1. Let $T : V \to W$ be a linear map and define $T^* : W^* \to V^*$ by $(T^*(g))(v) := g(Tv)$. Prove the following lemma:

Lemma 1.

1. T^* is a well-defined linear map.
2. Let B, C be bases to V, W, respectively. Let $A = c[T]_B^C$ be the $m \times n$ matrix representing T, where $n = \dim(V), m = \dim(W)$. Then the matrix representing T^* with respect to the dual bases B^*, C^* is the transpose of A:

 \[B^*[T^*]_{C^*} = c[T]^t. \]

3. If T is injective then T^* is surjective. (Do NOT use Proposition 7.2.8 in the notes).
4. If T is surjective then T^* is injective.

2. Let $V = \mathbb{R}[t]^n$ be the space of polynomials with real coefficients of degree at most n. Let $r_0 < r_1 < \cdots < r_n$ be $n + 1$ distinct real numbers. We have seen that $f_i : \mathbb{R}[t]^n \to \mathbb{R}, f_i(g(t)) = g(r_i)$, is a linear map and so is a linear functional. Prove that $B^* = \{f_0, \ldots, f_n\}$ is a basis for V^*. Find the basis $B = \{g_0, g_1, \ldots, g_n\}$ of V dual to it. Prove that if $g \in V$ then

 \[g(t) = \sum_{i=0}^{n} g(r_i) \cdot g_i(t). \]

3. Consider a system of linear equations over a field F:

 \begin{align*}
 a_{11}x_1 + \cdots + a_{1n}x_n \\
 \vdots \\
 a_{m1}x_1 + \cdots + a_{mn}x_n
 \end{align*}

 (0.1)

 View this as applying the functionals $(a_{11}, \ldots, a_{1n}), (a_{21}, \ldots, a_{2n}), \ldots (a_{m1}, \ldots, a_{mn})$ to the vector (x_1, \ldots, x_n). Under this interpretation show that the solutions to the homogenous system are U^\perp, where U is the row space of A. Conclude that the dimension of solutions to the homogenous system is $n - \text{rank}_r(A)$. (Remark: we know that already, but this is just one more way to think about it.)

4. **Latin Squares.** Wikipedia has an entry for Latin squares which you may find interesting.

 A Latin square is, for us, an $n \times n$ matrix all whose entries are integers belonging to $\{1, 2, \ldots, n\}$ in such a way that every row and every column contain every number exactly once. For example,

 \[
 \begin{array}{cccc}
 1 & 2 & 3 & 4 \\
 2 & 1 & 3 & 4 \\
 3 & 4 & 1 & 2 \\
 4 & 3 & 2 & 1
 \end{array}
 \]

 Such matrices are important for group theory, experimental designs and linear algebra; there are many open questions. It is a hard theorem that there are more than $(n!)^{2n}/n^{n^2}$ Latin squares of order n (this is more than exponential in n). One way to construct Latin squares is as multiplication tables for groups.
If G is a group of order n we write its elements a_1, \ldots, a_n and the ij entry of the table is k if $a_i a_j = a_k$. I’ll let you ponder, if you are interested, why this gives a Latin square.

Here is an interesting way to construct Latin squares that has to do with linear algebra. Let \mathbb{F} be a field with q elements and choose in $\mathbb{P}^2(\mathbb{F})$ three distinct points x, y, z lying on a line ℓ. Enumerate the lines through x, besides the line ℓ, by the numbers $1, \ldots, q$ (can we do that?). Do the same for y and z. Define a matrix $M = (m_{ij})$ as follows. Let t be the intersection point of the i-th line through x and the j-th line through y. The line connecting t to z is different from ℓ (why?) and so has a certain number k. Let $m_{ij} = k$. Prove that this works. Namely that this is a well-defined process yielding a Latin square for \{1, 2, \ldots, q\}.