Diagonalization algorithms

Diagonalization of any matrix

Goal: Given an $n \times n$ matrix A, to find an invertible matrix P (if such exists¹) so that $P^{-1}AP = D$ is diagonal.

- (1) Calculate the characteristic polynomial $f(x) = \det(A xI_n)$ of A.
- (2) Write $f(x) = (-1)^n (x \lambda_1)^{m_1} (x \lambda_2)^{m_2} \cdots (x \lambda_r)^{m_r}$. Note that $m_1 + m_2 + \cdots + m_r = n$; the λ_i are the eigenvalues of A.
- (3) Calculate the eigenspace $E_{\lambda_i} = \{v : (A \lambda_i I_n)v = 0\}$ for every eigenvalue λ_i .
 - If for some eigenvalue λ_i we have $\dim(E_{\lambda_i}) < m_i$ then the algorithm stops. The matrix cannot be diagonalized.
 - If for every eigenvalue λ_i we have $\dim(E_{\lambda_i}) = m_i$ then the algorithm continues. The matrix can be diagonalized.
- (4) Calculate a basis \mathscr{B}_i for every eigenspace E_{λ_i} . Let $\mathscr{B} = \mathscr{B}_1 \cup \mathscr{B}_2 \cup \cdots \cup \mathscr{B}_r$. Then each \mathscr{B}_i consists of m_i vectors and $\mathscr{B} = \{v_1, \ldots, v_n\}$ is a basis for \mathbb{R}^n .
- (5) Let $P = (v_1 | v_2 | \cdots | v_n)$. Then P is invertible and $P^{-1}AP$ is the diagonal matrix with the following blocks

¹Such a matrix does not always exist, e.g., $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is not diagonalizable.

Orthogonal diagonalization of any real symmetric matrix

Goal: Given an $n \times n$ real symmetric matrix A, to find² an orthogonal real matrix P so that $P^{T}AP = D$ is diagonal.

- (1) Calculate the characteristic polynomial $f(x) = \det(A xI_n)$ of A.
- (2) Write $f(x) = (-1)^n (x \lambda_1)^{m_1} (x \lambda_2)^{m_2} \cdots (x \lambda_r)^{m_r}$. Note that $m_1 + m_2 + \cdots + m_r = n$; the λ_i are the eigenvalues of A are real numbers.
- (3) Calculate the eigenspace $E_{\lambda_i} = \{v : (A \lambda_i I_n)v = 0\}$ for every eigenvalue λ_i ; for every eigenvalue λ_i we have dim $(E_{\lambda_i}) = m_i$.
- (4) Calculate a basis \mathscr{C}_i for every eigenspace E_{λ_i} . Using Gram-Schmidt calculate from \mathscr{C}_i an orthonormal basis \mathscr{B}_i for E_{λ_i} . Let $\mathscr{B} = \mathscr{B}_1 \cup \mathscr{B}_2 \cup \cdots \cup \mathscr{B}_r$. Then each \mathscr{B}_i consists of m_i vectors and $\mathscr{B} = \{v_1, \ldots, v_n\}$ is an orthonormal basis for \mathbb{R}^n .
- (5) Let $P = (v_1|v_2|\cdots|v_n)$. Then P is an orthogonal matrix and $P^T A P$ is the diagonal matrix with blocks

²Such a matrix always exists.