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EXERCISES FOR THE COURSE IN ALGEBRAIC GEOMETRY, FALL 2014

EYAL GOREN

(1) Define functors G; : Set — Top, by G1(X) = (X,2%X) (every set is open) and Go(X) =

(2)

(4)

(5)

(X, T¢), where F;, is the trivial topology consisting only of X and the empty set (. In both
cases, Gj(f) = f for a function f : X — Y. Let F : Top — Set be the forgetful functor.
Prove that G; are functors and that there are natural bijections

Homset (F(X, 7)., S) = Homop (X, G2(S5)),

and
Homset(S, F(X, 7)) = HomTop(G1(S), X).

(In first case we say (F, Go) are an adjoint pair and in the second case we say that (Gi, F)
are an adjoint pair.)

An object A in a category C is called initial (resp. final) if for every object B in C,
Homc (A, B) (resp. Hom¢(B, A)) is a singleton. Prove that an initial (resp. final) object, if
it exists, is unique up to unique isomorphism. Determine if such objects exist in the following
categories: Set, Top, VS, Ring (the categories of sets, topological spaces, vector spaces
over a fixed field k and rings).

Let C be a category with objects X7, X5, Z and morphisms f : X; — Z, g : Xo — Z. Prove
that if X7 Xz X, exists it is unique up unique isomorphism (the product is taken relative to
f,g). Show that X; xz X, always exists in Set, Top, VS, Ring.

Define X1 x X5 using the diagram

X1><X2L>X2

|s

X1

Show that if C has a final object Z then X; x X5 = X7 Xz X5, where equal means that
there is a unique isomorphism between the two.

Let C be a category in which finite products exist and there is a final object Z. First establish
that if there are morphisms f, g : Y — G then there is a canonical morphism (f, g) : Y — G x
G such that composing with the projections G x G — G we get back f and g. Similarly,
if £, : A; = B, are morphisms, there is a canonical morphism f; X 5 : A1 X Ao — B1 x B>
(how would you charaterise it?). You'd want to establish some expected formulas, such as
(i x h)o(f,g)=(fof frog) (fi X H)o(h xhy)=(fiohi)x (f20h). Further, you
would need to show that there is a canonical isomorphism G x (G x G) = (G x G) X G.

A group object in C is an object G with given morphisms

m:GxG—G, e Z—>G, :G—=QG,
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such that the following diagrams commute:

GxGxGlﬂGxG

| et |

GxG—"" s,

|

1gXtL
%G

G

|»

e

(and similarly with ¢ x 15),

exlg

ZxG——=GxG

U

G

(and similarly with 15 x e).

Given a group object G prove that its functor of points Fg is a functor C — Group.
Namely, for every Y an object of C, F5(Y) = Homc(Y, G) is a group, and any morphism
Y1 — Y2 induces a group homomorphism Fg(Y2) — Fg(Y1).

Conversely, using Yoneda's lemma, prove that if G is an object of C such that Fs is a
functor C — Group then G is a group object of C.

Finally, show that a group object of Set is just a group and a group object of Group is
an abelian group.

(6) Let R be a commutative ring and S a multiplicative set in R. Let £ : R — R[S™!] be the
ring homomorphism from R to its localization at S. Give an example where £ is not injective.
When is £ the zero map? When is £ surjective?

Consider the category whose objects are ring homomorphisms f : R — B such that f(s)
is an invertible element of B for every s € S. A morphism h in this category is a commutative
diagram

R, B,

N

Prove that £: R — R[S™!] is an initial object in this category.
(7) Prove that [+ /¢ =/[S™!] and J + J° = £~1(J) provide a bijection

{prime ideals of R disjoint from S}  «— {prime ideals of R[S™']}.

(8) Let R be a commutative ring; L, M, N left R-modules. Prove that there are canonical
isomorphisms:
e RRr M =M,
o M QR N=EN QR M:
o [ dr (M®r N) = (L®r M)®g N,
o [ r(MON)=ZLRr M® LR N.
(9) Prove the following isomorphism of tensor products (the isomorphisms are as rings)
e R/I®r R/J=ZR/(I+J). So, for example, Z/m - Z Q@7 Z/n -7 = 7/ gcd(m, n) - Z.
* R[xi,..., Xn] ®@r Rly1, ..., Yml € Rlx1, ..., Xny Y1, -0 Y]
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o R[x1,..., xpl/l ®r R, .., yml/J = Rlxq, ..., Xno Y1y ey yml/{l, J). (On the right
hand side we take the ideal generated by / and J).

(10) Let @ : .77 — %5 be a homomorphism of sheaves of abelian groups on a topological space
X. Prove that U — Ker(p(U)) is a sheaf. Prove that U — Im(p(U)) is a pre-sheaf. Give
an example where it is not a sheaf.

(11) Let f : X — Y be a continuous map of topological spaces. Recall that we have defined f, as
a functor from the category of abelian sheaves on X to the category of abelian sheaves on Y
and £~ as a functor from the category of abelian sheaves on Y to the category of abelian
sheaves on X. Show that there are natural morphisms f~'f.% — .% and ¥ — f.f 19.
Use this to show that (f~1, f,) are an adjoint pair, namely,

Homx(f~1¢,.%) = Homy (¥, f.%).

(12) Prove that Mumford's classification of the ideals of Spec Z[x] (pp. 74-75) is correct.

(13) Prove Mumford’s comment on page 68 regarding the quasi-compactness of (SpecR)f and
that if R is not noetherian it may happen that an open subset of Spec R is not quasi-
compact.

(14) Prove that the following are equivalent
(a) Spec R is disconnected.

(b) There are elements e;, & in R such that 1 = e; + e and €2 = ey, €3 = e, e16, = 0.
Such elements are called orthogonal idempotents.
(c) R= Ry X Ry, a product of two commutative rings.

(15) (This exercises is about Spec Z[x] and is taken from Mumford, page 75.) What is V((p)) N
V((f)), f a Q-irreducible polynomial? What is V((f)) "V ((g)), f, g, distinct Q-irreducible
polynomials?

(16) (Exercise 2.2 from Hartshorne) Let (X, Ox) be a scheme and let U C X be an open subset.
Prove that (U, Ox|y) is a scheme.

(17) (Exercise 2.3 from Hartshorne) Reduced schemes. A scheme (X, Ox) is called reduced if
for every open set U C X, the ring Ox(U) has no nilpotent elements.

(a) Show that (X, Ox) is reduced if and only if for every x € X the local ring Ox x has no
nilpotent elements.

(b) Let (X, Ox) be a scheme and define (Ox),eq as the sheaf associated to the pre-sheaf
U (Ox(U))red, where for a commutative ring A we denote by A,eq the quotient of
A by its ideal of nilpotent elements. Show that (X, (Ox)req) is a scheme, called the
reduced scheme associated to X. Show that there is a natural morphism

(X, (Ox)rea) = (X, Ox),

that is a homeomorphism on the level of topological spaces.

(c) Let f: X — Y be a morphism of schemes and assume that X is reduced. Prove that

f factors uniquely through (Y, (Oy)red).
(18) (Exercise 2.18 from Hartshorne)

(a) Let Abearing and X = Spec(A). Let f € A. Prove that X¢ is empty if and only if f
is nilpotent.

(b) Let ¢ : A— B be a homomorphism of rings and (f, f*) : Y — X the induced morphism
of schemes, where X = Spec(A),Y = Spec(B). Prove that @ is injective if and only if
the map of sheaves * is injective (meaning, the sheaf Ker(f*) is the zero sheaf). In
that case, show further that f is dominant, meaning, f(Y) is dense in X.

(c) Show that if ¢ is surjective then f provides a homemorphism of Y onto a closed set
of X and the map f* is surjective, meaning, the sheaf Im(f*) is equal to £.Oy. (You
may wish to reduce this statement to proving surjectivity on the level of stalks.)



(19)

(20)
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(22)

(23)

(24)
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(d) Prove the converse to (c). Thatis, for f : Y — X as above, such that f* : Ox — .0y
is surjective, it follows that ¢ is surjective.

Let k be a field. Prove that U = A2 — [(x, y)] - the plane minus the origin - is not an affine

scheme.

Let A= A}, where k is a field. Let B = Spec(k[x, y]/(y®> — x3)) — [(x, y)] - the cuspidal

curve minus the cusp. Find the k-morphisms from A to B; show that there are“plenty”

of morphisms from B to A. Is there an injective morphism from B to A? Is B isomorphic

to an open subscheme of A? (Hint: consider the intersection of the line y = ax with the

cuspidal curve and with the vertical line x = —1). Is there a surjective morphism from B to

A?

Let k be a field and S a scheme. Show that to give a morphism Spec(k) — S is to give a

point P of S and an inclusion k(P) — k.

Let X7, X5 be two copies of the affine line over a field k. Let U; C X, be the open

subschemes that are the complements of the closed point [(x)] (in the “naive” picture,

we delete the origin of each affine line). Glue X3 to X, by identifying U; with U> via the

identity map. Prove that the union - “the affine line with the doubled origin” - is not an

affine scheme.

Give an example of a field ko with an algebraic closure k, and a scheme Xy over Spec(ko),

such that the morphism X = Xg x,, kK — X has infinite fibres.

Frobenius. Let X be a scheme in characteristic p; namely, X is a scheme over F,, or,

equivalently, Ox is a sheaf of IF, algebras. Define a morphism F,ps : X — X as being the

identity on the level topological spaces and being the ring homomorphism a — aP for any

open U and a € I'(U, Ox).

(a) Prove that indeed F,ps is @ morphism of schemes.

(b) Show, by example, that F,ps need not be an isomorphism. (In fact, it very rarely is).

(c) Assume now that X is a scheme over a field k of characteristic p. To emphasize we
write s : X — Spec(k). Consider the cartesian diagram:

X (P) X

Lk

Spec(k) Fabs Spec(k)

Note that F,ps on the bottom is nothing else then the morphism induced by the ring
homomorphism a +— aP of k. Here X(P) is, by definition, the fibre product over
Spec(k) of X and Spec(k) relative to the indicated morphisms. Note that the morphism
XP) 5 X is not a morphism of schemes over k. Now consider the following diagram:

N

Spec(k) Lobs Spec(k)

Prove that the outer solid arrows commute and so induce a unique morphism (the
dotted arrow) X — X(P) that we shall denote Fx. This is the Frobenius morphism of
X. Prove that it is a morphism of schemes over k.
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(d) Now consider the case where X = Spec k[x, ..., xn]/({f;}). Given a polynomial f =
Sax! € k[xq, ..., xn] let £7 =3~ aPx!. Prove that X(P) = Spec kl[xi, ..., xal/({£7})
and determine all the morphisms appearing in the diagrams above explicitly. Finally,
assuming that k is algebraically closed and thinking of the closed points of X as vectors
{a=(ay,..., ap) € k" fi(a) = 0,V,}, prove that F((a1, ..., ap)) =(af, ..., ah).

(25) Let Q denote an algebraic closure of Q. What are the closed points of Spec(Q[x, y]) and

how are they related to the closed points of Spec(Q[x, y])?

(26) Let f : X — Y be a morphism of schemes and Z — Y a closed immersion. Prove that in
the cartesian diagram below j is a closed immersion:

Xy L X

b

Z ——Y.

(27) We consider group schemes over the base S = Spec(Ry).

(a) Let H and G be a affine group schemes over S. Let f : G — H be a homomorphism
of group schemes. Write the condition for that in terms of rings. Give then a formula
for Ker(f).

(b) Show that f: G,, — G, given on points by r s rN,
schemes with kernel .

(c) Assume that p = 0in Ry is a prime number. Show that f: G, — G, given on points by
r+— rP,is a homomorphism of group schemes and that in fact we have a commutative
diagram

is @ homomorphism of group

Ggp)
where F is the Frobenius morphism. Show that the kernel is a.

(28) Let k be a field of characteristic p. Construct a non-commutative group scheme G of order
p? over Spec(k), with a closed immersion G — GLy/k, using the following hint:

Mp  Op
0 1)/

(29) Let A be a commutative ring and M an A-module. Prove the following:

(a) If M is free then M is flat.

(b) Prove that if M is a flat A-module then for every A-algebra A', M ®4 A’ is a flat
A’-module.

(c) Suppose that M is flat over A and A is a flat Ag-algebra. Prove that M is flat over Ag.

(d) Let S C A be a multiplicative set. Prove that A[S™!] is flat over A.

(e) Prove that M is flat over A if and only if for all prime ideals p of A, M, is a flat
Ap-module.

(30) Let / be a directed set (that is, / is a partially ordered set such that for all i, € / there is
akelwithi<k,j<k). Let {M;,i € I} be flat A modules. Prove that Iiﬂ)q M; is a flat
A-module.

(31) Let A be a domain and M an A-module. Prove that if M is flat over A then M is torsion
free. Prove that if A is a PID then every torsion free A-module is flat.

(32) Let M be an A-module with the following property (P):



(33)

(34)

(35)

(36)

(37)
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(P)  forall m,..., mp in M and a,..., an in A such that
>.;aim; =0, there are elements mj, .. ., m) of M and b;; € A
such that

k .
mi =3y bymi, i=1,...,n,

and such that for all j, Y7 ajb;j = 0.

Prove that M is flat if and only if it has property (P). (Suggestion: think of the vector

(a1,..., an) as defining a map of A modules A" — A.)

Let k be a field. Consider the morphism Ai — Ai corresponding to the ring homomorphism

© 1 k[x,y] = k[x, y] determined by ¢(x) = x, ©(y) = xy. Determine the maximal open set
over which this morphism is flat.

Let C be a category and F : C — Sets a representable contravariant functor. Say F is

represented by X. Thus, we have an isomorphism hx = F. The identity morphism X — X

corresponds then to an element t“"v € F(X). Such an element is called a universal element.

(It depends on the choice of isomorphism hx = F). Prove that it has the following property.

For every t € F(S), there is a unique morphism f; : S — X such that F(f;) : F(X) — F(S)

takes tU" to t. (Hint: don't look far - this is essentially a tautology.)

(a) Prove that the functor F : Top — Sets associating to a topological space its set of
open subsets is representable and find a universal object. Prove that the restriction of
this functor to the subcategory of Hausdorff spaces is not representable. (The idea of
a universal object could be useful at this point. If it is representable, there should be a
Hausdorff space X and an open subset t“™V of F(X) such that...)

(b) Let A be a commutative ring with 1, S = Spec(A). Consider the functor F on
schemes over S such that F(T) = I'(T, O1); namely, the functor that associates to
an S-scheme its global regular functions. Check that this is indeed a functor and show
that it is representable by A} = Spec(A[x]).

(The definition of a Hilbert scheme) Let S be a scheme. By a family of subschemes of P”

parameterized by S we understand a closed subscheme Y C P¢ = P/ x S such that the

morphism Y — S is flat. Show that the

$ilbpn : Schemes — Sets, Nilbpn(S) = {Y C PL: Y flat over S},

associating to a scheme S the families of subschemes of P parameterized by S is indeed a
functor.

One of Grothendieck’s main theorems is that this functor, restricted to the category of
locally noetherian schemes, is representable. That is, there is a locally noetherian scheme
Hilbps and a family Y4V C Pfﬂ“bpn = P7 x Hilbpn such that for every flat family Y C P
there is a unique morphism f : S — Hilbps satisfying F*(Y!Y"V) =Y.

Explain how this implies the following variant. Let k be a field. For a scheme S over k
consider the functor parameterizing closed subschemes of PZ that are flat over S. Then
this functor is representable by Hilbps x Spec(k).

Now take k = C and show that the C-scheme Hilbp: x Spec(C) is "huge” for example in
the following sense. For every n construct a morphism (A — Z) — Hilbp: x Spec(C) that
is injective on closed points, where Z is the closed subscheme of A¢ where 2 coordinates
are equal.

Prove or disprove: Let X — S be a morphism of schemes then X xg X — X is a flat
morphism.

Let k be a field. Prove that the line over k with the double origin is not a separated scheme
by showing that the valuative criterion for separatedness fails.
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(38) Let k be a field. Prove that the morphism Al — Spec(k) is not proper by showing that the
valuative criterion for properness fails. Prove, as well, that the morphism A,% — A,ﬁ is not
proper.

(39) Let A be a ring. Prove that the morphism P4 — Spec(A) is proper using the valuative
criterion for properness.



