ASSIGNMENT 3 - MATH 251, WINTER 2007

Submit by Monday, February 5, 12:00

1. Let \(T : V \rightarrow V \) be a nilpotent linear operator. Prove that if \(n = \dim(V) \) then \(T^n \equiv 0 \). Show that for every \(n \geq 2 \) there exists a vector space \(V \) of dimension \(n \) and a nilpotent linear operator \(T : V \rightarrow V \) such that \(T^{n-1} \neq 0 \).

2. (a) Find a linear map \(T : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) whose image is generated by \((1, 2, 3)\) and \((3, 2, 1)\). Here ‘find’ means represent by a matrix with respect to the standard basis.
 (b) Find a linear map \(T : \mathbb{R}^4 \rightarrow \mathbb{R}^3 \) whose kernel is generated by \((1, 2, 3, 4), (0, 1, 0, 1)\).

3. Let \(W = \{ (x, y, z, w) : x + y + z + w = 0, x - y + 2z - w = 0 \} \), \(U_1 = \{ (x, x, x, x) : x \in \mathbb{R} \} \) be subspaces of \(\mathbb{R}^4 \). Find a subspace \(U \supset U_1 \) such that \(\mathbb{R}^4 = U \oplus W \). Let \(T \) be the projection of \(\mathbb{R}^4 \) on \(U \) along \(W \). Write the matrix representing \(T \) with respect to the standard basis.

4. Let \(V \) and \(W \) be any two finite dimensional vector spaces over a field \(F \). Let \(T : V \rightarrow W \) be a linear map. Prove that there are bases of \(V \) and \(W \) such that with respect to those bases \(T \) is represented by a matrix composed of 0’s and 1’s only. If \(T \) is an isomorphism, prove that with respect to suitable bases it is represented by the identity matrix.

5. Let \(V \) be a vector space of dimension \(n \) and let \(W \) be a vector space of dimension \(m \), both over the same field \(F \). Prove that \(\text{Hom}(V, W) \cong M_{m \times n}(F) \) as vector spaces over \(F \). Here \(M_{m \times n}(F) \) stands for matrices with \(n \) columns and \(m \) rows with entries in \(F \).

6. Consider the transformation that rotates the plane \(\mathbb{R}^2 \) by angle \(\theta \) counter-clockwise. Write this transformation as a matrix in the standard basis. Write it also as a matrix with respect to the basis \((1, 1), (1, 0)\).

7. Let \(G \) be a bipartite regular graph, whose set of left vertices is \(L \) and right vertices is \(R \). For a set \(S \subset L \) denote by \(\partial S := \{ r \in R : r \text{ is connected to a vertex in } S \} \). Suppose that \(|L| = n, |R| = 3n/4 \).
 Suppose that \(G \) has the following expansion property. For every \(S \subset L \) such that \(|S| \leq \frac{n}{10d_L} \) we have \(|\partial S| \geq \frac{5d_L}{4}|S| \). Prove that for every such \(S \) there is a vertex \(r_S \) (many, in fact) such that \(r_S \) is a neighbor of exactly one element of \(S \).
 Consider now the linear code defined by the “half adjacency matrix \(M \)” whose columns are indexed by the elements of \(L \) and rows by the elements of \(R \), having 1 as an entry if the corresponding vertices are connected and 0 otherwise. (Refer to the previous assignment). Prove that if \(x \) is a non-zero vector in the code then \(x \) has more than \(\frac{n}{10d_L} \) non-zero coordinates. Conclude that we get a code where the distance between any two code words is at least \(\frac{n}{10d_L} \) and whose rate is at least \(1/4 \).