ASSIGNMENT 6 - MATH 251, WINTER 2007

Submit by Monday, March 5, 12:00

1. Let $T: V \to W$ be a linear map and define $T^*: W^* \to V^*$ by $(T^*(g))(v) := g(Tv)$. Prove the following lemma:

LEMMA 1. (1) T^* is a well-defined linear map.

(2) Let B, C be bases to V, W, respectively. Let $A = {}_{C}[T]_{B}$ be the $m \times n$ matrix representing T, where $n = \dim(V), m = \dim(W)$. Then the matrix representing T^{*} with respect to the dual bases B^{*}, C^{*} is the transpose of A:

$$_{B^*}[T^*]_{C^*} = _C[T]_B^{t}.$$

- (3) If T is injective then T^* is surjective. (Do NOT use Proposition 7.2.8 in the notes).
- (4) If T is surjective then T^* is injective.
- 2. Let $V = \mathbb{R}[t]_n$ be the space of polynomials with real coefficients of degree at most n. Let $r_0 < r_1 < \cdots < r_n$ be n + 1 distinct real numbers. We have seen that

$$f_i : \mathbb{R}[t]_n \to \mathbb{R}, \qquad f_i(g(t)) = g(r_i),$$

is a linear map and so is a linear functional. Prove that

$$B^* = \{f_0, \dots, f_n\}$$

is a basis for V^* . Find the basis $B = \{g_0, g_1, \ldots, g_n\}$ of V dual to it. Prove that if $g \in V$ then

$$g(t) = \sum_{i=0}^{n} g(r_i) \cdot g_i(t)$$

3. Consider a system of linear equations over a field \mathbb{F} :

$$(0.1) \qquad \qquad \begin{array}{c} a_{11}x_1 + \dots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{array}$$

View this as applying the functionals (a_{11}, \ldots, a_{1n}) , (a_{21}, \ldots, a_{2n}) , $\ldots (a_{m1}, \ldots, a_{mn})$ to the vector (x_1, \ldots, x_n) . Under this interpretation show that the solutions to the homogenous system are U^{\perp} , where U is the row space of A. Conclude that the dimension of solutions to the homogenous system is $n - \operatorname{rank}_r(A)$. (Remark: we know that already, but this is just one more way to think about it.)

4. Latin Squares. Wikipedia has an entry for Latin squares which you may find interesting.

A Latin square is, for us, an $n \times n$ matrix all whose entries are integers belonging to $\{1, 2, ..., n\}$ in such a way that every row and every column contain every number exactly once. For example,

$ \begin{array}{c cc} 1 & 2 \\ \hline 2 & 1 \end{array} $	1 9 2	1	2	3	4	1	2	3	4	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	1	4	3	2	4	1	3	
		3	4	1	2	3	1	4	2	ĺ
		4	3	2	1	4	3	2	1	

Such matrices are important for group theory, experimental designs and linear algebra; there are many open questions. It is a hard theorem that there are more than $(n!)^{2n}/n^{n^2}$ Latin squares of order n (this is more than exponential in n). One way to construct Latin squares is as multiplication tables for groups.

If G is a group of order n we write its elements a_1, \ldots, a_n and the ij entry of the table is k if $a_i a_j = a_k$. I'll let you ponder, if you are interested, why this gives a Latin square.

Here is an interesting way to construct Latin squares that has to do with linear algebra. Let \mathbb{F} be a field with q elements and choose in $\mathbb{P}^2(\mathbb{F})$ three distinct points x, y, z lying on a line ℓ . Enumerate the lines through x, besides the line ℓ , by the numbers $1, \ldots, q$ (can we do that?). Do the same for y and z. Define a matrix $M = (m_{ij})$ as follows. Let t be the intersection point of the *i*-th line through x and the j-th line through y. The line connecting t to z is different from ℓ (why?) and so has a certain number k. Let $m_{ij} = k$. Prove that this works. Namely that this is a well-defined process yielding a Latin square for $\{1, 2, \ldots, q\}$.