Corrections to the notes

(Thanks for Alexandra Tcheng and David Kawrykow for pointing out typos)

Page	Line	Should read
25	2-4	
		$T(\sum_{i=1}^{r-1} \rho_{i}, \dots, \rho_{i}) = 0$
		$T(\sum_{i=1}^{r-1} \beta_i w_i - w_r) = 0.$
		Thus, $\sum_{i=1}^{r-1} \beta_i w_i - w_r$ is in $\text{Ker}(T)$ and so there are α_i such that
		$\sum_{i=1}^{r-1} \beta_i w_i - w_r - \sum_{i=1}^n \alpha_i v_i = 0.$
		This is a linear dependence between elements of the basis B and hence
		gives a contradiction.
25	-4	We already know
28	13	§10.2 (Instead of ??)
38	1-5	However, $0 = \det(v_1 v_2 \dots (v_i + v_j) \dots (v_i + v_j) \dots v_n) =$
		$\det(v_1v_2\dots v_i\dots v_i\dots v_n) + \det(v_1v_2\dots v_j\dots v_j\dots v_n) +$
		$ \det(v_1v_2\dots v_i\dots v_j\dots v_n) + \det(v_1v_2\dots v_j\dots v_i\dots v_n) = $
		$\det(v_1v_2\ldots v_i\ldots v_j\ldots v_n) + \det(v_1v_2\ldots v_j\ldots v_i\ldots v_n).$
		$a_{11}x_1 + \dots + a_{1n}x_n = b_1$
55	-5	<u>:</u>
		$a_{n1}x_1 + \dots + a_{nn}x_n = b_n$
68	12	$s'_{k+1} = s_{k+1} - \sum_{i=1}^{k} \langle s_{k+1}, v_i \rangle \cdot v_i, \qquad v_{k+1} = \frac{s'_{k+1}}{\ s'_{k+1}\ }.$
70	-3	Let us consider linear equations again: Suppose that we have m linear
		equations over \mathbb{R} in n variables:
78	-2	Apply S to get
87	18	Write (t) $(f(t)^{n_1}, f(t)^{n_2})$ $f(t)^{n_2+1}$
		$m_T(t) = (f_1(t)^{n_1} \cdots f_r(t)^{n_r}) \cdot f_{r+1}(t)^{n_{r+1}}$
101	-3	Let C be any basis for V and let $A \in M_n(\mathbb{R})$ be a real symmetric
		matrix. Then
		$[v,w] = {}^t[v]_C A[w]_C,$
		is a bilinear form.
	•	