
EXERCISES FOR ALGEBRAIC GEOMETRY II, WINTER 2015

Solve the following exercises:

(1) Let A→ B be a ring homomorphism. Prove the following.

(a) Let A1 be an A-algebra and define B1 = A1 ⊗A B, which is an A1-algbera and a

B-algebra. Then

ΩB1/A1
= B1 ⊗B ΩB/A.

(b) Let S be a multiplicative set in B then

ΩB[S−1]/A = B[S−1]⊗B ΩB/A.

(2) Let C be a ring. To show that a complex of C-modules,

M1
v // M2

u // M3 ,

is exact, it suffices to show that for every C-module T , the following sequence is exact:

HomC(M1, T ) HomC(M2, T )
v∗oo HomC(M3, T )

u∗oo .

(3) Let C be a ring. A homomorphism of C-modules v : M1 → M2 is injective and its image

a direct summand, if and only if the homorphism v∗ : HomC(M2, T )→ HomC(M1, T ) is

surjective for all C-modules T .

(4) Let k be a ring and A a k-algebra. Then:

(a) ΩA[x ]/k = (ΩA/k ⊗A A[x ]) ⊕ ⊕ni=1A[x ] · dxi (the canonical isomorphism being induced

by Proposition 1.2.1).

(b) Let m = 〈f1, . . . , fm〉 be an ideal of A[x ] and let C = A[x ]/m. Show that

ΩC/k
∼= (ΩA/k ⊗A (A[x ]/m))⊕⊕ni=1(A[x ]/m) · dxi ,

modulo δ(m/m2), where

δ(f ) = (d0f )(x) +

n∑
i=1

∂f

∂xi
dxi ,

and where for f =
∑
I aIx

I , aI ∈ A we let

(d0f )(x) =
∑
I

dA/kaI(mod m) · x I .

(5) Let (A,m) be a local ring. Let M be an A module that is finitely generated. Suppose that

x1, . . . , xn are elements of M that generate the A-module M/mM. Then x1, . . . , xn generate

M.

(6) Do Hartshorne, Chapter I, exercises 5.1.

(7) Do Hartshorne, Chapter I, exercises 5.2.
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(8) Do Hartshorne, Chapter I, exercises 5.3.

(9) Do Hartshorne, Chapter I, exercises 5.5.

(10) Given a non-zero polynomial f ∈ k [x1, . . . , xn] write f as a sum of its homogenous parts

f = fr + · · ·+ fN ,

where fi is the homogenous part of f of weight i and fr 6= 0. Define

f ∗ := fr ,

and define for an ideal I of k [x1, . . . , xn],

I∗ = 〈f ∗ : f ∈ I〉.

Prove that I∗ is a homogeneous ideal. Show by example that if I = 〈f1, . . . , fm〉 then

I ⊇ 〈f ∗1 , . . . , f ∗m〉, but they may not be equal. Show by example that I need not be a radical

ideal.

Show, however, that if I = 〈f 〉 is a principal ideal then I∗ = 〈f ∗〉. Calculate I∗ for the

cuspical and nodal curves.

(11) Let Y be an affine variety over k with coordinate ring k [Y ] = k [x1, . . . , xn]/I. Assume that

0 ∈ Y . Define the tangent cone to Y at 0 as the scheme

CY,0 = Spec(k [x1, . . . , xn]/I∗).

Let us write k [x1, . . . , xn] = ⊕∞a=0k [x1, . . . , xn]a, the sum of the homogenous parts. Prove

that if I = 〈f1, . . . , fm〉 then I∗ ∩ k [x1, . . . , xn]1 = 〈f1,1, . . . , fm,1〉. Deduce that the tangent

space T to the tangent cone at 0 is equal to the tangent space TY,0 of Y at 0 and that

there is a natural closed immersion

CY,0 ↪→ TY,0.

(12) Give an example of a curve Y in A3, passing through 0, such that TY,0 = A3 and whose

tangent cone consists of lines whose linear span is TY,0. In contrast give an example of a

curve Y in A3, passing through 0, such that TY,0 = A3 and the reduced underlying scheme

of CY,0 is a single line.

(13) Let A be a local ring with maximal ideal m. Define the associated graded ring,

gr(A) = ⊕∞a=0m
a/ma+1,

(where, by definition, m0 = A). Let k = A/m prove that gr(A) is a graded k-algebra. Prove

that if x1, . . . , xn generate m/m2 then there is an isomorphism

gr(A) ∼= k [x1, . . . , xn]/I∗,

where I∗ is some homogenous ideal of k [x1, . . . , xn], where the isomorphism is as graded

rings.

Suppose next that Y is an affine variety defined by an ideal I and that 0 ∈ Y . Let

A = OY,0, with maximal ideal mA, where m = (x1, . . . , xn)/I. Prove that

gr(A) ∼= k [x1, . . . , xn]/I∗,
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where I∗ is the ideal generated by the leading homogenous terms of the elements of I.

Conclude,

CY,0 ∼= Spec(gr(A)).

(14) The Cayley cubic is a singular surface given in P3 by the equation 1
x0

+ 1
x1

+ 1
x2

+ 1
x3

= 0,

which we can write in polynomial form by multiplying by x0x1x2x3. Note that there is an

action of S4 on this surface.

Find the singular points of this surface. There are 4 of them. Show that any two singular

points lie on a line lying on the surface. This gives 6 lines. Find the tangent cone at each

singular point. Prove that there are at least 3 more lines on the Cayley cubic. One of them

is given by the equations x0 + x1 = x2 + x3 = 0. In fact, these 9 lines are all the lines

lying on the Cayley cubic, but this requires some work. Find the overall configuration of

intersections between the 9 lines.

The Cayley cubic is the unique singular cubic in P3, up to isomorphism, with 4 ordinary

double points and no other singular points (4 ordinary double points is in fact the maximal

number of ordinary double points possible for a cubic surface).

(15) Do the exercises [H] II.4.5 (a), (b).

(16) This exercise is taken from [AM] Exercises 28 and 32, page 72.

Let Γ be a totally ordered abelian group. A subgroup ∆ of Γ is called isolated in Γ if,

whenever 0 ≤ β ≤ α and α ∈ ∆ then β ∈ ∆. (Perhaps a better name would have been

convex.)

(a) Let A be a valuation ring with fraction field K and value group Γ. Let p be a prime ideal

of A. Show that v(A− p) is the set of non-negative elements of an isolated subgroup

∆ of Γ. Show further that the mapping so defined of Spec(A) into the set of isolated

subgroups of Γ is bijective. (One defines the rank of the valuation as the length n of

a maximal chain of isolated subgroups ∆0 ( · · · $ ∆n. Note that this is therefore just

the Krull dimension of A).

(b) Deduce from this correspondence that the set of prime ideals of A is totally ordered.

(c) If p is a prime ideal, prove that A/p and Ap are valuation rings as well. What are the

value groups for these valuations?

(17) (Example of a valuation ring of rank 2). Consider the abelian group Z2 with the lexicographic

order: (a, b) < (a′, b′) if either a < a′, or a = a′ and b < b′. Show that this is a linearly

ordered abelian group. Find its isolated subgroups.

We now proceed to find a field with a valuation in this group. Let K be the field of formal

power series in two variables and complex coefficients satisfying the following restrictions:

every element of K is a power series
∑
r≥a(x

r
∑
s≥b(r) cr,sy

s), where a is an integer and

b(r) is an integer depending on r .

(a) Show that K is a field.

(b) Given an element of K as above, define its valuation as the minimal (r, s) for which

cr,s 6= 0.

(c) Find the valuation ring and its prime ideals.

(18) Show that the affine curves given by y = x2 and xy = 1 are birational but not isomorphic.
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(19) Show further, that for every irreducible quadratic polynomial f (x, y) ∈ k [x, y ] the conic

section defined by f (x, y) = 0 in A2 is isomorphic to precisely one of the curves above and

give a criterion to determine which. (This is [H] Ex. I 1.1, which is much easier to do once

we have all the theory we have developed!)

(20) Show that the group PGL2(k) := GL2(k)/k∗ acts faithfully as automorphisms of P1
k via the

formula (
a b

c d

)
t :=

at + b

ct + d

(Möbius transformations), where we have identified the function field of P1
k with that of

A1
k = Spec k [t]. Show further that any automorphism of P1

k arises this way. That is

Autk(P1
k) = PGL2(k).

(It is also true that Aut(Pnk) = PGLn+1(k).)

(21) Let P1, . . . , Pa be distinct closed points of A1
k and Q1, . . . , Qb another distinct set of distinct

points of A1
k . Prove that if A1−{P1, . . . , Pa} ∼= A1−{Q1, . . . , Qb} then a = b. Show that

the converse may fail - what is a minimal counter-example?

(22) Consider the projective curve Cd : xd + yd + zd = 0 in P2
k (the Fermat curve). Assume

k has characteristic 0 (to simplify the calculations). Show that the rational map (x : y :

z) 7→ (x : y) defines a dominant morphism Cd −→ P1
k . Calculate the degree of this map.

Determine all points (x : y) in which the closed points of the fibre have cardinality smaller

than the degree and determine precisely the cardinality of the fibre at those points.

The curve C has a large group of automorphisms. Which of those automorphisms com-

mutes with the morphism Cd −→ P1? Is the field extension k(Cd) ⊇ k(P1) Galois?

(23) Assume characteristic zero to simplify. Show that the non-singular curve associated to the

cuspidal curve y2 = x3, as well as to the nodal curve y2 = x2(x + 1), is P1. In both cases

provide a surjective birational morphism from P1 to the closure of the curve in P2, namely

to y2z − x3 = 0 and y2z − x2(x + 1) = 0.

(24) Denote by j the inclusion map j : V → U of an open subset V of a topological space U. We

have the operation j! of extension by zero from sheaves on V to sheaves on U. Namely, if

J is a sheaf on V we define j!J to be the sheaf on U associated to the presheaf with the

values

W 7→

{
0 W 6⊆ V
J (W ) W ⊆ V.

Prove that

(j!J )P =

{
0 P 6∈ V
JP P ∈ V.

and that j!J restricted to V is J .

(25) Assume for simplicity that the base field k is algebraically closed of characteristic zero.

Calculate the zero-th and first cohomology of the projective non-singular plane curve C :

x3 + y3 + z3 = 0 for the sheaves O,ΩC/k , using the affine cover of C induced from the

standard affine cover of P2
k by three copies of A2

k (note that C is in fact covered already

by any two of these three open sets, which simplifies the calculations). We provide some
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hints: (i) The dimension of all these cohomology groups is 1. (ii) Note that choosing an

affine model s3 + t3 + 1 = 0, where s = x/z, t = y/z any differential on C can be written

as f (s, t)ds, with f (s, t) ∈ k(C)×. (iii) Show that the differential ω := t−2ds = −s−2dt

is a holomorphic global differential and calculate its divisor. Namely, for every point P ∈ C,

choose a local uniformizer at P , say wP and express this differential in the local ring as g ·dwP
and find the valuation of g. (iv) Using this, show that any other non-zero holomorphic

differential is a scalar multiple of ω.

(26) Calculate H̆
1

(A2
k − {0},OX) using the cover x 6= 0 and y 6= 0 (that are both affine). Show

that it is not zero. More precisely, show that it is isomorphic
⊕
i ,j>0 k ·

1
x iy j

. Using that this

Cech cohomology actually calculates H1(A2
k−{0},OX), and comparing with Theorem 5.4.5,

conclude again that A2
k − {0} is not affine.

(27) Let f : X → Y be an affine morphism of noetherian separated schemes over k . Let F be

a quasi-coherent sheaf on X. Prove that

Hi(X,F ) ∼= Hi(Y, f∗F ).

(On a separated scheme the intersection of affine subsets is affine. For the notion of affine

morphisms see [H] II, Exercise 5.17. You may freely use it.) Here are two cases where this

exercise applies: (i) The closed immersion of a point of X into X; (ii) Any non-constant

morphism between projective, possibly singular, curves (any finite morphism of schemes is

affine).

The following sets of exercises concerns the blow up of a variety X at a point. It follows

[H] I.4. Many of the properties you are asked to prove can be found there, so I request that

you try and prove them without consulting the proofs of [H]. Although, after you had found

a proof, there is no harm in comparing notes with [H].

(28) The blow-up of An at the point 0. The blow-up of a point on An will be constructed as a

closed subset of An×Pn−1. Closed subsets of this product can be described by polynomials

in 2n-variables, f (x1, . . . , xn; y1, . . . , yn) (note the unusual numbering of the coordinates

yi on Pn−1) that are, in addition, homogenous in the variables yi . That is, expanding in

monomials in the yi ’s with coefficients in k [x1, . . . , xn], all monomials have the same degree.

The blow-up of An at zero is the closed subvariety of An ×Pn−1 defined by the following

equations:

xiyj = xjyi , ∀i , j.
Show that the projection map π : An × Pn−1 → An is a birational morphism, isomorphism

outside {0} ∈ An and E := π−1(0) = {0} × Pn−1 (called the exceptional fibre). Show that

is a natural bijection between lines ` through the origin in An and points on E that has the

following property (denote by Zariski closure): π−1(`− {0})∩E is the point corresponding

to `.

In a similar way we define the blow up of An at any closed point. Write down the equations

and properties for this blow-up. We write the resulting quasi-projective variety Blv (An).

(29) The blow-up of an affine variety V at a point v ∈ V . Now let V ⊆ An be a closed

subset and let v ∈ V be a closed point. For simplicity we assume: (i) V is irreducible and

dim(V ) > 0. (ii) v is the zero point of An. We define the blow-up of V at 0, Bl0(V ) as the

Zariski closure of π−1(V − {v}) in Bl0(An).
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Prove that there is a birational morphism Bl0(V )→ V , that is zero outside EY := E ∩
Bl0(V ) and in particular Bl0(V ) is irreducible. Let I(V ) be the prime ideal defining V . Then

Bl0(V ) is defined by the ideal

{f (x ; y) : f (x ; x) ∈ I(V )}
(Note that this ideal contains the ideal 〈{xiyj − xjyi : 1 ≤ i , j ≤ n}〉.)

(30) The exceptional divisor. Continuing the following exercise, we provide a very insightful

description of the special fibre of the blow-up of Y , EY := Bl0(Y ) ∩ {0} × Pn−1.

Let CY,0 be the tangent cone to Y at 0. Let C be the cone in {0}×An that lies over EY .

Namely, the k-points of C are the zero point and the non-zero vectors (0, . . . , 0; y1, . . . , yn)

such that (0, . . . , 0; y1 : · · · : yn) ∈ EY . Prove that

C ∼= CY,0.

Another way to put it is that EY is the projectivization of the tangent cone to Y at the

point of the blow-up.

[Suggestion: consider the homogenous ideal

J = 〈{f (0, . . . , 0; y1 : · · · : yn) : f (x1, . . . , xn; x1, . . . , xn) ∈ I(Y )}〉.
Show that Z(J) = EY and so the statement to be proven is that

J = I(Y )∗.

I can’t say it’s straightforward, but try! ]

(31) Examples of Blow-up. Show that the blow-up at 0 of the affine curves y2 = x3 and

y2 = x2(x + 1) are non-singular curves and determine their special fibres.

(32) Another example of Blow-up. Show that the blow-up of the cone {x2 + y2 = z2} ⊆ A3

is a non-singular surface and determine the special fibre.

(33) The blow-up of Pn at a point p ∈ Pn. There is a projective version of blow-up. Consider

Pn × Pn−1 with coordinates x0, . . . , xn on Pn and y1, . . . , yn on Pn−1. Closed subvarieties

of this product are described as the zero set of polynomials f (x0, x1, . . . , xn; y1, . . . , yn),

homogenous in each set of variables separately (so, for example, x3
0 y3 + x2

1 x2y1, but not

x2
0 y

2
3 + x2

1 x2y1). Consider the closed subset X = BlP (Pn) of Pn × Pn−1 defined by the

equations

xiyj = xjyi , i , j = 1, . . . , n.

Prove the following. Let P = (1 : 0 : · · · : 0) ∈ Pn. The projection morphism π : X → Pn
is an isomorphism outside π−1(P ). Let E = π−1(P ) then E ∼= Pn−1 and there is a natural

bijection between points of E and lines ` of Pn passing through P . If ` is such a line and

p` the corresponding point then the closure of π−1(`− {P}) in X intersects E at a unique

point, which is p`. In addition X is irreducible.

(34) The blow-up of a projective variety Z at a point z ∈ Z. Let Z be a closed irreducible

subvariety of Pn passing through P and of positive dimension. (Once more, the more general

case is handled by change of coordinates). Define the blow up of Z at P , BlP (Z) as the

Zariski closure of π−1(Z−{P}) in X = BlP (Pn). Show that π : BlP (Z)→ Z is a birational

morphism that is an isomorphism outside EZ = BlP (Z)∩ ({P}×Pn−1). Show that BlP (Z)

is irreducible.
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(35) Reconciling two approaches to blow-up. Let Z be as in the previous exercise. Consider

the standard affine chart around P in which P corresponds to the zero point in An =

Spec k [ x1
x0
, . . . , xnx0

]. Show that, under the natural identifications, BlP (Z) ∩ (An × Pn−1) =

Bl0(Z ∩ An).

(36) An example of Blow-up (projective version). Let Z be the projective closure in P3 (with

coordinates x0, . . . , x3) of the affine cone C : x2
1 +x2

2 = x2
3 in A3. Find T = Z−C. Calculate

the blow-up BlP (Z) of Z at the point P . For every line ` in P3 passing through P , calculate

the intersection of ` with the exceptional fibre EZ = BlP (Z)∩{P}×P2 of the blow-up and

with T . Draw a picture of BlP (Z) and how it relates to Z.

(37) Consider the linear system of cubics passing through a given set {P1, . . . , P6} of six district

points of P2, no three of which are co-linear. Prove that this linear system is 3-dimensional

(which means that the space of such cubics itself is 4-dimensional). Let {f0, . . . , f3} be a

basis for that system and consider the map

x 7→ (f0(x) : · · · : f3(x)).

Show that it gives an injective morphism U := P2 − {P1, . . . , P6} → P3. This is the first

step in showing that the blowup of P2 at 6 points is a cubic surface in P3.

(38) The Clebsch cubic discussed in class is isomorphic to the following surface in P4 (that has

an obvious faithful S5 action):

x0 + x1 + x2 + x3 + x4 = 0,

x3
0 + x3

1 + x3
2 + x3

3 + x3
4 = 0.

One line on this surface is given by x0 = 0, x1 + x2 = 0. Letting the symmetry group

S5 act, how many lines of this form do we get? For each pair of distinct lines what is

their intersection number? Assume the following fact: if D is a divisor on a non-singular

projective surface S and F is a principal divisor on S then D.F = 0. This implies that for

every non-zero function f and any two divisors D1, D2 on S, D1.D2 = D1.(D2 + (f )). Use

this to calculate the self-intersection of the lines you found above.

Now go back to the model of P2 blown-up at 6 points. What do you think are the lines

above? Can you explain in this model the results about the intersection numbers you found

above? (I am asking for a heuristic explanation only).

[Example: Let H be a line on P2, which is a divisor. Then H is given by a linear form ` = 0.

Choose another linear form m = 0, not proportional to `. Then m/` is a function on P2 with

divisor H1 −H, where H1 is the zeros of m. Then, H.H = H.(H + (H1 −H)) = H.H1 = 1,

as two distinct lines intersects at exactly one point.]

(39) Let X be a non-singular projective curve over an algebraically closed field k , and {P1, . . . , Pn}
distinct (closed) points of X, n ≥ 1. Prove that X − {P1, . . . , Pn} is an affine curve.

(40) Let E be a non-singular curve of genus 1 over an algebraically closed field k . Fix a point P0

on C (By a “point” we mean a closed point). Let P,Q be two points on E, not necessarily

distinct. Prove that there is a unique point R on E such that [P ] + [Q] − [R] − [P0] is a
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principal divisor. Define a map

E(k)× E(k)→ E(k), (P,Q) 7→ R,

where P,Q and R are related as above. Prove that this addition law makes E(k) into an

abelian group whose identity element is P0. It is less easy to show that in fact there is a

morphism E×E → E making E into a group scheme such that the induced map on k-points

is the one discussed above, but that is a fact.

There is another way to provide E(k) with a group structure. Fix again a point P0 and

prove that the map

E(k)→ Pic0(E) = Div0(E)/Prin(E), P 7→ [P ]− [P0],

is a bijective map. Thus, we can transport the group structure on Pic0(E) to E. Show that

this is the same group structure as defined above.

(41) The curve x3 + y3 = z3 in P2 has genus 1 (assume that the characteristic of the field is not

3). Thus, it has a Weierstrass model. Following the proof given in class, working with the

point (1 : 0 : 1), produce this Weierstrass model.

(42) Let {P1, . . . , P6} be 6 distinct points of A1. Consider the field extensions k(x)[y1]/(y2
1 −

(x − P1)(x − P2)(x − P3)(x − P4)) and k(x)[y2]/(y2
2 − (x − P3)(x − P4)(x − P5)(x − P6)).

Prove that each such field extension corresponds to an elliptic curve Ei and the inclusion

of fields to maps of degree 2, Ei → P1. Show that the fibre product E1 ×P1 E2 is a curve

C as well; find its function field as an extension of k(t) and prove that k(C) is a Galois

extension of k(t) with Galois group Z/2Z × Z/2Z. (The situation should remind you of

the compositum of the extensions Q(
√

10) and Q(
√

15), say.) Conclude that there is a

“hidden” third curve E3 between C and P1. Find its function field and its genus. Find the

ramification points and the degree for the morphisms C → Ei .

(43) Let f : C1 → C2 be a surjective morphism from a curve of genus 8 to a curve of genus

4. Prove that f is ramified at exactly two points of C1 and that those points have distinct

images in C2.

(44) Continuing the previous question and assume that the characteristic of the field is not 2, to

simplify. Given C2 of genus 4 and two points on C2, can you prove that there is a double

cover of C2 ramified precisely at the given points?? I suspect this question is too hard with

the technology we currently have, but I’d be interested to see how far you can get with this

question.

(45) We prove here Hurwitz’s theorem. Let X be a smooth projective curve over an algebraically

closed field k and let Γ be its group of automorphism. We are going to assume that Γ is

finite; this is always true if g(X) ≥ 2 and can be proven independently. We want to prove

that if g(X) ≥ 2 then

]Γ ≤ 84(g(X)− 1).

(a) Consider the fixed field of k(X) under Γ; it corresponds to a smooth projective curve Y

and k(Y ) = k(X)Γ. The inclusion k(Y ) ↪→ k(X) therefore corresponds to a morphism

f : X → Y . Apply Hurwitz genus formula to conclude that

2g(X)− 2

deg(f )
= 2g(Y )− 2 +

1

deg(f )

∑
P

(eP − 1).
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Use the fact that the cover X → Y is Galois to conclude that if f (P ) = f (P ′) then

eP = eP ′ . Use that to simplify the formula above to a formula of the form

2g(X)− 2

deg(f )
= 2g(Y )− 2 +

∑
i

(1− 1/ri),

where the ri are integers greater than 2.

(b) The problem now is number-theoretic. We have on the one hand 2g(y)−2+
∑s
i=1(1−

1/ri) > 0 and we seek the minimum of this quantity, where s ≥ 0 and ri ≥ 2. Prove

that the minimum value is 1/42.

(c) Combine the estimates to deduce Hurwitz’s theorem.

(46) Let A be a ring and S a graded ring such that S0 = A. Prove that there is a morphism

Proj(S)→ Spec(A). Take now S = A[x0, . . . , xn] and show that the fibre over p ∈ Spec(A)

is Proj(Frac(A/p)[x0, . . . , xn]).

(47) Consider a curve E of genus 1 and its projective embedding into P2 we have constructed as

an application of the Riemann-Roch theorem. Use the theory we have developed since to

show that the morphism E → P2 constructed using OE(3[t]) is a closed immersion.

(48) Prove the geometric characterization of generation by global section, separating points and

separating tangents, stated in the language of linear systems in the notes (page 88, just

before Example 7.5.3).

(49) Provide the missing details in Example 7.5.4. in the notes.


