
Solutions to Midterm Exam, MATH 133 - Vectors, Matrices and
Geometry

Date: Monday, May 17, 2004. Time: 14:00 - 16:00.

1. Let u, v be vectors in Rn. Prove that u + v and u− v are orthogonal if and only if ‖u‖ = ‖v‖.

Proof. We have (u+v) ⊥ (u−v) iff (u+v)·(u−v) = 0. But (u+v)·(u−v) = u·u+v·u−u·v−v·v =

‖u‖2−‖v‖2. This is equal to zero iff ‖u‖2 = ‖v‖2, iff ‖u‖ = ‖v‖ (as norms are non-negative). ¤

2. Let B = {v1, . . . , vn} be a basis of Rn. Prove that the following properties hold:

(1) Every vector in Rn has a unique expression as a linear combination of the basis vectors

v1, . . . , vn.

(2) B is a maximally independent set, namely, for any vector w ∈ Rn the set B′ = {v1, . . . , vn, w}
is linearly dependent.

Proof. (1) Since a basis is a spanning set, every vector w ∈ Rn has some expression as

w = a1v1 + · · · + anvn. Suppose that also w = b1v1 + · · · + bnvn. Then, subtracting the

two equations, we find that 0 = w −w = (a1 − b1)v1 + · · ·+ (an − bn)vn. Since a basis is

a linearly independent set, this implies ai − bi = 0 for all i and so ai = bi for all i.

(2) By the first part, w = a1v1+· · ·+anvn for some ai and so a1v1+a2v2+· · ·+anvn−1·w = 0.

This is a non-trivial linear combination that shows that the vectors {v1, . . . , vn, w} are

linearly equivalent.

¤

3. Find a basis for the solutions to the homogeneous system

x1 + x2 + 2x3 − x4 − 4x5 = 0

−x1 + x3 + 2x4 − 5x5 = 0

2x1 − x2 − 5x3 − 4x4 + 15x5 = 0

2x1 + 3x2 + 7x3 − x4 − 17x5 = 0

Solution: The system corresponds to the matrix

A =




1 1 2 −1 −4
−1 0 1 2 −5
2 −1 −5 −4 15
2 3 7 −1 −17


 .
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This matrix has reduced echelon form



1 0 −1 0 −3
0 1 3 0 −5
0 0 0 1 −4
0 0 0 0 0


 .

The free variables are x3 and x5. Setting them equal to (1, 0) and (0, 1) respectively, we find the

basis {u1, u2} with

u1 = (1,−3, 1, 0, 0),

u2 = (3, 5, 0, 4, 1)

4. Write the parametric form of the line passing through the point R = (3, 9, 3) and perpendicular

to the plane P given by 7x− y − 4z = −11 as

x = + · t
y = + · t
z = + · t

Find the distance between the point R and the plane P.

Solution: The line is given by {R + tn : t ∈ R}, where n is any vector normal to the plane P.

Such a vector is in fact supplied by the equation. We may take n = (7,−1,−4) and we conclude

that the line is {(3 + 7t, 9− t, 3− 4t) : t ∈ R}. That is,

x = 3 + 7 · t,
y = 9− t,

z = 3− 4 · t.
The line intersects the plane at a point (x, y, z) such that 7(3+7 · t)− (9− t)− 4(3− 4 · t) = −11.

That is, 66 · t = −11. Thus, t = −1/6 and the point is R − 1
6(7,−1, 4). The distance of R from

the plane is the distance between the point R and the point R− 1
6(7,−1, 4), namely, the norm of

1
6(7,−1, 4) which is

√
11
6 .

5. Find the inverse of the matrix A =




1 0 1
0 1 4
0 −1 −3


. Find a matrix X such that AXA = A2+A.

Solution: The inverse can be found by row-reduction (the Gauss-Jordan method for finding the

inverse). One finds that

A−1 =




1 −1 −1
0 −3 −4
0 1 1


 .

The equation AXA = A2 + A is equivalent to XA = A + I3 (multiply by A−1 on the left) and so

to X = I3 + A−1 (multiply by A−1 on the right). Thus,

X =




2 −1 −1
0 −2 −4
0 1 2


 .
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6. Let A =




−1 1 2 −2
2 1 −10 0
2 0 −8 1
1 2 −8 0


. Find the dimension of the row space of A and a basis for it.

Solution: We row-reduce the matrix A to find that its REF is



1 0 −4 0
0 1 −2 0
0 0 0 1
0 0 0 0


 .

It follows that the dimension of the row space is 3 and the vectors (1, 0,−4, 0), (0, 1,−2, 0), (0, 0, 0, 1)

are a basis for it.


