
ASSIGNMENT 1 - MATH 251, WINTER 2007

Submit by Monday, January 22, 12:00

1. Consider the following vector spaces (you do not need to prove those are vector spaces,
unless specified):

(1) The vector space V1 of continuous functions f : [0, 1] → R, where we define f +g to
be the function (f+g)(x) = f(x)+g(x) and αf to be the function (αf)(x) = αf(x).

(2) The vector space V2 of polynomials over a field F with the usual addition of poly-
nomials and multiplication by a scalar (which is a special case of multiplying two
polynomials).

(3) The vector space V3 = {(x1, x2, x3, . . . ) : xi ∈ F}, where we define

(x1, x2, x3, . . . ) + (y1, y2, y3, . . . ) = (x1 + y1, x2 + y2, x3 + y3, . . . ),

and

α(x1, x2, x3, . . . ) = (αx1, αx2, αx3, . . . ).

(4) Fix scalars A, B ∈ F . Prove that the vectors (x1, x2, x3, . . . ) of V3 that satisfy:

xn = Axn−1 + Bxn−2, n ≥ 3

form a subspace V4.
(5) The vector space of functions f : {1, 2, . . . , n} → R, where again (f + g)(x) =

f(x) + g(x) and (αf)(x) = αf(x).

In each case determine whether the vector space is finite dimensional or infinite dimen-
sional. In case it is finite dimensional, give a basis. In case it is infinite dimensional, prove
that by providing an explicit infinite set of linearly independent vectors.

2. Let V be an n-dimensional vector space over a field F. Let T = {t1, . . . , tm} ⊂ V be a
linearly independent set. Let W = Span(T ). Prove:

dim(W ) = m.

3. Let V1, V2 be finite dimensional vector spaces over a field F. Prove that

dim(V1 ⊕ V2) = dim(V1) + dim(V2).

4. Let V be a vector space over F and let S ⊂ V be a non-empty set. Let v ∈ V . Prove
that

Span(S ∪ {v}) = Span(S) ⇐⇒ v ∈ Span(S).
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5. Find which two of the following sets of vectors in R3 have the same span:
(i) {(1, 0, 1), (2, 3, 2), (−1,−3,−1)};
(ii) {(3,−2, 3), (1, 1, 1)};
(iii) {(1, 0, 0), (0, 0, 1), (0, 1, 0)}.

6. Let F be a finite field with q elements.

(1) Show that the kernel of the ring homomorphism

Z → F

defined by n 7→ n · 1 = 1 + · · · + 1 (n times) is of the form pZ for some prime p.
Conclude that we may assume that F ⊇ Z/pZ for some prime p.

(2) Prove that F is a vector space of finite dimension over Z/pZ and if this dimension
is n then F has pn elements1.

7. Rudiments of Coding Theory I. In this exercise F is a finite field having q elements,
for example Z/pZ that has p elements.2 Let V = Fn. Thus, an element of V is just an
n-tuple (x1, . . . , xn) where each coordinate xi is an element of F. Define a distance function
d(x, y) on V as follows. If x and y are vectors

d(x, y) = the number of coordinates in which x and y differ.

For example: if n = 6, x = (1, 1, 0, 0, 1, 0) and y = (1, 1, 1, 0, 0, 0) then d(x, y) = 2. This
distance is called the Hamming distance3. Prove that:

(1) d(x, y) ≥ 0 with equality holding if and only if x = y;
(2) d(x, y) ≤ d(x, z) + d(z, y) for every x, y, z ∈ V (the Triangle Inequality).

We also call d(x, 0), where 0 is the zero vector, the Hamming weight of x; it is equal to the
number of non zero coordinates of x.

Coding theory has nothing to do with concealing information. It is rather the science of
transmitting information over noisy, or defective, channels. Those could be your telephone
line when you connect to the internet, or a rover transmitting to NASA from Mars, etc..
They are used in CD and DVD readers, in barcodes, in cellphones and numerous other
everyday life applications. The purpose in each case is to find some means to ensure that
the receiving side either receives the correct information or is able to reconstruct it from
the information it received, at least if it is not too corrupted. Assume that the original
message, that consists of “words” (or chunks of information) of some fixed length, is written

1Note: at this point you’ve proven that every finite field has cardinality pn for some prime p.
2We use the notation Z/nZ for the ring of integers (mod n), which some denote by Zn. A good case

to keep in mind in this exercise is F = Z/2Z = {0, 1}.
3After the scientist Richard W. Hamming.
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as a string of zeros and ones. For example, suppose that F = Z/2Z. We might be interested
in sending the following information, already cut into chunks,

01 11 01 10 00 . . .

(This might mean “all is well, tell mom I’ll be back for supper”). To do that we have a
“code”. A code is like a dictionary that substitutes for each original word a longer word
and it is that longer word that is being transmitted. The receiving side has the same
code (or “dictionary”) and has no problem translating longer words back into the original
words. The logic is, in a sense, that longer words are more “robust” and can be recognized
even if distorted.

For example, our code could be the subspace of F3 consisting of all vectors (x1, x2, x3)
such that x1 + x2 + x3 = 0. There are 4 such code words in this code. We translate each
original word (i.e., 00, 01, 10, 11) to a code word by adding the unique third digit that
makes the sum zero. Therefore, our original message is now written as

011 110 011 101 000 . . .

This code is called a parity check code. The receiver gets the message and checks if every
word belongs to the code by checking in this example that the sum of digits is zero. Thus,
if 111 is received, we know there is an error because the digits sum up to 1 in the field
Z/2Z.

Definition 0.1. Let F be a field with q elements. An (n, k) linear code C is a subspace
of Fn having qk elements.

Show that the minimal distance between two distinct elements of a code C is the minimal
weight of a non-zero vector. Namely:

min{d(x, y) : x 6= y, x ∈ C, y ∈ C} = min{d(x, 0) : x ∈ C, x 6= 0}.

The procedure of coding continues as follows. The transmitting side is sending words that
belong to an (n, k) code C that is known to the receiving side and sends only such words.
The receiving side receives vectors of Fn. Each such vector may be in C (i.e., if no errors
occurred, or if errors did occur but the erroneous vector happens to belong to C as well).
In case it isn’t, the receiving side looks for the word in C that is closest to the vector that
was received.

We say that a linear code corrects t errors if for every code word that is transmitted
with t or less errors the original code word is the unique element of the code C which is
the nearest to it. We say that a linear code detects t errors if every received word with at
least one, but no more that t errors, is not a code word. Prove the following Theorem

Theorem 0.2. A linear code C corrects t errors if and only if the Hamming distance of
every two distinct elements of C is at least 2t + 1.

A linear code C detects t errors if and only if the Hamming distance between any two
elements of C is at least t + 1.
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For example, in the parity check code, the Hamming distance of every non zero vector
is precisely 2. Thus, the code detects single errors and corrects none. This illustrate the
fact that we can tell that 111 is an error, but cannot determine if the original word was
101 or 011.

Prove the following theorem.

Theorem 0.3. Let F be a finite field of q elements. Let V = Fn and let C be a code (=
a subspace) of dimension k, hence having qk elements. Let d be the minimal Hamming
weight of a non zero element of C. Prove that

d ≤ n− k + 1.


