Graduate Student Seminar Fall term 2015 Clara Lacroce

INTRODUCTION TO MODULAR FORMS

Introduction

Modular forms arose in association to the elliptic functions in the early 19th century.

Nowadays the Galois rapresentation associated to modular forms play a central role in the modern Number Theory. A goal in Number Theory is to understand the finite extensions of Q, and by Galois Theory this is equivalent to understand the absolute Galois Group $G_Q = Gal(Q'/Q)$. Now, we can say that we can know the group if we know its representation, which is classified by the degrees. By Class Field Theory we have a precise understanding of the representations of deg 1, or characters. Now, when we explore outside the domain of Class Field Theory, the Galois representations associated to a modular forms are the first one we encounter.

A modular form is a certain kind of holomorphic function on the upper half plane $H = \{\tau | Im\tau > 0\}$, which we view simultaneously as a complex manifold and as a Riemannian manifold equipped with hyperbolic metric $y^{-2}(dx^2 + dy^2)$.

In brief, an holomorphic function $f(\tau)$ on H is a modular form if it transform in a certain way under a subgroup of $SL_2(\mathbb{R})$.

Example 1

Let V be a vector space of finite dimension n, endowed with an invariant mesaure μ . We denote by V' the dual of V.

Definition 1. If f is a rapidly decreasing smooth function on V, we can define the *Fourier Transform* f' of f as:

$$f'(y) = \int_V e^{-2\pi i \langle x,y \rangle} f(x)\mu(x)$$

Let now Γ be the lattice in V, Γ' its dual.

Proposition 1. Let $v = \mu(V/\Gamma)$, we get:

$$\sum_{x \in \Gamma} f(x) = \frac{1}{v} \sum_{y \in \Gamma'} f'(y)$$

After replacing μ by $v^{-1}\mu$, we can assume that $\mu(V/\Gamma) = 1$. Moreover, by taking a basis $e_1, ..., e_n$ for Γ , we can identify V with \mathbb{R}^n , Γ with \mathbb{Z}^n and μ with $dx_1, ..., dx_n$. Thus we have: $V' = \mathbb{R}^n$, $\Gamma' = \mathbb{Z}^n$ and we are reduced to the classical **Poisson Formula**.

Remark 1. Consider V endowed with a simmetric bilinear form x.y positive and non degenerate, we can identify V with V'. Then we can associate to the lattice Γ the following function defined on \mathbb{R} :

$$\Theta_{\Gamma}(t) = \sum_{x \in \Gamma} e^{-2\pi t x \cdot x}$$

Proposition 2. We have:

$$\Theta_{\Gamma}(t) = t^{-n/2} v^{-1} \Theta_{\Gamma'}(t^{-1})$$

with $v = \mu(V/\Gamma)$ volume of the lattice.

Proof. Let $f = e^{-\pi x \cdot x}$, we have that f' = f, in fact if we choose an ortonormal basis of V and we identify V with \mathbb{R}^n , and μ becomes $dx = dx_1 \dots dx_n$ and $f = e^{-\pi (x_1^2 + \dots + x_n^2)}$. Then, since the Fourier Transform of $e^{\pi x^2}$ is $e^{\pi x^2}$ we have done.

Now, using *Proposition* 1 on f and the lattice $t^{1/2}\Gamma$ we get the formula to be proved.

We are now going to consider the pair (V, Γ) with these two properties:

- The dual Γ' of Γ is equal to Γ
- $x.x \equiv 0 \mod 2$ $\forall x \in \Gamma$

Now, let $m \ge 0$ integer, $r_{\Gamma}(m) := \#\{x \in \Gamma \mid x.x = 2m\}$. It is easy to see that r_{Γ} is bounded by a polynomial in m. This shows that the series with integer coefficients:

$$\sum_{m=0} r_{\Gamma}(m) q^m$$

converges for |q| < 1. Thus, one can define a function Θ_{Γ} on H

$$\Theta_{\Gamma}(\tau) = \sum_{x \in \Gamma} r_{\Gamma}(m) q^m$$

we have:

$$\Theta_{\Gamma}(\tau) = \sum_{x \in \Gamma} q^{\frac{(x,x)}{2}} = \sum_{x \in \Gamma} e^{\pi i \tau(x,x)}$$

Proposition 3. We have:

$$\Theta_{\Gamma}(-1/\tau) = (i\tau)^{n/2}\Theta_{\Gamma}(\tau)$$

Proof. Since the two sides are analytic in τ it is suffice to prove this formula when $\tau = iz$, with $z \in R$, z > 0. We have:

$$\Theta_{\Gamma}(iz) = \sum_{x \in \Gamma} e^{-\pi z(x.x)} = \Theta_{\Gamma}(z)$$

Similarly,

$$\Gamma(-1/iz) = \Theta_{\Gamma}(z^{-1})$$

Then, by *Proposition* 2 with v = 1, $\Gamma = \Gamma'$ we can conclude.

Now, since 8|n| we can rewrite the relation as:

$$\Theta_{\Gamma}(-1/z) = z^{n/2}\Theta_{\Gamma}(z)$$

and Θ_{Γ} is a modular form of weight n/2.

Definitions

Given H and $SL_2(\mathbb{R})$ we can make $SL_2(\mathbb{R})$ act on $\mathbb{C}^* = \mathbb{C} \cup \{\infty\}$ in this way:

$$gz = \frac{az+b}{cz+d}$$
 for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{R}), \quad z \in \mathbb{C}^*$

We get:

$$Im(gz) = \frac{Im(z)}{|cz+d|^2}$$

i.e. *H* is stable under the action of $SL_2(\mathbb{R})$. We have that the element $-\mathbb{1} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \in GL_2(\mathbb{R})$ acts trivially on *H*, then we can consider that it is the projective special linear group over \mathbb{R} which operates.

Definition 2. $G = SL_2(\mathbb{R})/\mp 1$ is the *Modular Group*.

Let
$$S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
, $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, S, T in G

Theorem 1. The group G is generated by S and T.

We can now consider the subset D of H formed of all points z such that |z| > 1 and $|Re(z)| \leq \frac{1}{2}$:

$$D = \{z = x + iy : |z| > 1, |x| \le \frac{1}{2}\}$$

It is possible to show that D is a fundamental domain for the action og G on H. More precisely:

Theorem 2. (1) $\forall z \in H, \exists g \in G : gz \in D$

- (2) Suppose that two distinct point $z, z' \in D$ are congruent mod G. Then: $re(z) = \pm \frac{1}{2}$ and z = z' + 1 or |z| = 1 and $z' = -\frac{1}{z}$
- (3) Let $z \in D$ and let $Stab(z) = \{g | g \in G, gz = z\}$ the stabilizer of z in G. We get Stab(z) = 1 except in the following three cases:
 - -z = i, in which case Stab(z) is the group of order 2 generated by S
 - $-z = e^{2\pi i/3}$, in which case Stab(z) is the group of order 3 generated by ST
 - $-z = e^{\pi i/3}$, in which case Stab(z) is the group of order 3 generated by TS

Corollary 1. By (1) and (2) follows that the canonical map from D to H/G is surjective and its restriction to the interior of D is injective.

We can now state the first definition:

Definition 3. Let k be an integer, we say that f is *weakly modular of weight 2k* if f is meromorphic on H and:

$$f(z) = (cz+d)^{-2k}f = \begin{pmatrix} az+b\\cz+d \end{pmatrix} \quad \forall \begin{pmatrix} a & b\\c & d \end{pmatrix} \in SL_2(\mathbb{Z})$$

Proposition 4. Let f be meromorphic on H, f is weakly modular of weight 2k if and only if it satisfies the two relations:

- (a) f(z+1) = f(z)
- (b) $f(-1/z) = z^{2k} f(z)$

Definition 4. A weakly modular function is a *Modular Function* if it is meromorphic at infinity. Moreover, we say that a modular function is of *level* N if it is a meromorphic function on H invariant under $\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a \equiv d \equiv 1, b \equiv c \equiv 0 \mod N \right\}$

Definition 5. A modular function which is holomorphic everywhere is called a *Modular Form*, if such a form is zero at infinity it is called a *cusp form*.

A modular form of weight 2k is thus given by a series:

$$f(z) = \sum_{n=0}^{\infty} a_n q^n = \sum_{n=0}^{\infty} a_n e^{2\pi i n z}$$

which converges for |q| < 1 and verifies the identity (b) above. It is a cusp form if $a_0 = 0$

We can define modular forms also by means of lattices in a vector space. Let Γ be a lattice in V, $M = \{(w_1, w_2) \in \mathbb{C}^* : Im(w_1/w_2) > 0\}.$

Proposition 5. Two elements in M define the same lattice if and only if they are congruent mod $SL_2(\mathbb{Z})$.

If R is the set of lattices of \mathbb{C} , we can identify it with the quotient of M by the action of $SL_2(\mathbb{Z})$. Make now $\mathbb{C}*$ act on R sending Γ to $\lambda\Gamma$ for $\lambda \in \mathbb{C}*$, then the quotient $M/\mathbb{C}*$ is identified with H by sending (w_1, w_2) to $z = w_1/w_2$ and this identification transforms the action of $SL_2(\mathbb{Z})$ on M into that of $G = SL_2(\mathbb{Z})/\{\mp 1\}$ on H. So, by pasing to the quotient, we get that an element of H/G can be identified with a lattice of \mathbb{C} defined up to an homothety.

So let F be a function on R with complex values, let $k \in \mathbb{Z}$, we say that F is of weight 2k if:

$$F(\lambda\Gamma) = \lambda^{-2k} F(\Gamma) \qquad \forall \Gamma, \forall \lambda \in \mathbb{C}^*$$

Let F be such a function, if $(w_1, w_2) \in M$, we denote by $F(w_1, w_2)$ the value of F on the lattice $\Gamma(w_1, w_2)$, and we can rewrite the formula above as:

$$F(\lambda w_1, \lambda w_2) = \lambda^{-2k} F(w_1, w_2)$$

Then $\exists f$ function on H such that:

(*) $f(w_1, w_2) = w_2^{-2k} f(w_1/w_2)$

Since F is invariant by $SL_2(\mathbb{R})$ we see that f satisfies the identity:

(**)
$$f(z) = (cz+d)^{-2k}f = \begin{pmatrix} \frac{az+b}{cz+d} \end{pmatrix} \quad \forall \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$$

Conversely, if (**) holds, by (*) we can obtain a function F on R of weight 2k. In conclusion, we can identify modular function of weight 2k with some lattice function of weight 2k.

Example 2 - Eisenstein series

Lemma 1. Let Γ be a lattice in \mathbb{C} . The series $\sum_{\gamma \in \Gamma}' \frac{1}{|\gamma|^{\sigma}}$ is convergent for $\sigma > 0$, where we denote with \sum' the summation over all the non zero elements.

Let k be an integer, k > 1. If Γ is a lattice of \mathbb{C} we put: $G_k(\Gamma) = \sum_{\gamma \in \Gamma} \frac{1}{|\gamma|^{2k}}$. By the Lemma above we know that the series converges absolutely. Using the definition given in the case of lattices, we can view G_k as a function on M given by:

$$G_k(w_1, w_2) = \sum_{m,n}' \frac{1}{(mw_1 + nw_2)^{2k}}$$

So we get that the function on H is:

$$G_k(z) = \sum_{m,n}' \frac{1}{(mz+n)^{2k}}$$

Proposition 6. Let k be an integer, $k \geq 1$. The Eisenstein series $G_k(z)$ is a modular form of weight 2k

Proof. The above arguments show that $G_k(z)$ is weakly modular of weight 2k. We have to show that it is also everywhere holomorphic.

First suppose that $z \in D$, where D is the fundamental domain. Then we get:

$$|mz+n|^2 = m^2 z \bar{z} + 2mnRe(z) + n^2 \ge M^2 - mn + n^2 = |m\rho - n|^2$$

By the Lemma above the series $\sum' \frac{1}{|m\rho-n|^{2k}}$ is convergent. This shows that the series $G_k(z)$ converges normally in D, thus also (applying the result to $G_k(g^{-1}z)$ with $g \in G$) in each of the transforms gD of Dby G. Since these cover H, we see that G_k is holomorphic in H. It remains to see that G_k is holomorphic at infinity. This amount to proving that G_k has a limit for $Im(z) \to \infty$. But one may suppose that z remains in the fundamental domain D; in view of the uniform convergence in D, we can make the passage to the limit term by term. The terms: $\frac{1}{(mz+n)^{2k}}$ relative to $m \neq 0$ give 0, the others give $\frac{1}{n^{2k}}$. Thus:

lim
$$G_k(k) = \sum' \frac{1}{n^{2k}} = s \sum_{n=1}^{\infty} \frac{1}{n^{2k}} = 2\zeta(2k)$$

So in particular $G_k(\infty) = 2\zeta(2k)$

Moroever, its Fourier expansion is:

$$G_k(z) = 2\zeta(k) \left(1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n \right)$$

where: $q = e^{2\pi i z}$, $\sigma_{k-1}(n) = \sum_{d|n} d^{k-1}$, and where $B_k \in \mathbb{Q}$ is the k-th Bernoulli number. If we normalize the Eisenstein serie by getting:

$$E_k(z) = \frac{G_k(z)}{2\zeta(k)}$$

Then the Fourier expansion if $E_k(z)$ has rational coefficient and constant term 1. For example, the Fourier expansion of the first two non zero Eisenstein series are:

$$E_4(z) = 1 + 240 \sum_{n=1}^{\infty} \sigma_3(n) q^n$$
$$E_6(z) = 1 - 504 \sum_{n=1}^{\infty} \sigma_5(n) q^n$$

So we have a modular form of weight 2k and it is not a cusp form.

Remark 2. The Eisenstein series are the special case m = 0 of the *Poincaré series* $P_{m,k}$ defined by:

$$P_{m,k}(z) = \sum_{\gamma \in \Gamma_{\infty} - \Gamma} \frac{1}{j(\gamma, z)^k} \exp(2\pi i m \gamma(z))$$

For m > 0 and $k \ge 3$ the Poincaré series are cusp forms of weight 2k.

Example 3

We denote by:

$$g_2 = 60G_4 = \frac{4\pi^4}{3}E_4$$
$$g_3 = 140G_6 = \frac{8\pi^6}{27}E_7$$
$$\Delta := g_2^3 - 27g_3^2 = \frac{(2\pi)^{12}}{1728}(E_4^3 - E_6^2)$$

It follows that Δ is a modular form of weight 12, and that $\Delta \neq 0$ in *H*. Moreover, the *q*-expansions for the E_k 's show that Δ vanishes at ∞ , so Δ is a cusp form. Δ has integral fourier coefficient:

$$\Delta(z) = q \prod_{n \ge 1} (1 - q^n)^{24} = \sum_{n \ge 1} \tau(n) q^n$$

and this defines the Ramanujan function $\tau(n)$ (it can be shown that $tau(n) \in \mathbb{Z} \quad \forall n \in \mathbb{Z}$, and that $\tau(nm) = \tau(n)\tau(m)$). Using Δ we can define the *j*-invariant modular form, which is the modular function of weight 0 defined by:

$$j(z) = 1728 \frac{g_2^3}{\Delta} = 1728 \frac{E_4^3}{E_4^3 - E_6^2}$$

It is holomorphic in H (because $\Delta \neq 0$) and has a simple pole at ∞ .

5

Example 4

Let Θ be the Jacobi theta function of the first example:

$$\Theta(\tau) = \sum_{n \in \mathbb{Z}} e^{i\pi\tau n^2}$$

Then:

$$\Theta(2\tau)^2 = \sum_{a,b\in\mathbb{Z}} q^{a^2+b^2}$$

is a modular form of weight 1 and level 4. This is an instance of a very general contruction involving rings of integers and quadratic fields, such as $\mathbb{Z}[i]$.

Suppose $\alpha \in \mathbb{Z}[i]$ is non zero, and:

$$\chi: (\mathbb{Z}[i]/(\alpha)^x \longrightarrow \mathbb{C}^x$$

is an isomorphism. Assume that $\chi(i) = 1$, extend χ to a multiplicative function on $\mathbb{Z}[i]$ by declaring it to be 0 on elements which are not primes to α . It is a result of Hecke that the series:

$$\Theta_{\chi}(\tau) = \frac{1}{4} \sum_{a,b \in \mathbb{Z}} \chi(a+bi) q^{a^2+b^2}$$

is a modular form of weight 1 and level $4|\alpha|^2$, and if x is non trivial, then Θ_{χ} is a cusp form.

Example 5

The abelian group $(\mathbb{Z}[i]/8\mathbb{Z}[i])^x$ has generators: 3, 5, i, 1 + 2i with order: 2, 2, 4, 4 respectively. Let $\chi : (\mathbb{Z}[i]/8\mathbb{Z}[i])^x \longrightarrow \mathbb{C}^x$ be the unique homomorphism which is trivial on the first three generators and which sends 1 + 21 to i. Then Θ_{χ} is a modular form of weight 1. For p prime, the p-th coefficient in the Fourier expansion of Θ_{χ} is:

$$a_p(\Theta_{\chi}) = \begin{cases} \chi(a+bi) + \chi(a-bi) & \text{if } p \equiv 1 \mod 4, \quad p = a^2 + b^2 \\ 0 & \text{if } p \equiv 3 \mod 4, \quad \text{or } p = 2 \end{cases}$$

Now, if $p \equiv 1 \mod 4$ we can write $p = a^2 + b^2$ with a odd and b even. A short calculation shows that:

$$a_p(\Theta_{\chi}) = \begin{cases} 2 & \text{if } 8|b \\ -2 & \text{if } 4|b \text{ but } 8 \nmid b \\ 0 & \text{if } 4 \nmid b \end{cases}$$

Referring back to the example showed in the previous talk about two dimensional Artin representation over \mathbb{Q} , we find that $\forall p$ odd prime we have the following relation:

$$a_p(\Theta_{\chi}) = tr\rho(Frob_p)$$

for the Galois representation $\rho: Gal(\mathbb{Q}'/\mathbb{Q}) \longrightarrow GL_2(\mathbb{C})$ with:

$$tr\rho(Frob_p) = \begin{cases} 2 & \text{if} \quad p = a^2 + 64b^2 \\ -2 & \text{if} \quad p = a^2 + 16b^2, \quad b \quad \text{odd} \\ 0 & \text{if} \quad \text{otherwise} \end{cases}$$

and the equation stated above hints an extraordinary relation between modular forms and Galois rapresentation of $Gal(\mathbb{Q}'/\mathbb{Q})$.

Example 6

More in general, if $Q : \mathbb{Z}^r \longrightarrow \mathbb{Z}$ is any positive defined integer-valued quadratic form in r variables, r even, then:

$$\Theta_Q(\tau) = \sum_{x \in \mathbb{Z}^r} q^{q(x)}$$

is a modular form of weight r/2 on some group $\Gamma_0(n) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in PSL_2(\mathbb{Z}) | c \equiv 0 \mod N \right\}$ with some character $\chi \mod N$, i.e.

$$\Theta_Q(\left(\frac{a\tau+b}{c\tau+d}\right) = \chi(d)(c\tau+d)^{r/2}\Theta_Q(\tau) \quad \forall \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$$

The integer N is the level of \mathbb{Q} and it is determined as follow write $Q(x) = \frac{1}{2}x^t A x$ where A is an even symmetric $r \times r$ matrix (i.e. $A = (a_i a_j), a_{ij} = a_j \in 2\mathbb{Z}$); then N is the smallest NA^{-1} is again even. The character χ is given by $\chi(d) = \left(\frac{D}{d}\right)$ with $D = (-1)^{r/2} det A$. For example, if we take:

- $Q(x_1, x_2) = x_1^2 + x_2^2, A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, N = 4, \chi(d) = (-1)^{\frac{d-1}{2}}$
- The two quadratic forms:

$$Q_1(x_1, x_2) = x_1^2 + x_1 x_2 + 6x_2^2$$
$$Q_2(x_1, x_2) = 2x_1^2 + x_1 x_2 + 3x_2^2$$

have level N = 23 and character $\chi(d) = \left(\frac{-23}{d}\right) = \left(\frac{d}{23}\right)$.

The sum $\Theta_{Q_1}(\tau) + 2\Theta_{Q_2}(\tau)$ is an Eisenstein series: $3 + 2\sum_{n=1}(\sum_{d|n}\chi(d))q^n$ of weight 1 and level 23, and the difference: $\Theta_{Q_1} - \Theta_{Q_2}$ is two times the cusp form $q\Pi_{n=1}(1-q^n)(1-q^{23n})$ the 24-th root of $\Delta(\tau)\Delta(23\tau)$. If we want modular forms on the full modular group $PSL_2(\mathbb{Z})$, then we must have N = 1 as the level \mathbb{Q} , i.e. the even symmetric matrix A must be unimodular.

References

- A course in Arithmetic, Jeanne Pierre Serre
- Topics in classical automorphic forms, Henryk Iwaniek
- Lectures on applications in modular forms to Number Theory, Ernst Kani