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1. Calculate the characteristic and minimal polynomial of the following matrices with real entries. In
each case determine the algebraic and geometric multiplicity of each eigenvalue. Decide which matrix is
diagonalizable and for that one, say A, find an invertible matrix M such that M−1AM is diagonal.




4 −2 2
6 −3 4
3 −2 3







3 −2 2
4 −4 6
2 −3 5




2. For each matrix N in Exercise 1 (considered as a linear transformation T ) find the Primary Decompo-
sition, i.e., the factorization of the minimal polynomial, the kernels of the factors, and for each kernel a
matrix representation of T .

3. Let S and T be commuting linear maps from a vector space V to itself, that is TS = ST . Let λ be an
eigenvalue of T and let Eλ be the corresponding eigenspace.

(1) Prove that Eλ is S invariant.
(2) Conclude that if T is diagonalizable with eigenvalues λ1, . . . , λr, and therefore

V = Eλ1 ⊕ · · · ⊕ Eλr ,

we may decompose S as

S = S1 ⊕ · · · ⊕ Sr,

where Si : Eλi → Eλi .
(3) Assume that both S and T are diagonalizable. Prove now that there exists a basis of V in which

both T and S are diagonal.
(4) Apply all that to the linear maps given by the matrices

A =




3 −2 2
1 0 1
0 0 1


 , B =




3 −2 5
1 0 5
0 0 2


 .

4. Let A be the adjacency matrix of a k-regular graph G.

(1) Prove that k is an eigenvalue of A and find the eigenvector.
(2) Prove that every real eigenvalue λ of A satisfies |λ| ≤ k (in fact, as we shall see, every eigenvalue

of A is real).
(3) Prove that if G is not connected, the geometric multiplicity of the eigenvalues k is greater than 1.

(The converse is also true.)
(4) Assume that G is connected. Prove that if G bipartite then −k is an eigenvalue. (The converse is

also true.)
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5. The following explains how to calculate the minimal polynomial without factoring the characteristic
polynomial.

Let T : V → V be a linear map on a finite dimensional vector space V of dimension n.
(1) Let {U1, U2, . . . , Ur} be a collection of T -invariant subspaces of V such that V = U1 + · · · + Ur.

Let fi be the minimal of T |Ui
. Prove that

mT = lcm(f1, . . . , fr).

(2) Let v be a non-zero vector in V . Consider the vectors

v, Tv, T 2v, T 3v, . . .

Suppose that a is the first power of T such that T av depends linearly on v, Tv, . . . , T a−1v,
say T av + ba−1T

a−1v + · · · + b1Tv + b0v = 0. Prove that the minimal polynomial of T on
Span({v, Tv, T 2v, . . . }) is precisely ta + ba−1t

a−1 + · · ·+ b1t + b0.
(3) A subspace of the form Span({v, Tv, T 2v, . . . }) is called a cyclic subspace. Prove that V is the

sum (not necessarily direct sum!) of finitely many cyclic subspaces.
(4) Conclude that one can calculate the minimal polynomial without factoring.
(5) Do that in practice for the matrix

A =




3 −2 2
1 0 1
0 0 1


 .


