ASSIGNMENT 4 - MATH 251, WINTER 2007

Submit by Monday, February 12, 12:00

1. Deduce from the theorems on determinants the following:
(1) If a column is zero, the determinant is zero.
(2) det(A) = det(A"), where A! is the transposed matrix.
(3) If a row is zero, the determmant is zero.
(4) Let A be a matrix in “upper diagonal block form”:

A1 *
0 Ao

A=
0 0 Ay

Here each A; is a square matrix say of size r;, and A, starts at the r; + 1 column
and r; + 1 row, etc. Prove that

det(A) = det(A;) det(Asg) - - - det(Ay).

Conclude that the determinant of an upper triangular matrix is given by

a1l *
0 a2

det . = a11a99 - - Akk-
0 0 ALk

(Here each a;; is a scalar).

2. Calculate the following series of determinants.
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3. Prove the following formula (the Vandermonde determinant):
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For example, for n = 2,3 we have
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det (171) = (a5 — 1), det <1 . ) (s — 1) (a5 — 1) (5 — 2).
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4. Reed-Solomon Codes. Let F be a finite field with ¢ elements. List the non-zero elements
of F, as {f1,...,B,-1}. Define a map

Fq[x]k—l - FQ_I?
by
f = T(f) = (f(ﬁl)v R f(ﬁq—l))-
Prove that 7' is a linear map and find when is it injective. When this holds, the image of T’

is a k-dimensional code in a ¢ — 1-dimensional space. Find the minimal Hamming weight
of a non-zero element of the code.



