Last modified: November 21, 2014

## EXERCISES FOR THE COURSE IN ALGEBRAIC GEOMETRY, FALL 2014

## EYAL GOREN

(1) Define functors  $G_i$ : **Set**  $\to$  **Top**, by  $G_1(X) = (X, 2^X)$  (every set is open) and  $G_2(X) = (X, \mathscr{T}_{tr})$ , where  $\mathscr{T}_{tr}$  is the trivial topology consisting only of X and the empty set  $\emptyset$ . In both cases,  $G_i(f) = f$  for a function  $f : X \to Y$ . Let F : **Top**  $\to$  **Set** be the forgetful functor. Prove that  $G_i$  are functors and that there are natural bijections

$$\operatorname{Hom}_{\operatorname{Set}}(F(X, \mathscr{T}), S) = \operatorname{Hom}_{\operatorname{Top}}(X, G_2(S)),$$

and

$$\operatorname{Hom}_{\operatorname{Set}}(S, F(X, \mathscr{T})) = \operatorname{Hom}_{\operatorname{Top}}(G_1(S), X).$$

(In first case we say  $(F, G_2)$  are an adjoint pair and in the second case we say that  $(G_1, F)$  are an adjoint pair.)

- (2) An object A in a category C is called *initial* (resp. *final*) if for every object B in C, Hom<sub>C</sub>(A, B) (resp. Hom<sub>C</sub>(B, A)) is a singleton. Prove that an initial (resp. final) object, if it exists, is unique up to unique isomorphism. Determine if such objects exist in the following categories: Set, Top, VS<sub>k</sub>, Ring (the categories of sets, topological spaces, vector spaces over a fixed field k and rings).
- (3) Let **C** be a category with objects  $X_1, X_2, Z$  and morphisms  $f : X_1 \to Z, g : X_2 \to Z$ . Prove that if  $X_1 \times_Z X_2$  exists it is unique up unique isomorphism (the product is taken relative to f, g). Show that  $X_1 \times_Z X_2$  always exists in **Set**, **Top**, **VS**<sub>k</sub>, **Ring**.
- (4) Define  $X_1 \times X_2$  using the diagram

$$\begin{array}{c} X_1 \times X_2 \xrightarrow{g} X_2 \\ \downarrow f \\ X_1 \end{array}$$

Show that if **C** has a final object Z then  $X_1 \times X_2 = X_1 \times_Z X_2$ , where equal means that there is a unique isomorphism between the two.

(5) Let C be a category in which finite products exist and there is a final object Z. First establish that if there are morphisms f, g : Y → G then there is a canonical morphism (f, g) : Y → G × G such that composing with the projections G × G → G we get back f and g. Similarly, if f<sub>i</sub> : A<sub>i</sub> → B<sub>i</sub> are morphisms, there is a canonical morphism f<sub>1</sub> × f<sub>2</sub> : A<sub>1</sub> × A<sub>2</sub> → B<sub>1</sub> × B<sub>2</sub> (how would you charaterise it?). You'd want to establish some expected formulas, such as (f<sub>1</sub> × f<sub>2</sub>) ∘ (f, g) = (f<sub>1</sub> ∘ f, f<sub>2</sub> ∘ g), (f<sub>1</sub> × f<sub>2</sub>) ∘ (h<sub>1</sub> × h<sub>2</sub>) = (f<sub>1</sub> ∘ h<sub>1</sub>) × (f<sub>2</sub> ∘ h<sub>2</sub>). Further, you would need to show that there is a canonical isomorphism G × (G × G) = (G × G) × G.

A group object in **C** is an object G with given morphisms

$$m: G \times G \to G, \quad e: Z \to G, \quad \iota: G \to G,$$

PLEASE BRING TYPOS TO MY ATTENTION AT EYAL.GOREN@MC?ILL.CA

such that the following diagrams commute:



(and similarly with  $\iota \times 1_G$ ),



(and similarly with  $1_G \times e$ ).

Given a group object *G* prove that its functor of points  $F_G$  is a functor  $\mathbf{C} \to \mathbf{Group}$ . Namely, for every *Y* an object of  $\mathbf{C}$ ,  $F_G(Y) = \operatorname{Hom}_C(Y, G)$  is a group, and any morphism  $Y_1 \to Y_2$  induces a group homomorphism  $F_G(Y_2) \to F_G(Y_1)$ .

Conversely, using Yoneda's lemma, prove that if G is an object of **C** such that  $F_G$  is a functor **C**  $\rightarrow$  **Group** then G is a group object of **C**.

Finally, show that a group object of **Set** is just a group and a group object of **Group** is an abelian group.

(6) Let R be a commutative ring and S a multiplicative set in R. Let l : R → R[S<sup>-1</sup>] be the ring homomorphism from R to its localization at S. Give an example where l is not injective. When is l the zero map? When is l surjective?

Consider the category whose objects are ring homomorphisms  $f : R \to B$  such that f(s) is an invertible element of B for every  $s \in S$ . A morphism h in this category is a commutative diagram



Prove that  $\ell: R \to R[S^{-1}]$  is an initial object in this category.

(7) Prove that  $I \mapsto I^e = I[S^{-1}]$  and  $J \mapsto J^c = \ell^{-1}(J)$  provide a bijection

{prime ideals of R disjoint from S}  $\longleftrightarrow$  {prime ideals of  $R[S^{-1}]$ }.

- (8) Let *R* be a commutative ring; *L*, *M*, *N* left *R*-modules. Prove that there are canonical isomorphisms:
  - $R \otimes_R M \cong M$ ;
  - $M \otimes_R N \cong N \otimes_R M$ ;
  - $L \otimes_R (M \otimes_R N) \cong (L \otimes_R M) \otimes_R N;$
  - $L \otimes_R (M \oplus N) \cong L \otimes_R M \oplus L \otimes_R N$ .
- (9) Prove the following isomorphism of tensor products (the isomorphisms are as rings)
  - $R/I \otimes_R R/J \cong R/(I+J)$ . So, for example,  $\mathbb{Z}/m \cdot \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n \cdot \mathbb{Z} \cong \mathbb{Z}/\operatorname{gcd}(m, n) \cdot \mathbb{Z}$ .
    - $R[x_1,\ldots,x_n]\otimes_R R[y_1,\ldots,y_m]\cong R[x_1,\ldots,x_n,y_1,\ldots,y_m].$

- $R[x_1, \ldots, x_n]/I \otimes_R R[y_1, \ldots, y_m]/J \cong R[x_1, \ldots, x_n, y_1, \ldots, y_m]/\langle I, J \rangle$ . (On the right hand side we take the ideal generated by I and J).
- (10) Let φ : 𝔅<sub>1</sub> → 𝔅<sub>2</sub> be a homomorphism of sheaves of abelian groups on a topological space X. Prove that U → Ker(φ(U)) is a sheaf. Prove that U → Im(φ(U)) is a pre-sheaf. Give an example where it is not a sheaf.
- (11) Let f : X → Y be a continuous map of topological spaces. Recall that we have defined f<sub>\*</sub> as a functor from the category of abelian sheaves on X to the category of abelian sheaves on Y and f<sup>-1</sup> as a functor from the category of abelian sheaves on Y to the category of abelian sheaves on X. Show that there are natural morphisms f<sup>-1</sup>f<sub>\*</sub>𝔅 → 𝔅 and 𝔅 → f<sub>\*</sub>f<sup>-1</sup>𝔅. Use this to show that (f<sup>-1</sup>, f<sub>\*</sub>) are an adjoint pair, namely,

$$\operatorname{Hom}_X(f^{-1}\mathscr{G},\mathscr{F}) = \operatorname{Hom}_Y(\mathscr{G},f_*\mathscr{F}).$$

- (12) Prove that Mumford's classification of the ideals of Spec  $\mathbb{Z}[x]$  (pp. 74-75) is correct.
- (13) Prove Mumford's comment on page 68 regarding the quasi-compactness of  $(\operatorname{Spec} R)_f$  and that if R is not noetherian it may happen that an open subset of Spec R is not quasi-compact.
- (14) Prove that the following are equivalent
  - (a) Spec R is disconnected.
  - (b) There are elements  $e_1$ ,  $e_2$  in R such that  $1 = e_1 + e_2$  and  $e_1^2 = e_1$ ,  $e_2^2 = e_2$ ,  $e_1e_2 = 0$ . Such elements are called orthogonal idempotents.
  - (c)  $R \cong R_1 \times R_2$ , a product of two commutative rings.
- (15) (This exercises is about Spec Z[x] and is taken from Mumford, page 75.) What is V((p)) ∩ V((f)), f a Q-irreducible polynomial? What is V((f)) ∩ V((g)), f, g, distinct Q-irreducible polynomials?
- (16) (Exercise 2.2 from Hartshorne) Let  $(X, \mathcal{O}_X)$  be a scheme and let  $U \subseteq X$  be an open subset. Prove that  $(U, \mathcal{O}_X|_U)$  is a scheme.
- (17) (Exercise 2.3 from Hartshorne) *Reduced schemes.* A scheme  $(X, \mathcal{O}_X)$  is called reduced if for every open set  $U \subseteq X$ , the ring  $\mathcal{O}_X(U)$  has no nilpotent elements.
  - (a) Show that  $(X, \mathcal{O}_X)$  is reduced if and only if for every  $x \in X$  the local ring  $\mathcal{O}_{X,x}$  has no nilpotent elements.
  - (b) Let (X, O<sub>X</sub>) be a scheme and define (O<sub>X</sub>)<sub>red</sub> as the sheaf associated to the pre-sheaf U → (O<sub>X</sub>(U))<sub>red</sub>, where for a commutative ring A we denote by A<sub>red</sub> the quotient of A by its ideal of nilpotent elements. Show that (X, (O<sub>X</sub>)<sub>red</sub>) is a scheme, called the reduced scheme associated to X. Show that there is a natural morphism

$$(X, (\mathcal{O}_X)_{red}) \rightarrow (X, \mathcal{O}_X),$$

that is a homeomorphism on the level of topological spaces.

- (c) Let  $f : X \to Y$  be a morphism of schemes and assume that X is reduced. Prove that f factors uniquely through  $(Y, (\mathcal{O}_Y)_{red})$ .
- (18) (Exercise 2.18 from Hartshorne)
  - (a) Let A be a ring and X = Spec(A). Let  $f \in A$ . Prove that  $X_f$  is empty if and only if f is nilpotent.
  - (b) Let φ : A → B be a homomorphism of rings and (f, f\*) : Y → X the induced morphism of schemes, where X = Spec(A), Y = Spec(B). Prove that φ is injective if and only if the map of sheaves f\* is injective (meaning, the sheaf Ker(f\*) is the zero sheaf). In that case, show further that f is dominant, meaning, f(Y) is dense in X.
  - (c) Show that if  $\varphi$  is surjective then f provides a homemorphism of Y onto a closed set of X and the map  $f^*$  is surjective, meaning, the sheaf  $\text{Im}(f^*)$  is equal to  $f_*\mathcal{O}_Y$ . (You may wish to reduce this statement to proving surjectivity on the level of stalks.)

- (d) Prove the converse to (c). That is, for  $f : Y \to X$  as above, such that  $f^* : \mathcal{O}_X \to f_*\mathcal{O}_Y$  is surjective, it follows that  $\varphi$  is surjective.
- (19) Let k be a field. Prove that  $U = \mathbb{A}_k^2 [(x, y)]$  the plane minus the origin is not an affine scheme.
- (20) Let  $A = \mathbb{A}_{k}^{1}$ , where k is a field. Let  $B = \operatorname{Spec}(k[x, y]/(y^{2} x^{3})) [(x, y)]$  the cuspidal curve minus the cusp. Find the k-morphisms from A to B; show that there are "plenty" of morphisms from B to A. Is there an injective morphism from B to A? Is B isomorphic to an open subscheme of A? (Hint: consider the intersection of the line  $y = \alpha x$  with the cuspidal curve and with the vertical line x = -1). Is there a surjective morphism from B to A?
- (21) Let k be a field and S a scheme. Show that to give a morphism  $\text{Spec}(k) \to S$  is to give a point P of S and an inclusion  $\mathbf{k}(P) \to k$ .
- (22) Let  $X_1$ ,  $X_2$  be two copies of the affine line over a field k. Let  $U_i \subset X_i$  be the open subschemes that are the complements of the closed point [(x)] (in the "naive" picture, we delete the origin of each affine line). Glue  $X_1$  to  $X_2$  by identifying  $U_1$  with  $U_2$  via the identity map. Prove that the union "the affine line with the doubled origin" is not an affine scheme.
- (23) Give an example of a field  $k_0$  with an algebraic closure k, and a scheme  $X_0$  over Spec $(k_0)$ , such that the morphism  $X = X_0 \times_{k_0} k \to X_0$  has infinite fibres.
- (24) **Frobenius**. Let X be a scheme in characteristic p; namely, X is a scheme over  $\mathbb{F}_p$ , or, equivalently,  $\mathcal{O}_X$  is a sheaf of  $\mathbb{F}_p$  algebras. Define a morphism  $F_{abs} : X \to X$  as being the identity on the level topological spaces and being the ring homomorphism  $a \mapsto a^p$  for any open U and  $a \in \Gamma(U, \mathcal{O}_X)$ .
  - (a) Prove that indeed  $F_{abs}$  is a morphism of schemes.
  - (b) Show, by example, that  $F_{abs}$  need not be an isomorphism. (In fact, it very rarely is).
  - (c) Assume now that X is a scheme over a field k of characteristic p. To emphasize we write  $s : X \rightarrow \text{Spec}(k)$ . Consider the cartesian diagram:



Note that  $F_{abs}$  on the bottom is nothing else then the morphism induced by the ring homomorphism  $a \mapsto a^p$  of k. Here  $X^{(p)}$  is, by definition, the fibre product over Spec(k) of X and Spec(k) relative to the indicated morphisms. Note that the morphism  $X^{(p)} \to X$  is not a morphism of schemes over k. Now consider the following diagram:



Prove that the outer solid arrows commute and so induce a unique morphism (the dotted arrow)  $X \to X^{(p)}$  that we shall denote  $F_X$ . This is the Frobenius morphism of X. Prove that it is a morphism of schemes over k.

- (d) Now consider the case where  $X = \text{Spec } k[x_1, \ldots, x_n]/(\{f_j\})$ . Given a polynomial  $f = \sum a_l x^l \in k[x_1, \ldots, x_n]$  let  $f^{\sigma} = \sum a_l^p x^l$ . Prove that  $X^{(p)} = \text{Spec } k[x_1, \ldots, x_n]/(\{f_j^{\sigma}\})$  and determine all the morphisms appearing in the diagrams above explicitly. Finally, assuming that k is algebraically closed and thinking of the closed points of X as vectors  $\{\alpha = (\alpha_1, \ldots, \alpha_n) \in k^n : f_j(\alpha) = 0, \forall j\}$ , prove that  $F_x((\alpha_1, \ldots, \alpha_n)) = (\alpha_1^p, \ldots, \alpha_n^p)$ .
- (25) Let  $\overline{\mathbb{Q}}$  denote an algebraic closure of  $\mathbb{Q}$ . What are the closed points of Spec( $\mathbb{Q}[x, y]$ ) and how are they related to the closed points of Spec( $\overline{\mathbb{Q}}[x, y]$ )?
- (26) Let  $f : X \to Y$  be a morphism of schemes and  $Z \to Y$  a closed immersion. Prove that in the cartesian diagram below j is a closed immersion:



- (27) We consider group schemes over the base  $S = \text{Spec}(R_0)$ .
  - (a) Let *H* and *G* be a affine group schemes over *S*. Let  $f : G \to H$  be a homomorphism of group schemes. Write the condition for that in terms of rings. Give then a formula for Ker(f).
  - (b) Show that  $f: \mathbb{G}_m \to \mathbb{G}_m$ , given on points by  $r \mapsto r^N$ , is a homomorphism of group schemes with kernel  $\mu_N$ .
  - (c) Assume that p = 0 in  $R_0$  is a prime number. Show that  $f : \mathbb{G}_a \to \mathbb{G}_a$ , given on points by  $r \mapsto r^p$ , is a homomorphism of group schemes and that in fact we have a commutative diagram



where F is the Frobenius morphism. Show that the kernel is  $\alpha_p$ .

(28) Let k be a field of characteristic p. Construct a non-commutative group scheme G of order  $p^2$  over Spec(k), with a closed immersion  $G \to GL_2/k$ , using the following hint:

$$\begin{pmatrix} \mu_p & \alpha_p \\ 0 & 1 \end{pmatrix}.$$

- (29) Let A be a commutative ring and M an A-module. Prove the following:
  - (a) If *M* is free then *M* is flat.
  - (b) Prove that if M is a flat A-module then for every A-algebra A',  $M \otimes_A A'$  is a flat A'-module.
  - (c) Suppose that M is flat over A and A is a flat  $A_0$ -algebra. Prove that M is flat over  $A_0$ .
  - (d) Let  $S \subset A$  be a multiplicative set. Prove that  $A[S^{-1}]$  is flat over A.
  - (e) Prove that M is flat over A if and only if for all prime ideals  $\mathfrak{p}$  of A,  $M_{\mathfrak{p}}$  is a flat  $A_{\mathfrak{p}}$ -module.
- (30) Let *I* be a directed set (that is, *I* is a partially ordered set such that for all  $i, j \in I$  there is a  $k \in I$  with  $i \leq k, j \leq k$ ). Let  $\{M_i, i \in I\}$  be flat *A* modules. Prove that  $\lim_{\to} M_i$  is a flat *A*-module.
- (31) Let A be a domain and M an A-module. Prove that if M is flat over A then M is torsion free. Prove that if A is a PID then every torsion free A-module is flat.
- (32) Let *M* be an *A*-module with the following property (**P**):

(P) for all  $m_1, \ldots, m_n$  in M and  $a_1, \ldots, a_n$  in A such that  $\sum_i a_i m_i = 0$ , there are elements  $m'_1, \ldots, m'_k$  of M and  $b_{ij} \in A$  such that

$$m_i = \sum_{j=1}^k b_{ij} m'_j, \quad i = 1, \dots, n,$$
  
and such that for all  $j$ ,  $\sum_{i=1}^n a_i b_{ij} = 0.$ 

Prove that *M* is flat if and only if it has property (**P**). (Suggestion: think of the vector  $(a_1, \ldots, a_n)$  as defining a map of *A* modules  $A^n \to A$ .)

- (33) Let k be a field. Consider the morphism  $\mathbb{A}_k^2 \to \mathbb{A}_k^2$  corresponding to the ring homomorphism  $\varphi: k[x, y] \to k[x, y]$  determined by  $\varphi(x) = x, \varphi(y) = xy$ . Determine the maximal open set over which this morphism is flat.
- (34) Let **C** be a category and  $F : \mathbf{C} \to \mathbf{Sets}$  a representable contravariant functor. Say F is represented by X. Thus, we have an isomorphism  $h_X \cong F$ . The identity morphism  $X \to X$  corresponds then to an element  $t^{univ} \in F(X)$ . Such an element is called a universal element. (It depends on the choice of isomorphism  $h_X \cong F$ ). Prove that it has the following property. For every  $t \in F(S)$ , there is a **unique** morphism  $f_t : S \to X$  such that  $F(f_t) : F(X) \to F(S)$  takes  $t^{univ}$  to t. (Hint: don't look far this is essentially a tautology.)
  - (a) Prove that the functor  $F : \mathbf{Top} \to \mathbf{Sets}$  associating to a topological space its set of open subsets is representable and find a universal object. Prove that the restriction of this functor to the subcategory of Hausdorff spaces is not representable. (The idea of a universal object could be useful at this point. If it is representable, there should be a Hausdorff space X and an open subset  $t^{univ}$  of F(X) such that...)
  - (b) Let A be a commutative ring with 1, S = Spec(A). Consider the functor F on schemes over S such that  $F(T) = \Gamma(T, \mathcal{O}_T)$ ; namely, the functor that associates to an S-scheme its global regular functions. Check that this is indeed a functor and show that it is representable by  $\mathbb{A}^1_A = \text{Spec}(A[x])$ .
- (35) (The definition of a Hilbert scheme) Let S be a scheme. By a family of subschemes of  $\mathbb{P}^n$  parameterized by S we understand a closed subscheme  $Y \subseteq \mathbb{P}^n_S = \mathbb{P}^n_{\mathbb{Z}} \times S$  such that the morphism  $Y \to S$  is flat. Show that the

 $\mathfrak{H}ilb_{\mathbb{P}^n}$ : Schemes  $\to$  Sets,  $\mathfrak{H}ilb_{\mathbb{P}^n}(S) = \{Y \subseteq \mathbb{P}^n_S : Y \text{ flat over } S\},$ 

associating to a scheme S the families of subschemes of  $\mathbb{P}^n$  parameterized by S is indeed a functor.

One of Grothendieck's main theorems is that this functor, restricted to the category of locally noetherian schemes, is representable. That is, there is a locally noetherian scheme  $\mathbb{H}ilb_{\mathbb{P}^n}$  and a family  $Y^{univ} \subseteq \mathbb{P}^n_{\mathbb{H}ilb_{\mathbb{P}^n}} = \mathbb{P}^n_{\mathbb{Z}} \times \mathbb{H}ilb_{\mathbb{P}^n}$  such that for every flat family  $Y \subseteq \mathbb{P}^n_S$  there is a unique morphism  $f: S \to \mathbb{H}ilb_{\mathbb{P}^n}$  satisfying  $f^*(Y^{univ}) = Y$ .

Explain how this implies the following variant. Let k be a field. For a scheme S over k consider the functor parameterizing closed subschemes of  $\mathbb{P}^n_S$  that are flat over S. Then this functor is representable by  $\mathbb{H}ilb_{\mathbb{P}^n} \times \operatorname{Spec}(k)$ .

Now take  $k = \mathbb{C}$  and show that the  $\mathbb{C}$ -scheme  $\mathbb{H}ilb_{\mathbb{P}^1} \times \operatorname{Spec}(\mathbb{C})$  is "huge" for example in the following sense. For every *n* construct a morphism  $(\mathbb{A}^n_{\mathbb{C}} - Z) \to \mathbb{H}ilb_{\mathbb{P}^1} \times \operatorname{Spec}(\mathbb{C})$  that is injective on closed points, where *Z* is the closed subscheme of  $\mathbb{A}^n_{\mathbb{C}}$  where 2 coordinates are equal.

- (36) Prove or disprove: Let  $X \to S$  be a morphism of schemes then  $X \times_S X \to X$  is a flat morphism.
- (37) Let k be a field. Prove that the line over k with the double origin is not a separated scheme by showing that the valuative criterion for separatedness fails.

- (38) Let k be a field. Prove that the morphism  $\mathbb{A}^1_k \to \operatorname{Spec}(k)$  is not proper by showing that the valuative criterion for properness fails. Prove, as well, that the morphism  $\mathbb{A}^2_k \to \mathbb{A}^1_k$  is not proper.
- (39) Let A be a ring. Prove that the morphism  $\mathbb{P}^1_A \to \operatorname{Spec}(A)$  is proper using the valuative criterion for properness.