Midterm Exam in MATH 576 (Geometry and Topology I) October 25, 2006

Answer at least 4 questions for full marks. The use of books or notes is not allowed.

1. Prove that a compact Hausdorff space is normal.

2. Let X be a topological space and $A \subset X$ a dense subset, i.e., $\overline{A} = X$. Let Y be a Hausdorff space and $f, g: X \to Y$ two continuous maps that agree on A. Prove that f = g.

3. Let X be a compact Hausdorff space.

- (1) Prove that X is metrizable if and only if X has a countable basis.
- (2) Give an example of a compact Hausdorff space which is not metrizable.

4. Recall that \mathbb{R}_{ℓ} is \mathbb{R} with the topology having as basis half open intervals of the form [a, b), a < b. Show that every continuous function $f : \mathbb{R} \to \mathbb{R}_{\ell}$ (where \mathbb{R} on the left hand side is given the usual topology) is constant. (Suggestion: determine the connected components of \mathbb{R}_{ℓ} first).

5. Let $f: S^1 \to \mathbb{R}$ be a continuous map. Show that there is a point $x \in S^1$ such that f(x) = f(-x).