COURSE SYLLABUS FOR MATH 570/571, 2011

EYAL GOREN

Fall term

- (1) Groups Selected topics.
 - (a) Group actions on sets. (Definition, reformulation as $G \to \Sigma_S$, orbits, stabilizers, Cauchy-Frobenius Formula, revisiting Lagrange's theorem, the coset representation....)
 - (b) The class equation, Sylow's theorems, and some basic results on *p*-groups. Applications (groups of order pq, pq^2 , solvability of groups of order less than 60).
 - (c) Simplicity of A_n and $PSL_n(\mathbb{F}_q)$.
 - (d) Solvable groups.
 - (e) Free groups and free products of groups and the concepts of category, functor, adjoint functors. Universal property in terms of initial/final object.
- (2) Modules, Part I.
 - (a) A recall of the basic definitions and theorems for modules.
 - (b) Modules over PID and applications.
 - (c) Localization.
 - (d) Free modules.
- (3) Categories.
 - (a) Recall: The language of categories, functors and universal objects.
 - (b) Equivalence of categories.
 - (c) Injective and projective limits.
- (4) Fields.
 - (a) Recall: The fundamental theorem of Galois theory and some basic results in Galois theory.
 - (b) Profinite groups and, in particular, \mathbb{Z}_p .
 - (c) Infinite Galois theory.
 - (d) Finite fields and cyclotomic fields.
 - (e) Kummer theory.
 - (f) Solvability by radicals.
 - (g) Calculation of Galois groups.
- (5) Rings, Part I.
 - (a) The spectrum of a ring.
 - (b) Integral extensions and the going-up and going-down theorems.

Winter term

- (5) Rings, Part I.
 - (a) Recall and complements: The spectrum of a ring. (added: the sheaf of regular functions, morphisms.)

EYAL GOREN

- (b) Recall and complements: Integral extensions and the going-up and going-down theorems. (added: more examples: $\mathbb{Z}[\sqrt{2}, \sqrt{3}], y^2 = x^3, y^2 = x^2(x+1))$
- (c) Noether's normalization lemma, Hilbert's Nullstellensatz (weak form).
- (d) Noetherian and Artinian rings.
- (e) Hilbert's basis theorem. Hilbert's Nullstellensatz (strong form).
- (f) Dedekind rings: discrete valuation rings and local Dedekind domains. Global Dedekind domains. Unique factorization into ideals in Dedekind domains.
- (6) Modules, Part II.
 - (a) Tensor products.
 - (b) Exactness properties of Hom and \otimes .
 - (c) Projective modules.
 - (d) Injective modules.
 - (e) Flat modules.
- (7) Rings, Part II.
 - (a) The Jacobon radical.
 - (b) Nakayam's lemma.
 - (c) Semisimple rings and modules.
 - (d) Jacobson's density theorem and the Artin-Wedderburn theorem. If time allows:
 - (e) Morita's equivalence (special case); The Brauer group; the Skolem-Noether theorem.
- (8) Linear representations of finite groups.
 - (a) Linear representations of groups.
 - (b) Maschke's theorem.
 - (c) Characters. Orthogonality of characters. Frobenius Reciprocity.
 - (d) Representations of nilpotent groups.
 - (e) Representations of the symmetric group.
 - (f) Representations of $GL_2(\mathbb{F})$, for \mathbb{F} a finite field.
 - (g) Burnside's $p^a q^b$ theorem.