Some topics in orthogonality
MATH 133 - Vectors, Matrices and Geometry

1. ORTHOGONAL COMPLEMENTS AND ORTHOGONAL PROJECTIONS

Lemma 1.0.1. Let W C R" be a subspace. We say that a vector v € R™ s orthogonal to
Wifv-w=0 foralweW. Let W ={v € R":v-w =0 for all w € W} then W+ is
a subspace of R™. If W = Span{wy, ..., wy} then v € W+ if and only if v - w; = 0 for all
1=1,...k.

(proved in class)
Theorem 1.0.2. Let W = Span{wy,...,wy} C R™ be a subspace. Then W+ is the

%L
solutions to the homogenous system defined by the matriz A = (J> Thus,

wE
dim(W+) = n — dim(W).
(proved in class)

Theorem 1.0.3. Let W C R" be a subspace. Every vector v € R™ can be written uniquely
as v = v, + vy with vy € W and va € W. Define the projection on W to be the map

projy : R — R"™,  projy (v) = vy.

Then projy, is a linear map with the following properties:
(1) if v € W then projy, (v) = v;
(2) if v € W then projy, (v) = 0;

(3) if {wy,...,wi} is an orthogonal basis for W then for any v we have
_ v wy RET V- wg
projy (v) = — 5wy + T——sWe + -+ - + —— =W,
v w2 [[ws |2 [[w |2

(proved in class)
Theorem 1.0.4. We have (W+)+ =W.

Proof. Let w € W and w € W+ then w -« = 0. This holds for every u € W+ thus
w € (W)t We conclude that W C (W)L, However, we also know that dim(W) +
dim(W+) = n and dim(W+) + (W4)+ = n. It follows that dim(W) = dim((W+)+) and
hence W = (W+)+. O



Application: If W = Span{wy, ..., wx} we can describe W as the solutions to a system of

linear equations as follows. We calculate a basis ui,...,u, to W+ by solving the system

E=

( : ) Then, by the same reasoning W (viewed as (W+)1) is the solutions to the system
.

%L
of linear equations (J> (One has to be very careful about row and columns here).
Tk

Example: suppose that W = Span{(1,2,1,—1),(1,0,1,3),(3,2,3,5)}. Then we have to

)
121 — . . 1013 .
solve the system defined by (% 013 > This matrix has REF (8 10— > A basis to the

solutions is given by u; = (—1,0,1,0),us = (—3,2,0,1). It follows that W is exactly the

solutions of (2394 (). That is, W is defined by the equations —z+z = 0, —3z+2y+w = 0.

Example: For which conditions by, bs, b3 can we solve the system
3331+.172+333 :bl, 2.CE1—|-333 :bg, 112131—|—5$2+3£E3 :bg.

The question is therefore: when is the column vector (b, ba, b3)” in the span of the columns

of the matrix A = (1%1 é i) We write the columns as rows; we wish to recognize then the
3211 . . . (105
row space of < 105 > Row reduction gives the matrix (8 ! —02>. Therefore the column

space, call it W is spanned by {(é) , ( (1)2>}. We calculate that W+ is the span of

(—5,2,1). Therefore, we can solve the equations if and only if —5b; + 2by + b3 = 0.

2. THE GRAM-SCHMIDT PROCESS

Theorem 2.0.5. Let 1, ...,z be a basis for a subspace W of R™. Let Wy = Span(zy), Wy =
Span(xy, z3),. .., Wi = Span(xy, T, ..., zx). Define the following vectors:

V1 = T

— _ 21
V2 =22 = [z U1

T3-V1

U8 =3 T Qg2 T VLT g2 T V2
Tg-v1 Tp V2 Tl Vk—1
Vp = T — S — cUg — e — SV
k B ol " T Jeef? T 72 o1~ 7k—1
Then, for each i = 1,...,k we have that vy,vs,...,v; is an orthogonal basis for W;. In
particular, {72, 2, ..., =k} s an orthonormal basis for W.
Toall? Toafl? "+ Hv [

Example: Find the orthogonal projection of (1,1,1) of W = {(z,y, 2) : © + 2y — 5z = 0}.



We find first any basis for W by finding a basis for the solution space of a homogenous
system. We get that u; = (—=2,1,0),us = (5,0, 1) is a basis for W. Apply Gram-Schmidt:
v =u; = (—2,1,0),
vy = up — = v = (5,0,1) + F(=2,1,0) = (1,2,1).
Then vy, vy is an orthogonal basis and we may apply our formula for the projection:

projy (1, 1,1)) = S - oy Gt oy = 21(=2,1,0) + §(1,2,1) = $5(16,17, 10).

Example: Find an orthogonal basis for R? containing the vector (1,1, 1).

We first just complete it to a basis, getting for example (1,1, 1), (0, 1,0), (0,0,1). (Com-
pute the determinant, which is 1, to see this is a basis.) Now apply Gram-Schmidt:

v = (1,1,1)

vy =(0,1,0) = Ll (1,1,1) = (0,1,0) — §(1,1,1) = 3(=1,2, 1),

0,0,1)-(1,1,1 (0,0,1)-3(~1,2,-1)
U3 = (0707 1) - W(L 17 ]-) - W<_17 2a _1)

=(0,0,1) — 3(1,1,1) + #(—1,2,—1) = 3(—1,0,1).

3. ORTHOGONAL DIAGONALIZATION AND SYMMETRIC MATRICES
We say that an n x n matrix A with real coefficients is orthogonally diagonalizable (OD)
if there is an orthogonal matrix () such that
Q"AQ=D

is a diagonal matrix. Note that since () is orthogonal, this is the same as saying that

Q'AQ = D is diagonal. Thus, this is a more sophisticated version of the problem of

diagonalization.
Proposition 3.0.6. If A is OD then A is symmetric.

Proof. Indeed, we have that QT A Q = D. Take transpose to find that (QT A Q)T =
DT = D. Thus, QT A Q = (QT A Q)T = QTAT(QT)T = QTATQ. Since Q is invertible,
we get that A = AT, O

The following lemma is used in the proof of the theorem following it.
Lemma 3.0.7. If A is a symmetric real matriz then every eigenvalue of A is real.

Proof. Suppose that ) is a (perhaps complex) eigenvalue and v = (z1,...,2,)" a non-zero
eigenvector of \. Then, on the one hand, o7 (Av) = 9(M) = AvTv. On the other hand,
o7 (Av) = 0T ATv = (Av)Tv = (Av)Tv = (Av)Tv = XoTv. Note that v7v = Y1 | 2] # 0.
It follows that A = A and so A is real. O



Theorem 3.0.8. (The Spectral Theorem) Let A be a symmetric real matriz, then A is

orthogonally diagonalizable.

Before discussing the algorithm for OD-ing a matrix, we prove the following Proposition

(that explains why the algorithm works).

Proposition 3.0.9. Let A be a symmetric real matriz and let A1, Ao be distinct eigenvalues
of A. Then

E\, L E,,.

(That is, every vector in the first space is orthogonal to every vector in the second space).

Proof. Let v; € E), be a non-zero eigenvector. Then A\jv; - vy = )\11}{'02 = (Avl)Tvg =

vl ATvy = vf (Avy) = v Ay = Aovy - v9. Since A # \g, it follows that vy - v9 = 0. O

Orthogonal diagonalization of any real symmetric matrix
Goal: Given an n X n real symmetric matriz A, to find an orthogonal real matriz Q) so that
QTAQ = D is diagonal.

(1) Calculate the characteristic polynomial f(z) = det(A — x1I,,) of A.

(2) Write f(x) = (=1)"(x—A1)™ (x—X)™2 - - - (x—A,)™". Note that m;+ma+---+m, =
n; the \; are the eigenvalues of A and are real numbers.

(3) Calculate the eigenspace Ey, = {v : (A — \;I,)v = 0} for every eigenvalue \;; for
every eigenvalue \; we have dim(E),) = m;.

(4) Calculate a basis 6; for every eigenspace E,,. Using Gram-Schmidt calculate from
¢, an orthonormal basis %; for E),. Let B = %, U HByU--- U HB,. Then each %,
consists of m; vectors and % = {vy,...,v,} is an orthonormal basis for R".

(5) Let @ = (v1|va| -+ - |v,). Then @Q is an orthogonal matrix and Q7 AQ is the diagonal

matrix with blocks

At

At

A2

A2




Note that we know that A is diagonalizable. Thus the algorithm does not need to determine
whether A is diagonalizable or not as it had to do in the case of a general matrix. Also,

the last proposition guarantees that () is an orthogonal matrix.

Example: OD the matrix A = (3 2).

The characteristic polynomial of A is 22 + 2 — 6 = (z — 2)(x — 3). We find that E, =
Span{(2,1)"}, E_3 = Span{(1, —2)”}. Thus, %, = {\%(2, Ty, B, = {\%(1,—2)T} and
B = {f(2 nT \/Lg(l —2)T}. Note that this is indeed an orthonormal basis. The matrix

Q is just \}g( ).

Example: OD the matrix A = <

O

1 0>

01 ).

11

The characteristic polynomial of A is —(x — 1)(z + 1)(x — 2). The eignespaces are
= Span{(1,0,-1)"}, E_; = Span{(—1,2,—-1)"}, B, = Span{(1,1,1)"}. We get an

orthonormal basis # = {75(1,0,—1) %( 1,2,—-1)T %(1,1,1)T} The matrix @ is

1 11
( 73 ¢6¢3>
0 2 L

7 |-
1 1 1
NIV

2001
Example: OD the matrix A = (8 &9 8)
I 1002
The characteristic polynomial is (x — 1)°(z — 3). The eigenspace E; is the solutions of
1001
(8 99 8) and a basis for it is {(0,1,0,0)7, (0,0,1,0)7, (1,0,0,—1)"}. Note that this is an
1001

orthogonal basis and normalize it to get %, = {(0,1,0,0)7,(0,0,1,0)7, \%(1,0,0, 1T},
1,0,0,1)"}. An orthonormal ba-
7(1,0,0,~1), 55(1,0,0,1)"}.

The eigenspace Fj is Span{\%(l7 0,0,1)7} and &, = {\%(

sis of eigenvectors if given by % = {(0,1,0,0)7, (0,0,1,0)7, 7

oo -L L
Vz V2
The matrix @ is thus (é(l’ 81 (i') )
00-75 73
4. QUADRATIC FORMS
A quadratic form in the variables x1,...,x, is a function f of the form

f([L’l, ce ,l’n) = Z Cijl’ﬂ?j.

i<y



We may write such a function as

flzy,. o xn) = (21, ..., 20)A <$2> ,

where the matrix A has diagonal elements cy1, . . ., Cup, i Symmetric, and its (i, j) element

18 Cz’j/2-

Example: 7 + 2z119 + 525 = (11, 22) (1 1) (3). Similarly, 222 + zoxs + 22 — 4x23 is

2 0 -2 1
($1)$27x3) 02 1(/)2 1{2 (?)3)

We would like to change the variables so that the expression simplifies. For example, we

would like to know if this expression is always positive or not and similar questions.

2

Y1 x1
Y2
Note that if we define new set of variable ) ( ) = ( : ) Then, in the new sets of

Yn n
variables our expression is

Y1

T b2
f(yla"‘uyn> = (y1,y27--~,yn>Q AQ ( : ) .

Yn
Let us then choose @ orthogonal such that QTAQ = D = diag[dy,...,d,] is a diagonal
matrix. Then we conclude that with the set of variables ¥, ..., y, the quadratic form has
the shape

Y1
Y2

FWrs ey yn) = (yhyz,-wyn)D( : ) =diyi + doys + - + dnyp.

Yn

Note that the d; are the eigenvalues of A. We thus conclude the following theorem:

1
2

Theorem 4.0.10. (The Principal Azes Theorem) Let (1, ..., x,)A ( : ) be a quadratic

form.

Y1
Y2

(1) There is an orthogonal matriz Q) such that with respect to the variables Q ( : ) =
Yn

€2

1

( : ) the quadratic form is written as dyy? + doys + -+ + dny2, the d; being the
eigenvalues of A.

(2) The quadratic form is positive-definite (resp. mnegative definite, resp. indefinite),
that is, has always positive values (resp. negative values, resp. positive and negative

values) if and only if each eigenvalue d; is positive (resp. megative, resp. some are

positive and some are negative).



(3) The mazimum (resp. minimum) of the quadratic form over vectors x with ||z| = 1

is the mazimal (resp. minimal) eigenvalue.

One application is the following. Let z = f(x,y) be a differentiable function in two vari-
ables. Suppose that at some point (xg,yo) the derivatives f/0x,df /0y vanish. Consider

0%f/0x% 92 f/0xdy

52} /oady 0°F /042 ) at the point (z¢, o). One proves in calculus of

the symmetric matrix <

several variables that If this matrix is negative definite then (xg, ) is a maximum; if it
is positive definite then (zg,yo) is a minimum; if it is indefinite then (z,y) is a saddle
point. Note that by the Principal Axes Theorem this can be checked by simply checking

the eigenvalues.

Example: Consider the function z = 2?/2 + 2zy — y*. (Here it is best to ignore the fact
that this is a quadratic form and simply think of it as an example of a function of two
variables.) Determine the nature of the point (0,0). The partials are =+ 2y, 22 — 2y, which
vanish at (0,0). The matrix of second derivatives is A = (1 2). The eigenvalues of it are

2, —3. It follows that (0,0) is a saddle point.

Similarly, consider the function z = sin(z)cos(y), whose partials are cos(z)cos(y), —sin(x)sin(y).
Those vanish at the point x = 7/2,y = 0. The matrix of second derivatives at the point

is (o' ). This is negative definite and we conclude that (7/2,0) is a maximum.

Example: For the quadratic form z? — 6zy + 32, find a change of variables such that the

form has the shape d; X? + dyY2. What are di,d,? What is the maximum of the form
subject to the condition 2% + y? = 17

The matrix representing the form is A = (_13 _13). The characteristic polynomial is

1? —2r — 8 = (v — 4)(x + 2). We find that the eigenspaces are spanned by \%(1, —1) and



S

. . 7 . 7 (X+Y)
\%(1,1). The matrix @) is thus ( vz ) If welet (3) =Q(F) = (\}‘f(_xw)) (so

S
S

()= (y) =0T (y) = (?Ez;z;) ) and substitute that into the equation we shall

get 4X? — 2Y2. Thus the maximum is 4 and the minimum is —2.



