
Some topics in orthogonality

MATH 133 - Vectors, Matrices and Geometry

1. Orthogonal complements and orthogonal projections

Lemma 1.0.1. Let W ⊆ Rn be a subspace. We say that a vector v ∈ Rn is orthogonal to

W if v · w = 0 for all w ∈ W . Let W⊥ = {v ∈ Rn : v · w = 0 for all w ∈ W} then W⊥ is

a subspace of Rn. If W = Span{w1, . . . , wk} then v ∈ W⊥ if and only if v · wi = 0 for all

i = 1, . . . k.

(proved in class)

Theorem 1.0.2. Let W = Span{w1, . . . , wk} ⊆ Rn be a subspace. Then W⊥ is the

solutions to the homogenous system defined by the matrix A =

( w1w2

...wk

)
. Thus,

dim(W⊥) = n− dim(W ).

(proved in class)

Theorem 1.0.3. Let W ⊆ Rn be a subspace. Every vector v ∈ Rn can be written uniquely

as v = v1 + v2 with v1 ∈ W and v2 ∈ W⊥. Define the projection on W to be the map

projW : Rn −→ Rn, projW (v) = v1.

Then projW is a linear map with the following properties:

(1) if v ∈ W then projW (v) = v;

(2) if v ∈ W⊥ then projW (v) = 0;

(3) if {w1, . . . , wk} is an orthogonal basis for W then for any v we have

projW (v) =
v · w1

‖w1‖2
w1 +

v · w2

‖w2‖2
w2 + · · ·+ v · wk

‖wk‖2
wk.

(proved in class)

Theorem 1.0.4. We have (W⊥)⊥ = W.

Proof. Let w ∈ W and u ∈ W⊥ then w · u = 0. This holds for every u ∈ W⊥ thus

w ∈ (W⊥)⊥. We conclude that W ⊆ (W⊥)⊥. However, we also know that dim(W ) +

dim(W⊥) = n and dim(W⊥) + (W⊥)⊥ = n. It follows that dim(W ) = dim((W⊥)⊥) and

hence W = (W⊥)⊥. ¤
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Application: If W = Span{w1, . . . , wk} we can describe W as the solutions to a system of

linear equations as follows. We calculate a basis u1, . . . , ur to W⊥ by solving the system
( w1w2

...wk

)
. Then, by the same reasoning W (viewed as (W⊥)⊥) is the solutions to the system

of linear equations

( u1u2

...uk

)
. (One has to be very careful about row and columns here).

Example: suppose that W = Span{(1, 2, 1,−1), (1, 0, 1, 3), (3, 2, 3, 5)}. Then we have to

solve the system defined by
(

1 2 1 −1
1 0 1 3
3 2 3 5

)
. This matrix has REF

(
1 0 1 3
0 1 0 −2
0 0 0 0

)
. A basis to the

solutions is given by u1 = (−1, 0, 1, 0), u2 = (−3, 2, 0, 1). It follows that W is exactly the

solutions of
( −1 0 1 0
−3 2 0 1

)
. That is, W is defined by the equations −x+z = 0,−3x+2y+w = 0.

Example: For which conditions b1, b2, b3 can we solve the system

3x1 + x2 + x3 = b1, 2x1 + x3 = b2, 11x1 + 5x2 + 3x3 = b3.

The question is therefore: when is the column vector (b1, b2, b3)
T in the span of the columns

of the matrix A =
(

3 1 1
2 0 1
11 5 3

)
. We write the columns as rows; we wish to recognize then the

row space of
(

3 2 11
1 0 5
1 1 3

)
. Row reduction gives the matrix

(
1 0 5
0 1 −2
0 0 0

)
. Therefore the column

space, call it W is spanned by
{(

1
0
5

)
,
(

0
1
−2

)}
. We calculate that W⊥ is the span of

(−5, 2, 1). Therefore, we can solve the equations if and only if −5b1 + 2b2 + b3 = 0.

2. The Gram-Schmidt process

Theorem 2.0.5. Let x1, . . . , xk be a basis for a subspace W of Rn. Let W1 = Span(x1),W2 =

Span(x1, x2), . . . , Wk = Span(x1, x2, . . . , xk). Define the following vectors:

v1 = x1

v2 = x2 − x2·v1

‖v1‖2 · v1

v3 = x3 − x3·v1

‖v1‖2 · v1 − x3·v2

‖v2‖2 · v2

...

vk = xk − xk·v1

‖v1‖2 · v1 − xk·v2

‖v2‖2 · v2 − · · · − xk·vk−1

‖vk−1‖2 · vk−1

Then, for each i = 1, . . . , k we have that v1, v2, . . . , vi is an orthogonal basis for Wi. In

particular, { v1

‖v1‖ ,
v2

‖v2‖ , . . . ,
vk

‖vk‖} is an orthonormal basis for W .

Example: Find the orthogonal projection of (1, 1, 1) of W = {(x, y, z) : x + 2y − 5z = 0}.
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We find first any basis for W by finding a basis for the solution space of a homogenous

system. We get that u1 = (−2, 1, 0), u2 = (5, 0, 1) is a basis for W . Apply Gram-Schmidt:

v1 = u1 = (−2, 1, 0),

v2 = u2 − u2·v1

‖v1‖2 · v1 = (5, 0, 1) + 10
5
(−2, 1, 0) = (1, 2, 1).

Then v1, v2 is an orthogonal basis and we may apply our formula for the projection:

projW ((1, 1, 1)) = (1,1,1)·v1

‖v1‖2 · v1 + (1,1,1)·v2

‖v2‖2 · v2 = −1
5

(−2, 1, 0) + 4
6
(1, 2, 1) = 1

15
(16, 17, 10).

Example: Find an orthogonal basis for R3 containing the vector (1, 1, 1).

We first just complete it to a basis, getting for example (1, 1, 1), (0, 1, 0), (0, 0, 1). (Com-

pute the determinant, which is 1, to see this is a basis.) Now apply Gram-Schmidt:

v1 = (1, 1, 1)

v2 = (0, 1, 0)− (0,1,0)·(1,1,1)
‖(1,1,1)‖2 (1, 1, 1) = (0, 1, 0)− 1

3
(1, 1, 1) = 1

3
(−1, 2,−1).

v3 = (0, 0, 1)− (0,0,1)·(1,1,1)
‖(1,1,1)‖2 (1, 1, 1)− (0,0,1)· 1

3
(−1,2,−1)

‖ 1
3
(−1,2,−1)‖2 (−1, 2,−1)

= (0, 0, 1)− 1
3
(1, 1, 1) + 1

6
(−1, 2,−1) = 1

2
(−1, 0, 1).

3. Orthogonal diagonalization and symmetric matrices

We say that an n×n matrix A with real coefficients is orthogonally diagonalizable (OD)

if there is an orthogonal matrix Q such that

QT A Q = D

is a diagonal matrix. Note that since Q is orthogonal, this is the same as saying that

Q−1AQ = D is diagonal. Thus, this is a more sophisticated version of the problem of

diagonalization.

Proposition 3.0.6. If A is OD then A is symmetric.

Proof. Indeed, we have that QT A Q = D. Take transpose to find that (QT A Q)T =

DT = D. Thus, QT A Q = (QT A Q)T = QT AT (QT )T = QT AT Q. Since Q is invertible,

we get that A = AT . ¤

The following lemma is used in the proof of the theorem following it.

Lemma 3.0.7. If A is a symmetric real matrix then every eigenvalue of A is real.

Proof. Suppose that λ is a (perhaps complex) eigenvalue and v = (z1, . . . , zn)T a non-zero

eigenvector of λ. Then, on the one hand, v̄T (Av) = v̄(λv) = λv̄T v. On the other hand,

v̄T (Av) = v̄T AT v = (Av̄)T v = (Av)T v = (λv)T v = λ̄v̄T v. Note that v̄T v =
∑n

i=1 |zi|2 6= 0.

It follows that λ = λ̄ and so λ is real. ¤



4

Theorem 3.0.8. (The Spectral Theorem) Let A be a symmetric real matrix, then A is

orthogonally diagonalizable.

Before discussing the algorithm for OD-ing a matrix, we prove the following Proposition

(that explains why the algorithm works).

Proposition 3.0.9. Let A be a symmetric real matrix and let λ1, λ2 be distinct eigenvalues

of A. Then

Eλ1 ⊥ Eλ2 .

(That is, every vector in the first space is orthogonal to every vector in the second space).

Proof. Let vi ∈ Eλi
be a non-zero eigenvector. Then λ1v1 · v2 = λ1v

T
1 v2 = (Av1)

T v2 =

vT
1 AT v2 = vT

1 (Av2) = vT
1 λ2v2 = λ2v1 · v2. Since λ1 6= λ2, it follows that v1 · v2 = 0. ¤

Orthogonal diagonalization of any real symmetric matrix

Goal: Given an n×n real symmetric matrix A, to find an orthogonal real matrix Q so that

QT AQ = D is diagonal.

(1) Calculate the characteristic polynomial f(x) = det(A− xIn) of A.

(2) Write f(x) = (−1)n(x−λ1)
m1(x−λ2)

m2 · · · (x−λr)
mr . Note that m1+m2+· · ·+mr =

n; the λi are the eigenvalues of A and are real numbers.

(3) Calculate the eigenspace Eλi
= {v : (A − λiIn)v = 0} for every eigenvalue λi; for

every eigenvalue λi we have dim(Eλi
) = mi.

(4) Calculate a basis Ci for every eigenspace Eλi
. Using Gram-Schmidt calculate from

Ci an orthonormal basis Bi for Eλi
. Let B = B1 ∪B2 ∪ · · · ∪Br. Then each Bi

consists of mi vectors and B = {v1, . . . , vn} is an orthonormal basis for Rn.

(5) Let Q = (v1|v2| · · · |vn). Then Q is an orthogonal matrix and QT AQ is the diagonal

matrix with blocks




m1

λ1

. . .
λ1

m2

λ2

. . .
λ2

. . .

mr

λr

. . .
λr



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Note that we know that A is diagonalizable. Thus the algorithm does not need to determine

whether A is diagonalizable or not as it had to do in the case of a general matrix. Also,

the last proposition guarantees that Q is an orthogonal matrix.

Example: OD the matrix A = ( 1 2
2 −2 ).

The characteristic polynomial of A is x2 + x − 6 = (x − 2)(x − 3). We find that E2 =

Span{(2, 1)T}, E−3 = Span{(1,−2)T}. Thus, B1 = { 1√
5
(2, 1)T},B2 = { 1√

5
(1,−2)T} and

B = { 1√
5
(2, 1)T , 1√

5
(1,−2)T}. Note that this is indeed an orthonormal basis. The matrix

Q is just 1√
5
( 2 1

1 −2 ).

Example: OD the matrix A =
(

1 1 0
1 0 1
0 1 1

)
.

The characteristic polynomial of A is −(x − 1)(x + 1)(x − 2). The eignespaces are

E1 = Span{(1, 0,−1)T}, E−1 = Span{(−1, 2,−1)T}, E2 = Span{(1, 1, 1)T}. We get an

orthonormal basis B = { 1√
2
(1, 0,−1)T , 1√

6
(−1, 2,−1)T , 1√

3
(1, 1, 1)T}. The matrix Q is

( 1√
2
− 1√

6
1√
3

0 2√
6

1√
3

− 1√
2
− 1√

6
1√
3

)
.

Example: OD the matrix A =

(
2 0 0 1
0 1 0 0
0 0 1 0
1 0 0 2

)
.

The characteristic polynomial is (x − 1)3(x − 3). The eigenspace E1 is the solutions of
(

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

)
and a basis for it is {(0, 1, 0, 0)T , (0, 0, 1, 0)T , (1, 0, 0,−1)T}. Note that this is an

orthogonal basis and normalize it to get B1 = {(0, 1, 0, 0)T , (0, 0, 1, 0)T , 1√
2
(1, 0, 0,−1)T}.

The eigenspace E3 is Span{ 1√
2
(1, 0, 0, 1)T} and B2 = { 1√

2
(1, 0, 0, 1)T}. An orthonormal ba-

sis of eigenvectors if given by B = {(0, 1, 0, 0)T , (0, 0, 1, 0)T , 1√
2
(1, 0, 0,−1), 1√

2
(1, 0, 0, 1)T}.

The matrix Q is thus

(
0 0 1√

2
1√
2

1 0 0 0
0 1 0 0
0 0 − 1√

2
1√
2

)
.

4. Quadratic forms

A quadratic form in the variables x1, . . . , xn is a function f of the form

f(x1, . . . , xn) =
∑
i≤j

cijxixj.
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We may write such a function as

f(x1, . . . , xn) = (x1, . . . , xn)A

( x1
x2

...
xn

)
,

where the matrix A has diagonal elements c11, . . . , cnn, is symmetric, and its (i, j) element

is cij/2.

Example: x2
1 + 2x1x2 + 5x5

2 = (x1, x2) ( 1 1
1 5 ) ( x1

x2 ). Similarly, 2x2
1 + x2x3 + x2

3 − 4x1x3 is

(x1, x2, x3)

(
2 0 −2
0 0 1/2
−2 1/2 1

) (
x1
x2
x3

)
.

We would like to change the variables so that the expression simplifies. For example, we

would like to know if this expression is always positive or not and similar questions.

Note that if we define new set of variable Q

( y1
y2

...
yn

)
=

( x1
x2

...
xn

)
. Then, in the new sets of

variables our expression is

f(y1, . . . , yn) = (y1, y2, . . . , yn)QT AQ

( y1
y2

...
yn

)
.

Let us then choose Q orthogonal such that QT AQ = D = diag[d1, . . . , dn] is a diagonal

matrix. Then we conclude that with the set of variables y1, . . . , yn the quadratic form has

the shape

f(y1, . . . , yn) = (y1, y2, . . . , yn)D

( y1
y2

...
yn

)
= d1y

2
1 + d2y

2
2 + · · ·+ dny2

n.

Note that the di are the eigenvalues of A. We thus conclude the following theorem:

Theorem 4.0.10. (The Principal Axes Theorem) Let (x1, . . . , xn)A

( x1
x2

...
xn

)
be a quadratic

form.

(1) There is an orthogonal matrix Q such that with respect to the variables Q

( y1
y2

...
yn

)
=

( x1
x2

...
xn

)
the quadratic form is written as d1y

2
1 + d2y

2
2 + · · · + dny2

n, the di being the

eigenvalues of A.

(2) The quadratic form is positive-definite (resp. negative definite, resp. indefinite),

that is, has always positive values (resp. negative values, resp. positive and negative

values) if and only if each eigenvalue di is positive (resp. negative, resp. some are

positive and some are negative).
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(3) The maximum (resp. minimum) of the quadratic form over vectors x with ‖x‖ = 1

is the maximal (resp. minimal) eigenvalue.

One application is the following. Let z = f(x, y) be a differentiable function in two vari-

ables. Suppose that at some point (x0, y0) the derivatives ∂f/∂x, ∂f/∂y vanish. Consider

the symmetric matrix
(

∂2f/∂x2 ∂2f/∂x∂y

∂2f/∂x∂y ∂2f/∂y2

)
at the point (x0, y0). One proves in calculus of

several variables that If this matrix is negative definite then (x0, y0) is a maximum; if it

is positive definite then (x0, y0) is a minimum; if it is indefinite then (x0, y0) is a saddle

point. Note that by the Principal Axes Theorem this can be checked by simply checking

the eigenvalues.

Example: Consider the function z = x2/2 + 2xy − y2. (Here it is best to ignore the fact

that this is a quadratic form and simply think of it as an example of a function of two

variables.) Determine the nature of the point (0, 0). The partials are x+2y, 2x−2y, which

vanish at (0, 0). The matrix of second derivatives is A = ( 1 2
2 −2 ). The eigenvalues of it are

2,−3. It follows that (0, 0) is a saddle point.
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Similarly, consider the function z = sin(x)cos(y), whose partials are cos(x)cos(y),−sin(x)sin(y).

Those vanish at the point x = π/2, y = 0. The matrix of second derivatives at the point

is
( −1 0

0 −1

)
. This is negative definite and we conclude that (π/2, 0) is a maximum.

Example: For the quadratic form x2 − 6xy + y2, find a change of variables such that the

form has the shape d1X
2 + d2Y

2. What are d1, d2? What is the maximum of the form

subject to the condition x2 + y2 = 1?

The matrix representing the form is A =
(

1 −3
−3 1

)
. The characteristic polynomial is

x2 − 2x− 8 = (x− 4)(x + 2). We find that the eigenspaces are spanned by 1√
2
(1,−1) and
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–0.5

0

0.5
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1√
2
(1, 1). The matrix Q is thus

(
1√
2

1√
2

− 1√
2

1√
2

)
. If we let ( x

y ) = Q ( X
Y ) =

(
1√
2
(X+Y )

1√
2
(−X+Y )

)
(so

( X
Y ) = Q−1 ( x

y ) = QT ( x
y ) =

(
1√
2
(x−y)

1√
2
(x+y)

)
) and substitute that into the equation we shall

get 4X2 − 2Y 2. Thus the maximum is 4 and the minimum is −2.


