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ON THE INFINITUDE OF PRIMES

HARRY FURSTENBERG, Yeshiva University

In this note we would like to offer an elementary “topological” proof of the
infinitude of the prime numbers. We introduce a topology into the space of
integers S, by using the arithmetic progressions (from — » to + «) as a basis.
It is not difficult to verify that this actually yields a topological space. In fact,
under this topology, S may be shown to be normal and hence metrizable. Each
arithmetic progression is closed as well as open, since its complement is the union
of other arithmetic progressions (having the same difference). As a result, the
union of any finite number of arithmetic progressions is closed. Consider now
the set A =UA,, where 4, consists of all multiples of p, and p runs through the
set of primes = 2. The only numbers not belonging to 4 are —1 and 1, and since
the set { —1, 1} is clearly not an open set, 4 cannot be closed. Hence 4 is not
a finite union of closed sets which proves that there are an infinity of primes.

A STATISTICAL DERIVATION OF A PAIR OF TRIGONOMETRIC INEQUALITIES

J. B. CuassaN, Massachusetts Institute of Technology*

The following inequalities and a particular generalization of them can be
obtained by comparing the variances of a pair of minimum variance estimators
with the corresponding variances of certain less efficient estimators:f Given
0=(01, 0z, - - -, 0,) such that 06, <7 and 6,50, for j=k. Then
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* Operations Evaluation Group, Washington, D. C.

1 So far as the author has been able to determine, the inequalities stated in this paper appear
to be new. The statistics involved can be considered as respective pairs of estimators of the co-
ordinates of a fixed point in a plane, based on line-of-sight observations. The minimum variance
estimators (under the conditions stated) are the coordinates of the point from which the sum of
squares of the distances to each line-of-sight is a minimum. The less efficient estimators correspond
to the estimate (of the location of the fixed point) obtained by averaging arithmetically the vectors
determined by the intersections of all pairs of lines of sight.



