
EXERCISES, MATH 570, FALL 2012

I suggest solving all the exercises, as soon as they get posted. Periodically, I will ask you to submit

selected exercises, in LaTeX (or at any rate, as a pdf file).

Note carefully: The pdf file should be called as follows

YourLastName.AssignmentNumber.pdf

and sent to the following email address (and NOT to my McGill address):

2eyalgoren@gmail.com

(So Mr. Smith will submit his second assignment as a pdf file titled Smith.2.pdf)

Assignment 1: Please submit questions (2), (3), (4), (5), (7), (8) by Wednesday, September 19,

20:00.

Assignment 2: Please submit questions (10), (11), (12), (13), (14) by Wednesday, September 26,

20:00.

Assignment 3: Please submit questions (19) - (24) by Wednesday, October 10, 20:00.

Assignment 4: Please submit questions (25) - (29) by Monday, October 29, 20:00.

Assignment 5: Please submit questions (30) - (33) by Monday, November 5, 20:00.

Assignment 6: Please submit questions (34), (35), (36), (39) (enough to prove for either F or G)

and (40) by Wednesday, November 14, 20:00.

Assignment 7: Please submit questions (44) -(49) and (52) by Wednesday, November 21, 20:00.

(1) A subgroup H of a group G is called a characteristic subgroup if for every automorphism

f : G → G, f (H) ⊆ H.

(a) Prove that a characteristic subgroup is normal.

(b) Prove that the commutator subgroup of G and the centre of G are characteristic

subgroups.

(c) Prove that if H is normal in G and K is a characteristic subgroup of H, then K is

normal in G.

(2) Let G be a finite non-trivial p-group. Prove that G′ (the commutator subgroup of G) is a

proper subgroup of G.

(3) Let G be a finite p group and HCG a non-trivial normal subgroup. Prove that H ∩Z(G) 6=
{1}.

(4) Let G be a finite p group and H a normal subgroup of G with pa elements, a > 0. Prove

that H contains a subgroup of order pa−1 that is normal in G. (Hint: use the previous

exercise to prove the result by induction.)

(5) Let G = GLn(Fq), where Fq is a finite field, q = pr where p is prime.
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(a) Prove that the upper unipotent matrices




1 ∗ ∗ . . . ∗
0 1 ∗ . . . ∗
...

...

0 . . . 1


 are a p-Sylow

subgroup P of G by calculating the order of P and G.

(b) Find conditions so that every element of P has order dividing p. (Hint: use the binomial

theorem for (I + N)p, where I is the identity matrix.)

(c) In particular, deduce that for any p 6= 2 there are non-abelian p-groups such that every

element different from the identity has order p.

(d) Prove that a group G in which a2 = 1 for all a ∈ G is an abelian group.

(6) There are up to isomorphism precisely two non-abelian groups of order 8, the dihedral group

D4 and Q the quaternion group. Q is the group whose elements are {±1,±i ,±j,±k},
where −1 is a central element and the relations i j = k, jk = i , ki = j , i2 = j2 = k2 = −1

hold (in addition to the implicit relations such as −12 = 1, −1 · j = −j , . . . ). Prove the

following

(a) D4 is not isomorphic to Q.

(b) D4 and Q are non-abelian. (Calculate, for instance what is j i .)

(c) Let P be the 2-Sylow subgroup of GL3(F2). Find whether P is isomorphic to D4 or to

Q.

(7) Let p be an odd prime. In this exercise we show that a non-abelian group G of order p3

that has an element x of order p2 is isomorphic to the group we have constructed in class.

It is enough to show it is a semi-direct product Z/p2Z o Z/pZ.

(a) Show that Z(G) = G′ is a subgroup of order p and that G/Z(G) ∼= Z/pZ⊕ Z/pZ. In

particular, any commutator is in the centre of G and is killed by raising to a p power.

(b) Prove that xp generates the centre of G.

(c) Prove that to show that G is a semi-direct product Z/p2Z o Z/pZ, it is enough to

show that there is an element y ∈ G such that yp = 1 and y 6∈ Z(G).

(d) Let y 6∈ 〈x〉 and suppose that y is of order p2. Show that G is generated by x and y .

We want to show that we can find an element ỹ of order p such that ỹ 6∈ Z(G). We

show that by counting how many elements of order p the group G has.

(e) Prove the surprising property, that the function f : G → G, f (t) = tp, is a ho-

momorphism of groups. For that, explain why it is enough to prove the identity

xpyp = (xy)p and proceed to prove this property by making use of identities of the

form xyxy = x [y , x ]xyy = [y , x ]x2y2, etc.

(f) By estimating the image and the kernel of f show that there exists an element ỹ as

wanted.

(8) Let p < q < r be primes. Prove that a group of order pqr is not simple.

(9) If there are a colours available, prove that there are 1
n

∑
d |n ϕ(n/d)ad coloured roulette

wheels with n sectors.

(10) Let G be a group acting on a non-empty set S transitively. Let N be a normal subgroup of

G of finite index. Find the number of orbits of N in S.

(11) Let the symmetric group Sn act transitively on a set of m elements. Assume that n ≥ 5

and that m > 2. Show that m ≥ n.

(12) Exhibit A4 as a semi-direct product.

(13) Prove that there is another non-abelian group, that is not isomorphic to A4, which is a

semi-direct product.

(14) Let G act transitively on a set S. Then, G acts primitively if and only if the point stabilizer

of a point of S is a proper maximal subgroup of G. (One direction was done in class.)
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(15) Give an example of a group G acting on a set primitively, but not 2-transitively.

(16) Prove that every simple group G of order 60 is isomorphic to A5. [Suggestion: construct

first a subgroup of index 5 as a normalizer of a certain Sylow subgroup. As to what should be

the definition, take your cue from considering what happens for A5.] Conclude the following

isomorphisms: PSL2(F4) ∼= PSL2(F5) ∼= A5.

(17) Combining the Sylow theorems (and, in particular, the examples we analyzed above) and the

coset representation (and perhaps additional tricks, if you wish) show that every group of

order smaller than 60 is solvable. Note that |A5| = 60, so the value 60 is a natural barrier.

(18) Let G be a group and NCG a normal subgroup. What is the universal property that G/N

has?

(19) Let G : Top.Sp.→ Sets be a the forgetful functor from the category of topological spaces

to the category of sets. Prove that G has both a left adjoint and a right adjoint, but they

are not equal!

(20) Given a set S define a partially ordered set 2S whose elements are the subsets of S and

where for two subsets A,B of S (that is, elements of 2S) say that A ≤ B if A ⊆ B.

The category Poset of partially ordered sets has as objects partially ordered sets (T,≤)

and the morphisms Mor((T1,≤), (T2,≤)) are functions f : T1 → T2 such that if x ≤ y are

elements of T1 then f (x) ≤ f (y). Determine if S 7→ 2S (with the partial order defined

above) is a functor. Is it full? faithful?

(21) Let k be a field and C the category of finite dimensional vector spaces over k . Let F

associate to a vector space V the vector space F (V ) = V ∗ := Homk(V, k) and to a linear

map T : V → W the linear map F (T ) = T ∗ : W ∗ → V ∗ defined by T ∗(φ) = φ ◦ T . Prove

that F is a contravariant functor that is fully faithful.

(22) Find a presentation for the following groups: Dn (the dihedral group with 2n elements) and

Q (the quaternion group of order 8). You need to prove your presentation is correct!

(23) Prove that Z/2Z ∗ Z/2Z is an infinite group. Show, further, that it has a group of order 6

as a quotient.

(24) Let G1, G2 be groups. Prove that (G1 ∗ G2)ab ∼= Gab1 ⊕ Gab2 .

(25) Let R be a commutative ring. Let 0→ M1 → M2 → M3 → 0 be an exact sequence of

R-modules. Then, if M1 and M3 are free also M2 is free.

(26) Let R be a commutative ring. Prove that “being equal” is a local property. That is,

suppose that A,B are two submodules of a module M then A = B if and only if for all p

prime Ap = Bp. (Suggestion: reduce first to the case A ⊆ B.)

(27) Let R be a commutative ring. Prove that a morphism f : M → N of R-modules is the zero

morphism if and only if fp : Mp → Np is the zero morphism for all prime ideals p.

(28) Let R be any ring and M a left R-module. M is called a cyclic R-module if there is a

surjection of left R-modules R→ M. Equivalently, if there is an element m ∈ M such that

Rm = M. Show that M is cyclic if and only if M ∼= R/I, where I is a left ideal of R.

Suppose further that R is commutative. If I is prime, or maximal, what module property

does the cyclic R-module R/I have?

(29) Let R be a commutative ring. Prove that being free is not a local property. For example,

let I = 〈2,
√
−6〉 be the ideal of the ring R = Z[

√
−6] generated by 2 and

√
−6. Show that

I is locally free, but not a free R-module. (This shows also that being cyclic is not a local

property.) Some guidance: For a prime ideal p of R, note that p ∩ Z is a prime ideal of Z
and so is “well-known”. This should be enough for you to deal with all the localizations at

primes p such that p ∩ Z is not the ideal 2Z. To deal with primes p such that p ∩ Z = 2Z
consider the element 2/

√
−6 in such a localization and re-write it appropriately.
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(30) Prove that the category of groups is not equivalent to the category of sets. (Hint: look

for a property that one category has and the other doesn’t and show that this property is

preserved under equivalence.)

(31) Fix a group G. Consider the category C whose objects are subgroups of G and the morphisms

are the inclusion maps. Consider the category D of sets S endowed with a transitive action

of G and with a choice of base point s0 ∈ S. Namely, objects are triples (S, s0, G → ΣS),

where the image of G is transitive subgroup of ΣS. A morphism

f : (S, s0, G → ΣS)→ (T, t0, G → ΣT ),

is a function f : S → T such that f (s0) = t0 and such that f is equivariant for the action

of G: f (g ∗ s) = g ∗ f (s). Prove that the categories C and D are equivalent.

(32) Let F : C→ D and G : D→ C be a pair of covariant functors. It is a theorem that the

following are equivalent statements:

(a) FG ∼= ID and GF ∼= IC.

(b) F is left adjoint to G and both functors are full and faithful.

(c) F is right adjoint to G and both functors are full and faithful.

Prove one of the 6 possible implications in this theorem.

(33) Let F be a field, V an F[x ]-module, finite dimensional as an F-vector space. Prove

that V is a cyclic F[x ]-module if and only if there exists a vector v ∈ V such that

{v , T v , T 2v , ..., T n−1v} is a basis for V over F (where T is the linear transformation cor-

responding to x), if and only if the minimal polynomial of T is equal to its characteristic

polynomial.

(34) An example of a division algebra which is not a field. Let α, β be negative integers. Consider

the rank 4 Q-vector space

Q⊕Qi ⊕Qj ⊕Qk,
where i , j, k are formal symbols. Define addition component-wise and multiplication by

extending linearly the rules

i2 = α, j2 = β, i j = −j i = k.

Find an embedding of this Q vector space into M2(C) such that multiplication matches

multiplication of matrices. Use this to prove that we have defined an associative Q-algebra.

This is an example of a quaternion algebra B over Q (denoted
(
α,β
Q

)
). Prove further that

B is a (non-commutative) division algebra.

Define the norm of an element of B by

N(x + y i + zj + wk) = (x + y i + zj + wk)(x − y i − zj − wk).

Show that the norm takes values in Q and is multiplicative: N(ab) = N(a)N(b). Prove

that if a 6= 0 then N(a) 6= 0. Can you use that to prove that B is a division algebra? (The

special case α = −1, β = −1 gives the Hamilton quaternions (over Q).)

(35) Show that direct limits do not exist in the category of linearly ordered sets. (Hint: a

counterexample involving just two sets exists.)

(36) Pullback. Consider the diagram of modules

M1

h1
��

M2
h2 // M3
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The projective limit of this diagram is called the pull-back, (in more “geometric categories”

such as topological spaces, or manifolds, it is called the fibre product). Prove a simplified

version: that the projective limit is a module M with homomorphisms such that the diagram

M
f //

g

��

M1

h1
��

M2
h2 // M3

commutes, and for every module N such that

N
F //

G
��

M1

h1
��

M2
h2 // M3

commutes there is a unique commutative diagram:

N

G

��0
00

00
00

00
00

00
00

F

((QQQQQQQQQQQQQQQQ
φ

  A
A

A
A

M
f //

g

��

M1

h1
��

M2
h2 // M3

.

One also says that the diagram

M
f //

g

��

M1

h1
��

M2
h2 // M3

is a cartesian product and the notation

M
f //

g

��

M1

h1

��

�

M2
h2 // M3

is often used to denote that.

Prove further that the pullback can be taken to be

{(m1, m2) : h1(m1) = h2(m2), mi ∈ Mi}

(with the natural projection maps).

(37) Pushout. Consider the diagram of modules

M3
h2 //

h1
��

M2

M1



6 EXERCISES, MATH 570, FALL 2012

The injective limit of this diagram is called the push-out. Prove a simplified version: that

the injective limit is a module M with homomorphisms such that the diagram

M3
h2 //

h1
��

M2

g

��
M1

f // M

commutes, and for every module N such that

M3
h2 //

h1
��

M2

G

��
M1

F // N

commutes there is a unique commutative diagram:

M3
h2 //

h1
��

M2

g

��
G

��0
00

00
00

00
00

00
00

M1
f //

F

((QQQQQQQQQQQQQQQQ M
φ

  A
A

A
A

N

Prove further that the pushout can be taken to be

M1 ⊕M2/{(h1(m),−h2(m)) : m ∈ M3}.

(with the natural maps).

(38) Let C be a category where direct limit exist. Consider the diagram below, where M is the

push-out of C
β //

α

��

B

A

,

C
β //

α

��

B

��
A // M

Does it follow that C is the pull-back?

(39) Let (F,G) be an adjoint pair of covariant functors. Prove that F commutes with direct

limits and G with projective limits.

(40) Consider the following system of Z-modules:

(a) . . . → Z→ Z→ Z→ . . .

(b) . . . → Z→ Z→ Z.
(c) Z→ Z→ Z→ . . .

In each case, all arrows are multiplication by a fixed prime p. Find in each case a concrete

description of the direct and projective limit of the system.

(41) Give an example of a category that doesn’t have projective limits.

(42) Consider the ring Z[x ]. For each of the following ideals find the I-adic completion lim
←−
Z[x ]/In.

“Find” means to give some concrete reasonable description of the limit.
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(a) I = (p);

(b) I = (x);

(c) I = (p, x).

(43) For every open disk D in the complex plane around 0 let A(D) be the ring of analytic

functions on D. The collection of these disks is a directed poset, where we say D ≥ D′ if

D ⊆ D′. We have the restriction maps A(D′)→ A(D) and so we get a direct system. Find

a concrete description in terms of power series for lim
−→
D

A(D).

(44) We defined a function v on Zp by v(x) = v((. . . , x3, x2, x1)) = max{n : xn ≡ 0 (mod pn)}.
Prove that this is a valuation. Namely, that (i) v(xy) = v(x) + v(y); (ii) v(x + y) ≥
min{v(x), v(y)}. Prove further that the function d(x, y) = p−v(x−y) is a metric on Zp.

(45) Prove that every triangle in Zp is isosceles and the two equal sides are each bigger or equal

to the third. More precisely, given x, y , z , if d(x, y) < d(x, z) then d(x, z) = d(y , z).

(46) Prove that every point in an open ball in Zp (relative to the metric) is a centre for the ball.

(47) Let a(n) be a sequence of elements of Zp. Prove that a(n) converges in Zp if it is a Cauchy

sequence relative to the metric d . That is, Zp is a complete metric space.

(48) Prove that every element x in Zp can be written in the form

x = a0 + a1p + a2p
2 + . . . ,

with ai integers, 0 ≤ ai ≤ p − 1, uniquely determined by x . The precise meaning of that is

that the sequence
∑n
i=0 aip

i → x as n →∞.

(49) Recall that a consequence of Hensel’s lemma was that Zp contains the p−1-th roots of unity.

Take the case p = 5. Write down the 4-th roots of unity in Z5 to several 5-adic digits. Say, at

least to 4 digits. That is, if µ is a 4-th root of unity, write µ = a0+a1 ·5+a2 ·52+a3 ·53+. . . ,

where the ai are integers, 0 ≤ ai ≤ 4, and find a0, a1, a2, a3 at the very least.

(50) Let p be an odd prime. Using Hensel’s lemma determine which quadratic equations x2 +

ax + b, a, b ∈ Zp, can be solved in Zp.

(51) Prove that Z×p ∼= µp−1× (1 +pZp), where µp−1 is the cyclic group of order p−1 consisting

of the (p − 1)-st roots of unity in Zp. Prove further that for p > 2

1 + pZp ∼= pZp ∼= Zp,
as topological groups (namely, there are bicontinuous isomorphisms). Hint: use the power

series of exp(x) = 1 + x + x2

2! + x3

3! + . . . and log(1 + x) = x − x2

2 + x3

3 −
x4

4 + . . . to define

the isomorphisms. Note that you need of course to show that the series converge p-adically

on the domains where we consider them. On the other hand, you may use the identity of

power series exp(log(1 + x)) = 1 + x , etc. )

(52) Classify all closed subgroups of Zp×Z` where p 6= ` are primes. (Hint: prove first that every

such subgroup is an ideal. For that you may wish to show that Z is dense in Zp ×Z`, under

the diagonal map Z→ Zp × Z`.) Construct a Galois extension with Galois group Zp × Z`
and determine the fixed field for each closed subgroup.


