Solutions of systems of linear equations

The system of linear equations:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots \qquad \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

corresponds to the matrix (A|b)

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} | & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} | & b_2 \\ & & \vdots & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} | & b_m \end{pmatrix}$$

One finds the solutions by reducing the matrix A to a reduced echelon form, getting a system (M|c). If (t_1, \ldots, t_n) is any solution to this system then all the solutions have the following form

$$\{(t_1,\ldots,t_n)+(s_1,\ldots,s_n)|(s_1,\ldots,s_n)\}$$
 a solution of the homog. system $(M|0)$

For a matrix M in reduced echelon form we have the notion of free variables x_{i_1}, \ldots, x_{i_r} . The indices i_1, \ldots, i_r are the indices in which there is no echelon. If we choose any values s_{i_1}, \ldots, s_{i_r} for the free variables then there is a unique way to choose values for the rest of the variables so that we get a solution to the homogenous system. In particular, we can define the following solutions:

 u_1 with $s_{i_1} = 1, s_{i_2} = 0, \dots, s_{i_r} = 0;$ u_2 with $s_{i_1} = 0, s_{i_2} = 1, s_{i_3} = 0, \dots, s_{i_r} = 0;$ etc... u_r with $s_{i_1} = 0, \dots, s_{i_{r-1}} = 0, s_{i_r} = 1.$

We also remark that the solution (t_1, \ldots, t_n) to the non-homogenous system can be found by putting all the free variables equal to 0. The rest of the variables are then getting the values c_1, \ldots, c_m .

The solutions to the homogenous system (A|0) or (M|0) (these are equivalent systems having the same solutions) can be written as follows: they are of the form

$$c_1u_1 + \cdots + c_ru_r,$$

where the c_1, \ldots, c_r are scalars and the vectors u_1, \ldots, u_r are as above. In fact the vectors u_1, \ldots, u_r are a basis to the subspace of all solutions to the homogenous system.

For example, consider the system

$$\begin{pmatrix} 0 & |\underline{1} & \underline{2} & 0 & 5 & 0 | & 1 \\ 0 & 0 & 0 & |\underline{1} & \underline{3} & 0 | & 2 \\ 0 & 0 & 0 & 0 & 0 & |\underline{1} | & 3 \end{pmatrix}$$

The free variables are x_1, x_3, x_5 . We put $x_1 = 0, x_3 = 0, x_5 = 0$ and find the solution (0, 1, 0, 2, 0, 3) to the non-homogenous system. The solutions to the homogenous system are spanned by the solutions u_1, u_2, u_3 obtained by choosing $\{x_1 = 1, x_3 = 0, x_5 = 0\}$, $\{x_1 = 0, x_3 = 1, x_5 = 0\}$ and $\{x_1 = 0, x_3 = 0, x_5 = 1\}$, respectively. That is, the solutions

 $u_1 = (\mathbf{1}, 0, \mathbf{0}, 0, \mathbf{0}, 0),$ $u_2 = (\mathbf{0}, -2, \mathbf{1}, 0, \mathbf{0}, 0),$ $u_3 = (\mathbf{0}, -5, \mathbf{0}, -3, \mathbf{1}, 0).$ For another example, consider the homogenous system

$$\begin{pmatrix} 0 & |\underline{1} & \underline{9} & \underline{2} & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & |\underline{1} & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & |\underline{1} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & |\underline{1} & -\underline{1} \end{pmatrix}$$

The free variables are x_1, x_3, x_4, x_8 . We can find the basis vectors u_1, \ldots, u_4 using the table (we fill first the first 4 columns and then back-substitute to find the rest).

	$ x_1 $	x_3	x_4	x_8	x_2	x_5	x_6	x_7
u_1	1	0	0	0	0	0	0	0
u_2	0	1	0	0	-9	0	0	0
u_3	0	0	1	0	-2	0	0	0
u_4	0	0	0	1	-1	-1	0	1

That is

 $u_1 = (\mathbf{1}, 0, \mathbf{0}, \mathbf{0}, 0, 0, 0, \mathbf{0})$ $u_2 = (\mathbf{0}, -9, \mathbf{1}, \mathbf{0}, 0, 0, 0, \mathbf{0})$ $u_3 = (\mathbf{0}, -2, \mathbf{0}, \mathbf{1}, 0, 0, 0, \mathbf{0})$ $u_0 = (\mathbf{0}, -1, \mathbf{0}, \mathbf{0}, -1, 0, 1, 1)$