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EXERCISES FOR THE COURSE IN ALGEBRAIC GEOMETRY, FALL 2014

EYAL GOREN

(1) Define functors Gi : Set→ Top, by G1(X) = (X, 2X) (every set is open) and G2(X) =

(X,Ttr ), where Ttr is the trivial topology consisting only of X and the empty set ∅. In both

cases, Gi(f ) = f for a function f : X → Y . Let F : Top→ Set be the forgetful functor.

Prove that Gi are functors and that there are natural bijections

HomSet(F (X,T ), S) = HomTop(X,G2(S)),

and

HomSet(S, F (X,T )) = HomTop(G1(S), X).

(In first case we say (F,G2) are an adjoint pair and in the second case we say that (G1, F )

are an adjoint pair.)

(2) An object A in a category C is called initial (resp. final) if for every object B in C,

HomC(A,B) (resp. HomC(B,A)) is a singleton. Prove that an initial (resp. final) object, if

it exists, is unique up to unique isomorphism. Determine if such objects exist in the following

categories: Set, Top, VSk, Ring (the categories of sets, topological spaces, vector spaces

over a fixed field k and rings).

(3) Let C be a category with objects X1, X2, Z and morphisms f : X1 → Z, g : X2 → Z. Prove

that if X1 ×Z X2 exists it is unique up unique isomorphism (the product is taken relative to

f , g). Show that X1 ×Z X2 always exists in Set, Top, VSk, Ring.

(4) Define X1 ×X2 using the diagram

X1 ×X2
g //

f
��

X2

X1

Show that if C has a final object Z then X1 × X2 = X1 ×Z X2, where equal means that

there is a unique isomorphism between the two.

(5) Let C be a category in which finite products exist and there is a final object Z. First establish

that if there are morphisms f , g : Y → G then there is a canonical morphism (f , g) : Y → G×
G such that composing with the projections G × G → G we get back f and g. Similarly,

if fi : Ai → Bi are morphisms, there is a canonical morphism f1 × f2 : A1 × A2 → B1 × B2
(how would you charaterise it?). You’d want to establish some expected formulas, such as

(f1 × f2) ◦ (f , g) = (f1 ◦ f , f2 ◦ g), (f1 × f2) ◦ (h1 × h2) = (f1 ◦ h1)× (f2 ◦ h2). Further, you

would need to show that there is a canonical isomorphism G × (G × G) = (G × G)× G.

A group object in C is an object G with given morphisms

m : G × G → G, e : Z → G, ι : G → G,
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such that the following diagrams commute:

G × G × G
1G×m //

m×1G
��

G × G

m
��

G × G m // G,

G

��

1G×ι// G × G
m
��

Z
e // G

(and similarly with ι× 1G),

Z × G

%%KK
KK

KK
KK

KK
e×1G // G × G

m
��
G

(and similarly with 1G × e).

Given a group object G prove that its functor of points FG is a functor C→ Group.

Namely, for every Y an object of C, FG(Y ) = HomC(Y, G) is a group, and any morphism

Y1 → Y2 induces a group homomorphism FG(Y2)→ FG(Y1).

Conversely, using Yoneda’s lemma, prove that if G is an object of C such that FG is a

functor C→ Group then G is a group object of C.

Finally, show that a group object of Set is just a group and a group object of Group is

an abelian group.

(6) Let R be a commutative ring and S a multiplicative set in R. Let ` : R→ R[S−1] be the

ring homomorphism from R to its localization at S. Give an example where ` is not injective.

When is ` the zero map? When is ` surjective?

Consider the category whose objects are ring homomorphisms f : R→ B such that f (s)

is an invertible element of B for every s ∈ S. A morphism h in this category is a commutative

diagram

R
f1 //

f2

  A
AA

AA
AA

A B1

h
��

B2.

Prove that ` : R→ R[S−1] is an initial object in this category.

(7) Prove that I 7→ Ie = I[S−1] and J 7→ Jc = `−1(J) provide a bijection

{prime ideals of R disjoint from S} ←→
{

prime ideals of R[S−1]
}
.

(8) Let R be a commutative ring; L,M,N left R-modules. Prove that there are canonical

isomorphisms:

• R ⊗R M ∼= M;

• M ⊗R N ∼= N ⊗R M;

• L⊗R (M ⊗R N) ∼= (L⊗R M)⊗R N;

• L⊗R (M ⊕ N) ∼= L⊗R M ⊕ L⊗R N.

(9) Prove the following isomorphism of tensor products (the isomorphisms are as rings)

• R/I ⊗R R/J ∼= R/(I + J). So, for example, Z/m · Z⊗Z Z/n · Z ∼= Z/ gcd(m, n) · Z.

• R[x1, . . . , xn]⊗R R[y1, . . . , ym] ∼= R[x1, . . . , xn, y1, . . . , ym].
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• R[x1, . . . , xn]/I ⊗R R[y1, . . . , ym]/J ∼= R[x1, . . . , xn, y1, . . . , ym]/〈I, J〉. (On the right

hand side we take the ideal generated by I and J).

(10) Let ϕ : F1 → F2 be a homomorphism of sheaves of abelian groups on a topological space

X. Prove that U 7→ Ker(ϕ(U)) is a sheaf. Prove that U 7→ Im(ϕ(U)) is a pre-sheaf. Give

an example where it is not a sheaf.

(11) Let f : X → Y be a continuous map of topological spaces. Recall that we have defined f∗ as

a functor from the category of abelian sheaves on X to the category of abelian sheaves on Y

and f −1 as a functor from the category of abelian sheaves on Y to the category of abelian

sheaves on X. Show that there are natural morphisms f −1f∗F → F and G → f∗f
−1G .

Use this to show that (f −1, f∗) are an adjoint pair, namely,

HomX(f −1G ,F ) = HomY (G , f∗F ).

(12) Prove that Mumford’s classification of the ideals of Spec Z[x ] (pp. 74-75) is correct.

(13) Prove Mumford’s comment on page 68 regarding the quasi-compactness of (SpecR)f and

that if R is not noetherian it may happen that an open subset of Spec R is not quasi-

compact.

(14) Prove that the following are equivalent

(a) Spec R is disconnected.

(b) There are elements e1, e2 in R such that 1 = e1 + e2 and e21 = e1, e
2
2 = e2, e1e2 = 0.

Such elements are called orthogonal idempotents.

(c) R ∼= R1 × R2, a product of two commutative rings.

(15) (This exercises is about Spec Z[x ] and is taken from Mumford, page 75.) What is V ((p))∩
V ((f )), f a Q-irreducible polynomial? What is V ((f )) ∩ V ((g)), f , g, distinct Q-irreducible

polynomials?

(16) (Exercise 2.2 from Hartshorne) Let (X,OX) be a scheme and let U ⊆ X be an open subset.

Prove that (U,OX |U) is a scheme.

(17) (Exercise 2.3 from Hartshorne) Reduced schemes. A scheme (X,OX) is called reduced if

for every open set U ⊆ X, the ring OX(U) has no nilpotent elements.

(a) Show that (X,OX) is reduced if and only if for every x ∈ X the local ring OX,x has no

nilpotent elements.

(b) Let (X,OX) be a scheme and define (OX)red as the sheaf associated to the pre-sheaf

U 7→ (OX(U))red , where for a commutative ring A we denote by Ared the quotient of

A by its ideal of nilpotent elements. Show that (X, (OX)red) is a scheme, called the

reduced scheme associated to X. Show that there is a natural morphism

(X, (OX)red)→ (X,OX),

that is a homeomorphism on the level of topological spaces.

(c) Let f : X → Y be a morphism of schemes and assume that X is reduced. Prove that

f factors uniquely through (Y, (OY )red).

(18) (Exercise 2.18 from Hartshorne)

(a) Let A be a ring and X = Spec(A). Let f ∈ A. Prove that Xf is empty if and only if f

is nilpotent.

(b) Let ϕ : A→ B be a homomorphism of rings and (f , f ∗) : Y → X the induced morphism

of schemes, where X = Spec(A), Y = Spec(B). Prove that ϕ is injective if and only if

the map of sheaves f ∗ is injective (meaning, the sheaf Ker(f ∗) is the zero sheaf). In

that case, show further that f is dominant, meaning, f (Y ) is dense in X.

(c) Show that if ϕ is surjective then f provides a homemorphism of Y onto a closed set

of X and the map f ∗ is surjective, meaning, the sheaf Im(f ∗) is equal to f∗OY . (You

may wish to reduce this statement to proving surjectivity on the level of stalks.)
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(d) Prove the converse to (c). That is, for f : Y → X as above, such that f ∗ : OX → f∗OY
is surjective, it follows that ϕ is surjective.

(19) Let k be a field. Prove that U = A2k − [(x, y)] - the plane minus the origin - is not an affine

scheme.

(20) Let A = A1k , where k is a field. Let B = Spec(k [x, y ]/(y2 − x3)) − [(x, y)] - the cuspidal

curve minus the cusp. Find the k-morphisms from A to B; show that there are“plenty”

of morphisms from B to A. Is there an injective morphism from B to A? Is B isomorphic

to an open subscheme of A? (Hint: consider the intersection of the line y = αx with the

cuspidal curve and with the vertical line x = −1). Is there a surjective morphism from B to

A?

(21) Let k be a field and S a scheme. Show that to give a morphism Spec(k)→ S is to give a

point P of S and an inclusion k(P )→ k .

(22) Let X1, X2 be two copies of the affine line over a field k . Let Ui ⊂ Xi be the open

subschemes that are the complements of the closed point [(x)] (in the “naive” picture,

we delete the origin of each affine line). Glue X1 to X2 by identifying U1 with U2 via the

identity map. Prove that the union - “the affine line with the doubled origin” - is not an

affine scheme.

(23) Give an example of a field k0 with an algebraic closure k , and a scheme X0 over Spec(k0),

such that the morphism X = X0 ×k0 k → X0 has infinite fibres.

(24) Frobenius. Let X be a scheme in characteristic p; namely, X is a scheme over Fp, or,

equivalently, OX is a sheaf of Fp algebras. Define a morphism Fabs : X → X as being the

identity on the level topological spaces and being the ring homomorphism a 7→ ap for any

open U and a ∈ Γ(U,OX).

(a) Prove that indeed Fabs is a morphism of schemes.

(b) Show, by example, that Fabs need not be an isomorphism. (In fact, it very rarely is).

(c) Assume now that X is a scheme over a field k of characteristic p. To emphasize we

write s : X → Spec(k). Consider the cartesian diagram:

X(p) //

��

X

s

��
Spec(k)

Fabs // Spec(k)

Note that Fabs on the bottom is nothing else then the morphism induced by the ring

homomorphism a 7→ ap of k . Here X(p) is, by definition, the fibre product over

Spec(k) of X and Spec(k) relative to the indicated morphisms. Note that the morphism

X(p) → X is not a morphism of schemes over k . Now consider the following diagram:

X
Fabs

**UUU
UUUU

UUUU
UUUU

UUUU
UUUU

s

��4
44

44
44

44
44

44
44

4

##
X(p) //

��

X

s

��
Spec(k)

Fabs // Spec(k)

Prove that the outer solid arrows commute and so induce a unique morphism (the

dotted arrow) X → X(p) that we shall denote FX . This is the Frobenius morphism of

X. Prove that it is a morphism of schemes over k .
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(d) Now consider the case where X = Spec k [x1, . . . , xn]/({fj}). Given a polynomial f =∑
aIx

I ∈ k [x1, . . . , xn] let f σ =
∑
apI x

I . Prove that X(p) = Spec k [x1, . . . , xn]/({f σj })
and determine all the morphisms appearing in the diagrams above explicitly. Finally,

assuming that k is algebraically closed and thinking of the closed points of X as vectors

{α = (α1, . . . , αn) ∈ kn : fj(α) = 0,∀j}, prove that Fx((α1, . . . , αn)) = (αp1, . . . , α
p
n).

(25) Let Q̄ denote an algebraic closure of Q. What are the closed points of Spec(Q[x, y ]) and

how are they related to the closed points of Spec(Q̄[x, y ])?

(26) Let f : X → Y be a morphism of schemes and Z → Y a closed immersion. Prove that in

the cartesian diagram below j is a closed immersion:

XZ
j //

��

X

f
��

Z // Y.

(27) We consider group schemes over the base S = Spec(R0).

(a) Let H and G be a affine group schemes over S. Let f : G → H be a homomorphism

of group schemes. Write the condition for that in terms of rings. Give then a formula

for Ker(f ).

(b) Show that f : Gm → Gm, given on points by r 7→ rN , is a homomorphism of group

schemes with kernel µN .

(c) Assume that p = 0 in R0 is a prime number. Show that f : Ga → Ga, given on points by

r 7→ rp, is a homomorphism of group schemes and that in fact we have a commutative

diagram

Ga
f //

F

!!D
DD

DD
DD

Ga
=
��

G(p)a ,

where F is the Frobenius morphism. Show that the kernel is αp.

(28) Let k be a field of characteristic p. Construct a non-commutative group scheme G of order

p2 over Spec(k), with a closed immersion G → GL2/k , using the following hint:(
µp αp
0 1

)
.

(29) Let A be a commutative ring and M an A-module. Prove the following:

(a) If M is free then M is flat.

(b) Prove that if M is a flat A-module then for every A-algebra A′, M ⊗A A′ is a flat

A′-module.

(c) Suppose that M is flat over A and A is a flat A0-algebra. Prove that M is flat over A0.

(d) Let S ⊂ A be a multiplicative set. Prove that A[S−1] is flat over A.

(e) Prove that M is flat over A if and only if for all prime ideals p of A, Mp is a flat

Ap-module.

(30) Let I be a directed set (that is, I is a partially ordered set such that for all i , j ∈ I there is

a k ∈ I with i ≤ k, j ≤ k). Let {Mi , i ∈ I} be flat A modules. Prove that lim
→
Mi is a flat

A-module.

(31) Let A be a domain and M an A-module. Prove that if M is flat over A then M is torsion

free. Prove that if A is a PID then every torsion free A-module is flat.

(32) Let M be an A-module with the following property (P):
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(P) for all m1, . . . , mn in M and a1, . . . , an in A such that∑
i aimi = 0, there are elements m′1, . . . , m

′
k of M and bi j ∈ A

such that

mi =
∑k
j=1 bi jm

′
j , i = 1, . . . , n,

and such that for all j ,
∑n
i=1 aibi j = 0.

Prove that M is flat if and only if it has property (P). (Suggestion: think of the vector

(a1, . . . , an) as defining a map of A modules An → A.)

(33) Let k be a field. Consider the morphism A2k → A2k corresponding to the ring homomorphism

ϕ : k [x, y ]→ k [x, y ] determined by ϕ(x) = x, ϕ(y) = xy . Determine the maximal open set

over which this morphism is flat.

(34) Let C be a category and F : C→ Sets a representable contravariant functor. Say F is

represented by X. Thus, we have an isomorphism hX ∼= F . The identity morphism X → X

corresponds then to an element tuniv ∈ F (X). Such an element is called a universal element.

(It depends on the choice of isomorphism hX ∼= F ). Prove that it has the following property.

For every t ∈ F (S), there is a unique morphism ft : S → X such that F (ft) : F (X)→ F (S)

takes tuniv to t. (Hint: don’t look far - this is essentially a tautology.)

(a) Prove that the functor F : Top→ Sets associating to a topological space its set of

open subsets is representable and find a universal object. Prove that the restriction of

this functor to the subcategory of Hausdorff spaces is not representable. (The idea of

a universal object could be useful at this point. If it is representable, there should be a

Hausdorff space X and an open subset tuniv of F (X) such that...)

(b) Let A be a commutative ring with 1, S = Spec(A). Consider the functor F on

schemes over S such that F (T ) = Γ(T,OT ); namely, the functor that associates to

an S-scheme its global regular functions. Check that this is indeed a functor and show

that it is representable by A1A = Spec(A[x ]).

(35) (The definition of a Hilbert scheme) Let S be a scheme. By a family of subschemes of Pn
parameterized by S we understand a closed subscheme Y ⊆ PnS = PnZ × S such that the

morphism Y → S is flat. Show that the

HilbPn : Schemes→ Sets, HilbPn(S) = {Y ⊆ PnS : Y flat over S},

associating to a scheme S the families of subschemes of Pn parameterized by S is indeed a

functor.

One of Grothendieck’s main theorems is that this functor, restricted to the category of

locally noetherian schemes, is representable. That is, there is a locally noetherian scheme

HilbPn and a family Y univ ⊆ PnHilbPn = PnZ × HilbPn such that for every flat family Y ⊆ PnS
there is a unique morphism f : S → HilbPn satisfying f ∗(Y univ ) = Y .

Explain how this implies the following variant. Let k be a field. For a scheme S over k

consider the functor parameterizing closed subschemes of PnS that are flat over S. Then

this functor is representable by HilbPn × Spec(k).

Now take k = C and show that the C-scheme HilbP1 ×Spec(C) is “huge” for example in

the following sense. For every n construct a morphism (AnC − Z)→ HilbP1 × Spec(C) that

is injective on closed points, where Z is the closed subscheme of AnC where 2 coordinates

are equal.

(36) Prove or disprove: Let X → S be a morphism of schemes then X ×S X → X is a flat

morphism.

(37) Let k be a field. Prove that the line over k with the double origin is not a separated scheme

by showing that the valuative criterion for separatedness fails.
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(38) Let k be a field. Prove that the morphism A1k → Spec(k) is not proper by showing that the

valuative criterion for properness fails. Prove, as well, that the morphism A2k → A1k is not

proper.

(39) Let A be a ring. Prove that the morphism P1A → Spec(A) is proper using the valuative

criterion for properness.


