”

grading. By definition: Mn = Sd+n. We denote this graded module S(d). Thus,

S(d)n = Sd+n.

In particular, S(d)0 = Sd . Note that S(0) = S; note too that for d > 0, S(d) has elements in

negative degree. For example S(d)−d = S0.

To a graded S-module M, as above, we associate a quasi-coherent sheaf M̃ on Proj S in the

following way. First, for a homogenous prime ideal p denote M0
(p) the elements of degree 0 in the

graded module M[T−1], where T is the set of homogenous elements of S − p. For an open set

U ⊆ Proj S, let

M̃(U) = {f : U →
∐
p∈U

M0
(p) : f (p) ∈ M0

(p), and f is “locally-global”}

(in the sense we know well by know). Then M̃ is a sheaf and has the following properties ([H] pp.

116-117):

• The stalk M̃p of the sheaf M̃ at the point p is M0
(p).

• Let h ∈ S be a homogenous element and M0
h denote the degree zero elements in the

localization M[h−1]. Note that M0
h is an S0

h-module. Then M̃|D+(h)
∼= M̃0

h .

• In particular, M̃ is a quasi-coherent sheaf.

Notation: the sheaf O(n) is defined as the sheaf S̃(n). In particular, O := O(0) is the structure

sheaf (more properly denoted OProj S).
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Let’s consider a particular case. Let k be a ring and S = k [x0, . . . , xn] with its usual grading. We

want to get a precise understanding of the sheaf O(m) on Proj S. First,

Pnk = Proj S =

n⋃
i=0

D+(xi).

By the results above, O(m)|D+(xi ) is the sheaf associated to the k [ x0
xi
, . . . , xnx0

]-module which is the

degree 0 elements in (⊕k [x0, . . . , xn]a)[x−1
i ], but where now k [x0, . . . , xn]a is considered as having

degree a −m. That is, this module is∑
a≥m

1

xa−mi

k [x0, . . . , xn]a = xmi

∑
a≥m

1

xai
k [x0, . . . , xn]a

= xmi k [
x0

xi
, . . . ,

xn
xi

]

∼=−→ k [
x0

xi
, . . . ,

xn
xi

],

where the last isomorphism is an isomorphism of k [ x0
xi
, . . . , xnxi ]-modules given by multiplication

by x−mi . To remove possible confusion, we also remark that the equality preceding it holds if

the summation is over a ≥ N for any N.

Assume now that k is a field. We know that O(m) is an invertible sheaf on Pnk , as we have just shown

that on the standard affine cover of Pnk is it is isomorphic to the structure sheaf. It thus corresponds

to a divisor on Pnk . We will soon prove, in greater generality, that O(m1)⊗OO(m2) ∼= O(m1 +m2).

Thus, to find the said divisor, it will be enough to consider O(1). And for that we need a rational

section of O(1).

By the above, xn is a section of O(1)|D+(xn) that corresponds to the constant function 1 under the

isomorphism O(1)|D+(xn)
∼= k [ x0

xn
, . . . , xn−1

xn
] given above. Thus, xn is a non-vanishing section of O(1)

on D+(xn). In a natural way xn can be viewed as a degree 0 element of S(1) that when we restrict

to D+(xi) gives, under the isomorphism O(1)|D+(xi )
∼= k [ x0

xi
, . . . , xnxi ], the function xn

xi
∈ k [ x0

xi
, . . . , xnxi ].

We therefore see that

(xn) = H,

where H is the hyperplane xn = 0. In particular, under the isomorphism deg : Pic(Pnk)→ Z, we have

deg(O(m)) = m.

Proposition 7.4.1. Let S be a graded ring, finitely generated over S0 by elements of S1.

(1) O(m) is an invertible sheaf on Proj S.

(2) O(m1)⊗O O(m2) ∼= O(m1 +m2).

(3) Γ(Proj S,O(m)) =

{
Sm m ≥ 0,

0 m < 0.
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Proof. The first part is very similar to the calculation we have just done for the projective space.

As S is generated by S1,

Proj S =
⋃
h∈S1

D+(h).

To show part (1), it thus suffices to prove that O(m)|D+(h)
∼= S0

h for every h ∈ S1. But O(m)|D+(h)

is the sheaf associated to the module

S(m)0
h =

∑
d≥0

1

hd
S(m)d =

∑
d≥0

1

hd
Sm+d = hm

∑
d≥0

1

hm+d
Sm+d = hmS0

h
∼= S0

h ,

where the last isomorphism is as S0
h-modules and is given by multiplication by h−m. In particular,

O(m) is locally-free.

Now, suppose that S is generated over S0 by the elements h0, . . . , hn of S1. We have

(7) ϕi : O(m)|D+(hi ) → OD+(hi ), ϕi = h−mi · ( ).

Therefore, O(m) corresponds to the 1-cocycle whose value on D+(hi) ∩ D+(hj), for i < j , is

(ϕj ◦ ϕ−1
i ). Namely, O(m) is defined by the cocycle

ξi j =

(
hi
hj

)m
, i < j.

These cocycles depend on m multiplicatively, and so it follows that

O(m1)⊗O(m2) ∼= O(m1 +m2).

For the last claim, note first that

Γ(D+(h),O(m)) = hmS0
h .

Given an element t ∈ Sm, m ≥ 0 we therefore get a section of O(m) on each D+(h) by writing

t = hm · t
hm ; the section corresponds to t

hm under the trivialization in (7) (and is thus a regular

section over each D+(h)). These sections glue as ξi j
t
hmi

= t
hmj

.

We need to show that these are the only sections of O(m). To simplify we assume here that

S = S0[h0, . . . , hn] is a polynomial ring in n + 1-variables over S0, but the general case is very

similar ([H] II 5.15). We observe that to give a global section of O(m) is equivalent to giving

(s0, . . . , sn), si ∈ hmi S0[h0
hi
, . . . , hnhi ] that are compatible on D+(hi) ∩ D+(hj) = D+(hihj). Namely,

if view the si in the Z-graded ring S′ = S[(h0 · · · hn)−1] then they all give the same element g and

that element is homogenous of degree m.

Now, any homogenous element g of degree m of S′ can be written uniquely as

g = hi00 · · · h
in
n f (h0, . . . , hn),

where f is a homogenous element of S, hi - f for any i , ij ∈ Z and
∑n
j=0 ij + deg(f ) = m. If g ∈ Shi ,

then for all j 6= i we must have ij ≥ 0. In our case, that holds for every i . Thus, all ij ≥ 0. If m < 0

that contradicts
∑n
j=0 ij + deg(f ) = m; if m ≥ 0 then g ∈ Sm. �
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7.5. Morphisms to projective space.

Let k be an algebraically closed field and let X be a quasi-projective variety over k . Let

ϕ : X → Pnk = Proj k [x0, . . . , xn]

be a morphism. This produces for us the following data:

• An invertible sheaf F := ϕ∗O(1).

• Sections s0, s1, . . . , sn in Γ(X,F ) obtained as si = ϕ∗i (xi).

The si have a special property. In general, we say that a sheaf F of OX-modules is generated by

global sections if there is a family {si ∈ Γ(X,F ) : i ∈ I} such that for all P ∈ X a closed point,

the sections {si} viewed in FP generate it as an OX-module. And we say then that F is generated

by {si : i ∈ I}. Suppose that F is a coherent OX-module; using Nakayama’s lemma, we have that

{si} generate F if and only if {si (mod mP )} generate FP /mPFP over k = OX,P /mP .

In our initial example, the sheaf O(1) is generated by {x0, . . . , xn} and, consequently, the sheaf

F is generated by {s0, . . . , sn}.

Conversely, suppose that F is an invertible sheaf on X generated by global sections {s0, . . . , sn}.
Then, there is a unique morphism

ϕ : X → Pnk ,

such that ϕ∗O(1) ∼= F and, under this isomorphism, si = ϕ∗xi .

The idea of the proof is simple. Let Xi = {P ∈ X : si 6∈ mPFP }, which is an open set of X

(check on affine cover trivializing F ). Then

X =

n⋃
i=0

Xi .

Let Ui be the open set of Pnk where xi 6= 0, i.e. D+(xi). then Ui = Spec k [ x0
xi
, . . . , xnxi ]. As Ui is

affine,

Mork(Xi , Ui) = Homk

(
k [
x0

xi
, . . . ,

xn
xi

],Γ(Xi ,O)

)
.

We take the morphism sending

xj
xi
7→
sj
si
.

(Any two sections of an invertible sheaf differ by a function.) Note that on Ui , F is trivialized by

si : under the morphism Xi → Ui we have constructed, O(1)|Ui = k [ x0
xi
, . . . , xnxi ] · xi pulls back to

O(Xi) · si , xi pulls-back to si and sj/si is a regular function on D+(xi).

At this point, it is not clear what properties does the morphism ϕ have. One question one may ask

is when is it a closed immersion? This is answered by the following theorem.
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Theorem 7.5.1. Let X be a projective variety, L an invertible sheaf on X that is generated by the

global sections {s0, . . . , sn}. Let V be the k-vector space spanned by {si} in Γ(X,L ). Assume the

following:

(1) The elements of V separate points. That is, for any ordered pair of points P 6= Q of X,

there is s ∈ V such that sP ∈ mPLP and sQ 6∈ mqLQ.

(2) The elements of V separate tangents. That is, for any point P of X the set {sP : s ∈
V, sP ∈ mPLP } is equal to the vector space mPLP /m

2
PLP .

Then the morphism ϕ : X → Pn corresponding to {s0, . . . , sn} is a closed immersion.

Remark 7.5.2. The converse also holds, but we don’t prove it here. Cf. [H] II 7.3.

Proof. We know already that ϕ : X → Pn is a morphism. As X is proper, ϕ is a closed map. It is

also injective. Indeed, take P 6= Q. Choose s =
∑n
i=0 αisi such that sP ∈ mPLP and sQ 6∈ mqLQ.

Let H be the hyperplane
∑n
i=0 αixi = 0. Then,

ϕ(P ) ∈ H, ϕ(Q) 6∈ H.

In particular, ϕ(P ) 6= ϕ(Q). Thus, ϕ is a bijective bicontinuous morphism. It remains to show that

the morphism OPn → ϕ∗OX is surjective. That can be checked on stalks and so we need to show

that for every P ∈ X, the homomorphism of local rings

ϕ∗ : OPn,ϕ(P ) → OX,P ,

is surjective. This involves some commutative algebra à la Nakayama plus some rather delicate fact.

We would need to use that ϕ∗OX is a coherent OPn-module ([H] II 5.20). This implies that OX,P is

a finitely generated module over OPn,ϕ(P ) and so is mX,P by Noetherianity. We also know that the

two rings have the same residue field, namely k . Furthermore, we have the following

ϕ∗ : mPn,ϕ(P )/m
2
Pn,ϕ(P ) → mX,P /m

2
X,P
∼= mX,PL /m2

X,PL .

The composition is surjective by assumption - it is precisely the vector space spanned by the pull

back of the linear forms in the xi that vanish on ϕ(P ), namely by the elements s of V such that

sP ∈ mX,PL . It follows that also the first arrow is surjective. Next, Nakayama’s lemma implies

that mPn,ϕ(P ) → mX,P is surjective. Given any element of OX,P we can modify it by a scalar so that

it lies in mX,P and so we easily conclude that OPn,ϕ(P ) → OX,P is surjective, which is what was to

be shown. �

Reformulation in terms of linear systems. Recall the concept of a linear system. If D is a divisor

on X then the linear system |D|, called a complete linear system, is the set of effective divisors

linearly equivalent to D. This set is isomorphic to P(V ), where V is the vector space Γ(X,O(D)).

Given a non-zero global section s send it to the divisor (s)+D, an effective divisor linearly equivalent

to D. And vice-versa. A linear system d is a linear subvariety of a complete linear system. A point
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P ∈ X is a base-point of d if it lies on every divisor E ∈ d. Using this concept we can reformulate

Theorem 7.5.1 in a more geometric way:

Let d be the linear system associated to V such as in the theorem. It is a linear system of effective

divisors linearly equivalent to the divisor (s0), which is ϕ−1(H), where H is the hyperplane x0 = 0.

d = {(s) : s ∈ V = Spank{s0, . . . , sn}} = ϕ∗Γ(Pn,O(1)) = ϕ∗(S1).

Then:

• In general, let L be an invertible sheaf on X and V ⊆ Γ(X,L ) a subspace: L is generated

by V ⇐⇒ the linear system d = P(V ) has no base-points.

Assume that this is the case, ϕ : X → Pn a morphism such that L = ϕ∗O(1) and V is

obtained as described above. Then:

• L separates points ⇐⇒ ∀P 6= Q there exists D ∈ d such that P ∈ D,Q 6∈ D.

• L separates tangents ⇐⇒ ∀P ∈ X and t ∈ TP (X) there exists D ∈ d such that P ∈ D
and t 6∈ TP (D).

Regarding the last condition: the inclusion D → X allows us to view TP (D) as mapping to TP (X).

We also note that the last condition also implies that D is non-singular at P .

Example 7.5.3. The complete linear system of hyperplanes of fixed degree d > 0 in Pn has dimension

N :=
(
d+n
n

)
− 1. As it includes dH for any hyperplane H we see that this system has no base points

and it separates points. Using H + (d − 1)H′ for two hyperplanes H and H′ we easily check that it

separates tangents. Thus, this linear system defines a closed immersion Pn → PN . But, of course,

this is just the d-uple embedding.

Example 7.5.4. We leave providing full details as an exercise. Recall the morphism P1 → P2 given

by (x : y) 7→ (x2y : x3 : y3). If X, Y, Z are the coordinates on P2 then the image is the cuspidal curve

C : Y 2Z = X3. Let H be the hyperplane of P2 given by Z = 0. Prove that ϕ∗O(1) = OP1 (3) and

that {ϕ∗X,ϕ∗Y, ϕ∗Z} = {x2y , x3, y3}. Using this, we can check that the linear system d = P(V ),

where V = Span{x2y , x3, y3} (which is not a complete linear system as xy2, for example, is missing),

has no base points (easy) and separates points (easy, but some computation needed).

On the other hand, d does not separate tangents. The criterion in terms of linear systems in

the case of a curve is simply that given a point P there should be a divisor in d that contains

P with multiplicity 1. Consider the point P = (0, 1). The general element of V has the shape

αx2y + βX3 + γy3. To vanish at P one must have γ = 0. Then all sections vanish to order 2 or

higher and so TPD is two dimensional, where D is the closed scheme defined by the homogenous

ideal 〈αx2y + βx3 + γy3〉. It remains to check that the d separates tangents at every other point.

This gives the known conclusion that P1 − P ∼= C − {(0, 0, 1)} and gives another perspective as to

the failure of ϕ to be an isomorphism.
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We finish this section by defining the notion of very ample and ample.

Definition 7.5.5. Let X be a projective variety. An invertible sheaf L on X is very ample if there

is a morphism ϕ : X → Pn such that L ∼= ϕ∗(1). A divisor D is called very ample if OX(D) is very

ample. An invertible sheaf L is ample if for all n � 0, L ⊗n is very ample. A divisor D is called

ample if for all n � 0 nD is very ample. A similar definition applies to line bundles.

A very ample sheaf is ample. This follows from the d-uple embedding.

7.6. Morphisms of a curve to a projective space. In this section we take the theory developed in

the last section and apply it to projective non-singular curves.

Theorem 7.6.1. Let D be a divisor on a non-singular projective curve X over an algebraically closed

field k . Then:

(1) |D| has no base points ⇐⇒ ∀P ∈ X, dim |D − P | = dim |D| − 1.

(2) D is a very ample divisor if and only if for every P,Q ∈ X (including P = Q) we have

dim |D − P −Q| = dim |D| − 2.

Proof. We have an exact sequence that we have used before, for example in the proof of the

Riemann-Roch theorem:

0→ OX(D − P )→ OX(D)→ iP (k)→ 0.

Taking cohomology we find

(8) 0→ Γ(X,O(D − P ))→ Γ(X,O(D))→ k → H1(X,O(D − P )) ∼= H0(X,O(K + P −D)),

and remark that |D| = P(Γ(X,O(D))) via sending a rational function s ∈ Γ(X,O(D)) to the divisor

(s) +D. The exact sequence implies that

dim |D| − dim |D − P | ≤ 1

(and, in fact, if H0(X,O(K + P − D)) = {0} then we have equality - we will return to this point

later on). Furthermore, we have equality dim |D| = dim |D − P | if and only if the map

α : |D − P | → |D|, E 7→ E + P,

is surjective (as it is clearly injective). Incidentally, this map makes sense because D ∼ D′ if and only

if D−P ∼ D′−P . We remark that α is also the map induced from Γ(X,O(D−P ))→ Γ(X,O(D)).

Assume that α is surjective; that is, assume that dim |D| = dim |D − P |. Then, just because

α(E) = E + P it follows that any divisor in |D| contains P and so |D| has a base point P .

Conversely, we see that if P is a base point of |D| then α is surjective and dim |D| = dim |D − P |.
This proves (1).

To show (2) note first:

• D is very ample implies that |D| separates points which implies that |D| has no base points.
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• If D satisfies dim |D − P − Q| = dim |D| − 2 then it must be that for all P , dim |D −
P | = dim |D| − 1, as the dimension cannot drop by more than 1 after each subtraction.

Consequently, using (1), |D| has no base points.

Therefore, what we need to show at this point is that if |D| has no base points then D is very ample,

if and only if for P,Q, dim |D − P −Q| = dim |D| − 2.

Suppose that D is very ample and hence that |D| separates points and tangents. Therefore,

fixing a point P , for all Q 6= P there is D′ ∈ |D| such that P ∈ D′, Q 6∈ D′. That means that

D′−P 6∈ |D−P −Q|+Q. As D′−P ∈ |D−P | it means that dim |D−P −Q| = dim |D−P |−1 =

dim |D| − 2 (as we assume that (1) holds). This works for P 6= Q. Note that the reasoning here

can be reversed and dim |D − P −Q| = dim |D| − 2 for P 6= Q implies that |D| separates points.

Let us then look at the condition that D separates tangents. That means that for every point P

there is D′ ∈ |D| such that P appears with multiplicity 1 in D. Indeed, the condition that TP (D′)

doesn’t contain a given non-zero vector of TP (X) is equivalent, as TP (X) is one dimensional, to

TP (D′) being zero dimensional which is equivalent to P appearing with multiplicity 1 in D′. Now,

∃D′ ∈ |D|,mult(P,D′) = 1⇐⇒ ∃D′′ ∈ |D − P |,mult(P,D′) = 0

⇐⇒ ∃D′′ ∈ |D − P |, D′′ 6∈ |D − 2P |+ P

⇐⇒ dim |D − P | = dim |D − 2P |+ 1

⇐⇒ dim |D| = dim |D − 2P |+ 2

(where the last equivalence is due to the fact that (1) holds). �

Theorem 7.6.1 has a number of interesting and elegant consequences.

Corollary 7.6.2. Let D be a divisor on a non-singular projective curve X.

(1) If deg(D) ≥ 2g then |D| has no base points.

(2) If deg(D) ≥ 2g + 1 then D is very ample.

Proof. To show (1) note that deg(K + P −D) < 0, where K is the canonical divisor. Thus, there

is no function f such that (f ) ≥ −(K + P −D). That is, H0(X,O(K + P −D)) = {0}. As noted

after Equation (8) this implies that dim |D| = dim |D − P |+ 1 for any point P ∈ X and so, by the

theorem, that |D| has no base points.

For (2) we use Riemann-Roch, or more precisely Corollary 6.7.3, to find that dim |D − P | =

dim |D|−1 and dim |D−P−Q| = dim |D|−2. Indeed, by that Corollary we have dim |D| = deg(D)+g

(sic!) and similarly for D−P and D−P −Q, making the equalities above trivial consequences. �

Corollary 7.6.3. Let D be a divisor on a non-singular projective curve X. Then D is ample if and

only if deg(D) > 0.

Proof. Suppose that deg(D) > 0. Then deg(N · D) ≥ 2g + 1 for all N ≥ 2g + 1, and so N · D is

very ample and D is ample.
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Conversely, suppose that D is ample then for all N � 0, N ·D is very ample. Let ϕ : X → Pn be

the closed immersion associated with N ·D. Then O(N ·D) ∼= ϕ∗O(1). But, under the functoriality

of divisors and invertible sheaves, O(N ·D) is isomorphic to O(R), where R is the divisor obtained

by intersecting X with a hyperplane on which X doesn’t lie. In particular, R is an effective divisor

and so deg(D) = N−1 deg(N ·D) = N−1 deg(R) > 0. �

Remark 7.6.4. Thus, degϕ∗O(1) is called the degree of the curve ϕ(X) in Pn. It is the number of

intersection points the curve has with a generic hyperplane in Pn.

Example 7.6.5. Let X be a curve of genus 1 and choose a point t ∈ X. The divisor D = 3[t] has

degree 3 = 2 · 1 + 1 is thus very ample. It defines a closed immersion

X → P2,

whose image is a curve of degree 3. But, in P2, Bezout’s theorem implies that the image is a cubic

in P2. This is more or less exhibiting X by means of a Weierstrass equation. (“More or less” as a

simplification of the cubic by means of change of variables is required first; or one should choose

the sections carefully as we had done when deriving the Weierstrass equation.)

Example 7.6.6. Suppose that X is a curve of genus 2. Then every divisor of degree 5 = 2 · 2 + 1 is

very ample. Thus, if D is a divisor of degree 5 on X, dim |D| = deg(D)− g(X) = 3 and X embeds

in P3 as a curve of degree 5. We remark that X does not embed in P2 as 2 is not an integer of the

form (d − 1)(d − 2)/2.

7.6.1. The canonical morphism of a curve.

Theorem 7.6.7. If X is a non-singular projective curve of genus g ≥ 2. Then the linear system

|K| has no base points and thus defines a morphism ϕ : X → P2g−1. This morphism is called the

canonical morphism. The morphism ϕ is a closed immersion (that is K is very ample) unless X is

hyperelliptic.

Proof. Using Theorem 7.6.1, we need to show that dim |K| = dim |K−P |+ 1 for any point P . We

have, by definition, dim |K| = h0(X,OX(K)) − 1 = g − 1. By Riemann-Roch and Serre’s duality,

dim |K−P | = deg(K−P )−g+h0(X,OX(P )) = (2g−3)−g+h0(X,OX(P )). If there is a function

with a simple pole at P then it defines an isomorphism X → P1 which implies that X has genus 0.

Thus, H0(X,OX(P )) = k and h0(X,OX(P )) = 1 and we conclude that dim |K − P | = g − 2.

Let

ϕ : X → P2g−1,

be the morphism associated to the linear system K.

Now, K is very ample if and only if dim |K| = dim |K − P − Q| + 2 for all P,Q. As noted

dim |K| = g − 1. Furthermore, dim |K − P − Q| = deg(K − P − Q) − g + h0(X,OX(P + Q)) =

g − 4 + h0(X,OX(P +Q)). Thus, |K| is very ample if and only if for any two points P,Q on X we
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have h0(X,OX(P +Q)) = 1. As we have k ⊆ H0(X,OX(P +Q)), |K| fails to be very ample if and

only if for any two points P,Q on X there is a non-constant function f with poles at most P +Q.

If f has a single pole, it defines an isomorphism X → P1, which is not possible. If f has two poles,

then f defines a surjective morphism of degree 2, X → P1 which means that X is hyperelliptic. This

can be taken as the definition of being hyperelliptic, or, argue that k(X) is a quadratic extension

of k(P1) thus of the form k(x)[y ]/(y2 − f (x)), where f is not a square. We may modify f by

squares, and so assume that f is a polynomial with distinct roots, arriving at the other definition of

hyperelliptic. �

Remark 7.6.8. Implicit in the proof is that every curve of genus 2 is hyperelliptic. Indeed, if K is very

ample, the dimension of the linear system |K−P−Q| = g−3, yet must be non-negative. We can also

show it more quickly as follows (we do that just for fun). Let X be a curve of genus 2. Then, there is

a regular global differential on X and its divisor K is thus effective and of degree 2. Thus, K = P+Q

for some points P,Q on X, possibly equal. Consider H0(X,OX(P + Q)). Using Riemann-Roch,

h0(X,OX(P+Q))−h0(X,OX(K−(P+Q))) = 1. But, h0(X,OX(K−(P+Q))) = h0(X,OX) = 1.

That is, h0(X,OX(P +Q)) = 2. As such, there is a non-constant function in H0(X,OX(P +Q)).

If it has a single pole, as above, X ∼= P1. Thus, it must have poles at both P,Q (each simple if

P 6= Q, double pole if P = Q). This provide a double cover X → P1.
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