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1 Sum of four squares: introduction to theta series

In this section, we prove the well-known four square theorem. The goal is to give a nice first encounter with
theta series to the reader.

First, recall that a modular form of weight k for a congruence subgroup Γ is a holomorphic function
f : H→ C satisfying the following two conditions:

1. f is invariant under the slash operator defined for every γ in SL2(Z) as

(f|kγ)(z) = j(γ, z)
−kf(γz),

where j(γ, z) = (cz+ d) if γ =

(
a b
c d

)
.

2. f is holomorphic at all cusps.

The C-vector space for weight k modular forms for Γ is denoted Mk(Γ). A modular form vanishing at all
cusps is called a cusp form. Cusp forms of weight k for Γ form a subspace of MK(Γ), denoted Sk(Γ). A
remarkable fact in the theory is that these spaces are finite dimensional. An explicit bound can also be given
([Zag, Prop 3]).

Proposition 1. Let Γ be a congruence subgroup of SL2(Z). Then

dimMk(Γ) ≤
kVol(Γ \H)

3π
+ 1 =

k[SL2(Z) : Γ ]
12

+ 1.
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Consider the following quadratic form in four variables:

Q(x) = x21 + x
2
2 + x

2
3 + x

2
4

and define
rQ(n) = #{x ∈ Z4|Q(x) = n}.

Our goal in this section is to prove the four square theorem.

Theorem 1 (Lagrange). Let n be a positive integer. Then

rQ(n) = 8
∑

d|n,4 6|d

d = 8σ1(n) − 32σ1

(n
4

)
,

where σk(n) =
∑
d|n d

k and σ1(
n
4
) = 0 if n is not a multiple of 4. In particular, every positive is a sum of

four squares.

To prove this, first consider the theta series attached to the quadratic form Q:

θQ(z) =
∑
x∈Z4

qQ(x) =
∑
x∈Z4

rQ(n)q
n,

where as usual q is defined as e2πiz. This holomorphic function is in fact a modular form of weight 2 for
Γ0(4) and so the next step is to find a basis forM2(Γ0(4)). To do so, consider the Eisenstein series of weight
k and level one

Gk(z) =
∑
m,n∈Z

1

(mz+ n)k
.

For k ≥ 3, this series converges absolutely and defines a modular form of weight k for SL2(Z) (which is
non-zero if and only if k is even). For k = 2, the series converges, but not absolutely. Define G2(z) by fixing
a specific order of summation:

−4π2G2 =
1

2

∑
n 6=0

1

n2
+
1

2

∑
m 6=0

∑
n∈Z

1

(mz+ n)2
.

This order is such that G2(z) has the following q-expansion

G2(z) = −
1

24
+

∞∑
n=1

σ1(n)q
n.

This function is holomorphic in the upper half plane, but not slash-k invariant under SL2(Z) (of course, since
M2(SL2(Z)) = 0). One can recover the invariance by introducing a correction factor: the function

G∗2(z) = G2(z) +
1

8πIm(z)

transforms like a modular form of weight 2, but is not holomorphic.
With these functions, one can define

f1(z) = G∗2(z) − 2G∗2(2z) = G2(z) −G2(2z) =
1

24
+ q+ q2 + . . .

and

f2(z) = G∗2(2z) − 2G∗2(4z) = G2(2z) − 2G2(4z) =
1

24
+ q2 + q4 + . . . .

These functions belong toM2(Γ0(4)) since they have the right transformation properties and are holomorphic.
Since they are also linearly independent and

dimM2(Γ(4)) ≤
2[SL2(Z) : Γ0(4)]

12
+ 1 = 2,
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they form a basis for M2(Γ0(4)). Comparing these q-expansions with the q-expansion

θQ(z) = 1+ 8q+ . . . ,

one sees that

θQ(z) = 8(G2(z) − 2G2(2z)) + 16(G2(2z) − 2G2(4z)) = 8G2(z) − 32G2(z).

Comparing the coefficients of the q-expansions on both sides proves the theorem.

2 Theta series and L-functions

In this section, we explore the connection between theta series and L-functions. The goal is to give less trivial
applications of theta series in mathematics. In the last subsection, we present the ideas behind an efficient
algorithm that evaluates L-functions.

2.1 The Riemann zeta function

Define

θ(z) =
∑
n∈Z

eπizn
2

= 1+ 2

∞∑
n=1

eπizn
2

.

This is a modular form of weight 1/2 for Γ0(4) (and a certain multiplier system, as we will see in the next
section). Recall that the Poisson summation formula can be written as∑

n∈Z
f(x+ n) =

∑
n∈Z

f̂(n)e2πinx,

where f is any continuous function on R which decreases rapidly as x tends to infinity and f̂ is its Fourier

transform. Applying this to ft(x) = e−πtx
2

and letting x = 0 we get the following transformation formula
for θ(t):

θ(i/t) =
√
tθ(it) for t ∈ R.

Now let

φ(t) =
θ(it) − 1

2

and consider the Mellin transform of φ

M(φ)(s) =

∫∞
0

φ(t)ts
dt

t
.

On one hand, this is equal to∫∞
0

∞∑
n=1

e−πn
2tts

dt

t
=

∞∑
n=1

∫∞
0

e−πn
2tts

dt

t
=

∞∑
n=1

1

(πn2)s

∫∞
0

e−tts
dt

t
= π−sζ(2s)Γ(s)

and on the other, using the fact that

φ(1/t) =
θ(i/t) − 1

2
=
t1/2θ(it) − 1

2
= t1/2φ(t) −

1

2
+
t1/2

2
,

it is equal to ∫1
0

φ(t)ts
dt

t
+

∫∞
1

φ(t)ts
dt

t
=

∫∞
1

φ(t)(ts + t1/2−s)
dt

t
−
1

2s
+

1

2(1/2− s)
.

The equality

π−
s
2 ζ(s)Γ

( s
2

)
=

∫∞
1

φ(t)(t
s
2 + t

1−s
2 )

dt

t
−
1

s
+

1

1− s
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not only proves that ζ(s) extends to a meromorphic function on the complex plane with two simple poles at
s = 0 and s = 1, it also proves that the completed L-function

Λ(s) = π−
s
2 ζ(s)Γ

( s
2

)
satisfies the functional equation

Λ(s) = Λ(1− s).

This example is an illustration of what Zagier calls ”the functional equation principle” which says, roughly,
that the Mellin transform of a function having a certain symmetry with respect to the transformation t 7→ 1/t
(e.g. φ(t)) extends meromorphically to the complex plane and has a functional equation. The next subsection
gives another illustration of this principle.

A similar principle can be applied to prove that the L-function attached to a newform extends meromor-
phically (in fact, holomorphically) to the complex plane and satisfies a functional equation. The proof of this
uses the so-called Fricke involution, but we won’t get into this in these notes.

2.2 Non-holomorphic Eisenstein series

The Non-holomorphic Eisenstein series is defined as

G(z, s) =
Im(z)s

2

∑
m,n∈Z

1

|mz+ n|2s
= ζ(2s)

∑
γ∈Γ∞\SL2(Z)

Im(γ(z))s.

If Q(x, y) is a binary quadratic form of discriminant D and root z ∈ H (i.e. Q(z, 1) = 0), then

2s+1D−s/2G(z, s) =
∑
m,n∈Z

1

Q(m,n)s
,

where the function on the right is called the Epstein zeta function.
Now define

θz(t) =
∑
m,n∈Z

e−π|mz+n|
2Im(z)−1t.

Then using Poisson summation formula again, we see that

θz(1/t) = tθz(t)

and so φ(t) = (θz(t) − 1)/2 satisfies the following transformation formula:

φ(1/t) = −
1

2
+
t

2
+ tφ(t).

It follows that

G∗(z, s) :=

∫∞
0

φ(t)ts
dt

t
= π−sΓ(s)G(z, s)

extends to a meromorphic on C with poles at s = 0 and s = 1 and satisfies the functional equation

G∗(z, s) = G∗(z, 1− s).

This is another illustration of the functional equation principle.
The function G(z, s) is used in the Rankin-Selberg method, which can be used to compute the Petersson

norm of modular forms.
Note also that the leading terms of G(z, s) are know by the Kronecker limit formula. This has many

applications in number theory.
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2.3 Numerical evaluation of L-functions

The idea behind the functional principle has other applications. They were used by Dokchister, who imple-
mented a Pari/GP package that effectively computes the values of (nice enough) L-functions (see [Com]).
The goal here is not to analyse the error term of the implementation details (for this, we refer the reader to
Dokchister’s article [Dok]), but only to see how one can use the ideas above in a different way.

First, we need to agree on what we mean by L-function. For us, an L-function is a Dirichlet series

L(s) =

∞∑
n=1

an

ns

satisfying the following conditions:

1. (Ramanujan bound) The coefficients do not grow too fast, i.e.

an = O(nα)

for some α > 0. In other words, the Dirichlet series converges in some right half-plane.

2. (Meromorphy and functional equation) The function L(s) extends to a meromorphic function on C and
has a finite number of simple poles at s = pi with residues ri. Moreover, there exists a weigh w ≥ 0,
a sign ε ∈ C∗, an exponential factor A ∈ R≥0 and a Γ -factor

γ(s) = Γ

(
s+ λ1
2

)
Γ

(
s+ λ2
2

)
. . . Γ

(
s+ λd
2

)
of dimension d ≥ 1 and Hodge numbers λ1, . . . , λd ∈ C such that the completed L-function

L∗(s) = Asγ(s)L(s)

satisfies the functional equation
L∗(s) = εL∗(w− s).

Note that most of the time, A =
√
N

πd/2 , where N is a conductor.
Example: Examples of L-functions are ζ(s) (the Riemann zeta function), ζK(s) (the Dedekind zeta

functions of number fields), L(s, χ) (the Dirichlet L-functions attached to a Dirichlet character), L(s, ξ) (the
Hecke L-functions attached to a Hecke character), the L-function attached to a modular form of level one,
the L-function attached to a newform for Γ0(N), the Artin L-functions, the L-functions attached to Elliptic
curves, etc.

Exercise: Pick your favourite L-function and see how it fits in the above definition, i.e. find its weight,
sign, exponential factor, degree, Hodge numbers, poles(s) and residue(s) (if any). See [Dok] for a table
containing this data.

Now define φ(t) as

γ(s) =

∫∞
0

φ(t)ts
dt

t
,

that is φ is the inverse Mellin transform of the Γ -factor. Then if we let

Θ(s) =

∞∑
n=1

anφ(nt/A),

we see that ∫∞
0

Θ(t)ts
dt

t
= L∗(s).

The functional equation for L∗(s) implies that Θ(t) satisfies the functional equation

Θ(1/t) = εtwΘ(t) −
∑

rjt
pj

5



for all real positive t. In fact, the converse holds: the functional equation for Θ implies the functional
equation for L∗(s). This gives a numerical way of verifying the functional equation of L∗(s) (provided one
can efficiently compute Θ(t)).

Example: For L(s) = ζ(s), one has an = 1 for all n ≥ 1, w = 1, ε = 1, A = 1/
√
π, d = 1 and

γ(s) = Γ(s/2). Then

φ(t) = e−t
2

and Θ(t) = 2
∑
n=1

e−πn
2t2 .

We also have p1 = 0, r1 = 1, p2 = 1 and r2 = −1, so

Θ(1/t) = tΘ(t) − 1+ t,

which is the same formula as above, up to s simple change of variable.
Fix now s ∈ C. Playing with the representation of L∗(s) as an integral, one sees that

L∗(s) =

∞∑
n=1

anGs(n/A) + ε

∞∑
n=1

anGw−s(n/A) +
∑
j

rj

pj − s
,

where

Gs(t) = t
−s

∫∞
0

φ(x)xs
dx

x
for t > 0

is t−s times the incomplete Mellin transform of φ.
At this point, it may not be totally clear why we are doing all this work to evaluate the L-function. After

all, one could simply plug a value of s in the Dirichlet L-series and add terms! The main problem is that the
terms of the Dirichlet L-series tend to zero very slowly (think of how slowly the harmonic series diverges). In
fact, Dirichlet series converge so slowly that it is impossible in practice to evaluate them to a great precision
(see example bellow). Another problem is that the series expression for L(s) is valid only in a half plane.
The main advantage of the method presented here is that the function Gs(t) can be efficiently computed
numerically and that it tends to zero exponentially fast as t tends to infinity. Moreover, the formula above
for L∗(s) in terms of Gs(t) is valid for all s and it suffices to divide its value by the exponential factor and
the Γ -factor to obtain the value of L(s).

Example: Take L(s) = ζ(s) for example. Using Dokchister’s computel PARI/GP package, it takes 80ms
to evaluate ζ(2) to 100 digits of precision. On the same computer, using the Dirichlet L-series defining ζ(s)
directly, it takes a little more than 7 minutes to sum the first 500000 terms of the series to get only 6 digits
of precision. Let us also mention that the computel package used only 11 terms to get the 100 digits.

In conclusion, the technique presented in this section has the advantage of being really fast in comparison
with the naive approach of summing the terms in the Dirichlet series. Moreover, the computel package uses a
smaller number of coefficients of the Dirichlet L-series to evaluate the L-function. Of course, the coefficients
of the Riemann zeta function are easy to compute, but for more general L-functions (e.g. the L-function of an
elliptic curve) it can be relatively difficult to compute large coefficients. For more details on the computational
aspects of L-functions, we refer to [Dok] and [Coh].

3 Theta series in general

In this section, we introduce two kind of theta functions: the classical ones and the ones defined by Hecke.
On the way, we will also need to so-called congruent theta functions. Before introducing any of these, it is
necessary to define multiplier systems and spherical functions. The main reference for the material of this
section is [Iwa].

3.1 Multiplier systems and automorphic forms

The main reference for this subsection is [Iwa, Sec 2.6, 2.7]. Let k be any real number and Γ ≤ SL2(Z) a
congruence subgroup. It is not difficult to define multiplier systems when k is an integer.
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Example: Let k be an integer and let

χ : (Z/NZ)× → C×

be a Dirichlet character such that χ(−1) = (−1)k. Then the map

ϑ : Γ0(N)→ C×

which sends

(
a b
c d

)
to χ(d) is a homomorphism. ϑ is an example of a multiplier system. Without the

consistency condition χ(−1) = (−1)k there would be no modular forms of weight k for Γ0(N) with multiplier
system ϑ.

The case where k is not an integer is more involved, but since some theta series are of half integral weight,
we need to consider more general multiplier systems.

To begin, for any non-zero complex number z, fix arg(z) ∈ (−π, π] and denote the principal branch of
log by log z. Then define

zs = exp(s log z)

for any s ∈ C. Recall that for γ =

(
a b
c d

)
∈ SL2(Z), one defines jγ(z) as

jγ(z) = cz+ d.

For any γ1, γ2 ∈ SL2(Z), one defines w(γ1, γ2) as

2πw(γ1, γ2) = − arg jγ1γ2
(z) + arg jγ1

(γ2z) + arg jγ2
(z).

Note that w(γ1, γ2) ∈ {0,±1}. The factor system of weight k is defined as

ωk(γ1, γ2) = e(kw(γ1, γ2)),

where e(z) = exp(2πiz). When k is an integer, the factor system of weight k is identically one. In general,

ωk(γ1, γ2)jγ1γ2
(z)k = jγ1

(γ2z)
kjγ2

(z)k

and
f|kγ1γ2 = ωk(γ1, γ2)(f|kγ1)|kγ2.

Definition 1. Let Γ be a congruence subgroup of SL2(Z) and k a real number. A multiplier system of weight
k for Γ is a map

ϑ : Γ → C

such that
|ϑ(γ)| = 1 for γ ∈ Γ

and
ϑ(γ1γ2) = ωk(γ1, γ2)ϑ(γ1)ϑ(γ2).

Moreover, we require the following consistency condition: if −I ∈ Γ , then

ϑ(−I) = e−iπk

A holomorphic function f : H→ C is called an automorphic form of weight k for Γ with multiplier system
ϑ if

f|kγ = ϑ(γ)f

for all γ ∈ Γ and if it is holomorphic at the cusps of Γ .
We will see many examples of automorphic forms of half integral weight with various multiplier systems.

Before that, we briefly introduce spherical functions.
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3.2 Spherical functions

For the rest of these notes, A = (aij) will be an integral symmetric positive definite matrix of rank r. The
Laplace operator attached to A is

∆A =
∑
i,j

a∗ij
∂2

∂xi∂xj
where (a∗ij) = A

−1.

A spherical function of degree ν for A is a homogeneous polynomial P in r variables of degree ν such that

∆AP = 0.

Equivalently, P is constant if ν = 0, P is a linear form if ν = 1 and

P(x) =

d∑
i=1

ci(`
tAx)ν,

where ` ∈ Cr is isotropic (i.e. `tA` = 0) and ci ∈ C, if ν ≥ 2.

3.3 Classical theta functions

Let A be a matrix as above and let P be a spherical function of degree ν for A. The matrix A is called even
if its diagonal entries are even. Equivalently, xtAx is even for all x ∈ Zr. The theta series attached to A and
P is defined as

ΘA,P(z) =
∑
m∈Zr

P(m)e

(
1

2
A[m]z

)
,

where A[m] = mtAm. Now fix an integer N > 0 such that NA−1 has integral entries (e.g. N = |A|). For
any vector h (mod N), the congruent theta series is defined as

ΘA,P,h(z) =
∑
m∈Zr

m≡h (mod N)

P(m)e

(
A[m]z

2N2

)
.

Note that if h = 0, then ΘA,P,0(z) = N
νΘA,P(z).

Example: The following series are example of theta series. Note that the matrix of the first series is not
even.

Θ(1),1(z) =
∑
n∈Z

e(n2z/2) =
∑
n∈Z

eiπn
2z,

Θ(2),1(z) =
∑
n∈Z

e(n2z) =
∑
n∈Z

qn
2

,

where as usual q = e2πiz and

Θ2I4,1(z) =
∑
m∈Z4

qm
2
1+···+m

2
4

are examples of theta series that we have seen before.
Our goal in this section is to see that theta functions are modular forms and find the corresponding weight,

level and multiplier system. The first step towards this is to prove the following inversion formula.

Theorem 2. Let A be a symmetric, positive definite integral matrix of dimension r and let P be a spherical
function with respect to A of degree ν. Then for any z ∈ H and x ∈ Cr we have∑

m∈Zr

P(m+ x)e

(
A[m+ x]z

2

)
=
i−ν√
|A|

(
i

z

)k ∑
m∈Zr

P∗(m)e

(
−A−1[m]

2z
+mtx

)
.

In particular, for x = 0,

ΘA,P(z) =
i−ν√
|A|

(
i

z

)k
ΘA−1,P∗(−1/z),

where P∗(m) = P(A−1m).
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Sketch of proof. The first step is to apply the Poisson summation formula to the function

f(x) = e

(
A[x]z

2

)
.

Now suppose, without loss of generality, that P(x) = (`tAx)ν, where ` is isotropic if ν ≥ 2 and ` ∈ C if
ν = 0, 1. Then define the differential operator

L =

r∑
j=1

`j
∂

∂xj

and apply Lν to the equation obtained above via Poisson summation formula to get the result.
For more details, see [Iwa, Sec 10.2].

Corollary 1. If |A| = 1, then

ΘA,P(−1/z) = i
−ν(−1/z)ν+r/2ΘA,P(z).

A matrix satisfying the condition of the corollary is called unimodular. It turns out that the dimension of
such a matrix is a multiple of 8. If the dimension is not a multiple of 8, the inversion formula in the theorem
above does not relate the theta function of the matrix to itself.

To proceed further in the analysis of theta functions, it is convenient to study the space spanned by a
specific family of congruent theta functions. First, define

H = {h (mod N)|Ah ≡ 0 (mod N)},

where, as above, N is any integer such that NA−1 is integral. The following result is not hard to establish.

Proposition 2. For any h ∈ H,

ΘA,P,h(z+ 2) = e

(
A[h]

N2

)
ΘA,P,h(z)

and if A is even,

ΘA,P,h(z+ 1) = e

(
A[h]

2N2

)
ΘA,P,h(z)

Proof. Simply note that
A[m] ≡ A[h] (mod N2).

The next proposition follows from an application of the inversion formula.

Proposition 3. For any h ∈ H,

ΘA,P,h(−1/z) = i
−ν|A|−1/2(−iz)ν+r/2

∑
`∈H

e

(
htA`

N2

)
ΘA,P,`(z)

Sketch of proof. Apply the transformation formula of Theorem 2 with x = h/N. Then the left hand side is
N−νΘA,P,h(z). On the right hand side, change m to NA−1m to get

ΘA,P,h(−1/z) = i
−ν|A|−1/2(−iz)ν+r/2

∑
Am≡0 (mod N)

P(m)e

(
A[m]z

2N2
+
mtAh

N2

)
.

Rearranging the sum gives the result.

This proposition says that the space spanned by congruent theta functions with h ∈ H is stable under
z 7→ z + 2 and z 7→ −1/z. With some work, one can then prove the following general theorem about the
transformation properties of congruent theta functions.
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Theorem 3. Let γ =

(
a b
c d

)
∈ SL2(Z) with d ≡ 1 (mod 2) and suppose that at least one of the following

three conditions hold:

• c ≡ 0 (mod 2N) and b ≡ 0 (mod 2).

• c ≡ 0 (mod 2N) and A is even.

• c ≡ 0 (mod N) and A and N−1A are even.

Then for any h ∈ H,

ΘA,P,h(γz) = e

(
A[h]

2N2

)ab
ϑ(γ)(cz+ d)ν+r/2ΘA,P,ah(z),

where

ϑ(γ) =

(
|A|

d

)(
ε̄d

(
2c

d

))r
,

with

εd =

{
1 if d ≡ 1 (mod 4)

i if d ≡ −1 (mod 4)

and
(

|A|

d

)
is the Jacobi symbol.

Proof. See [Iwa, Prop 10.6].

Corollary 2. We have

ΘA,P,h(z) ∈Mν+r/2

(
Γ(4N),

(
2c

d

)r)
and if ν > 0, ΘA,P,h(z) is a cusp form.

Using this general result about congruent theta functions, one can prove the following theorem.

Theorem 4. Let A be a symmetric, positive definite, integral and even matrix of even rank r. Let N be such
that NA−1 has the same properties. Let P be a spherical function of degree ν for A. Then

ΘA,P(z) ∈Mν+r/2(Γ0(N), χD),

where D = (−1)r/2|A| and χD(γ) =
(
D
d

)
is the Kronecker symbol. If ν > 0, then ΘA,P(z) is a cusp form.

Proof. See [Iwa, Thm 10.9].

Example: Let Q(x, y) = ax2 + bxy+ cy2 be an integral binary quadratic form. Then the theta series∑
m,n∈Z2

qQ(m,n)

is a modular form of weight one for the congruence subgroup Γ0(−D) with character (multiplier system) χD,
where D = b2 − 4ac. To see this, it suffices to take P = 1 and

A =

(
2a b
b 2c

)
.

Example: The theta series ∑
x∈Z4

qx
2
1+···+x

2
4

that was used in the proof of the four square theorem is a modular form of weight 2 for the congruence
subgroup Γ0(4) with trivial character. This is because the determinant of the matrix

A =


2
2
2
2


is 16 and so the character χ16 is trivial in this case.
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3.4 Hecke’s theta series

Throughout this subsection, fix an K imaginary quadratic field, m a modulus of K, Im the multiplicative group
of fractional ideals coprime to m and

Km,1 = {(a)|a ≡ 1 (mod m)}.

The congruence condition in the definition of Km,1 means that for all integral prime ideals p of OK dividing
m, we have ordp(a− 1) ≥ ordp(m). Note that the ideals of Km,1 belongs to Im.

Fix now an embedding of K in C and an integer u and define a map

ξu∞ : K∗ −→ C∗

a 7−→ (
a

|a|

)u
.

For m small enough Um,1 ⊆ ker ξu∞, where Um,1 = UK ∩ Km,1. It follows that for such a modulus m, ξu∞
induces a well-defined map

ξu∞ : Km,1 −→ C∗.

We define a Hecke character for K as a (unitary) character

ξ : Im −→ C∗

such that ξ|Km,1
= ξu∞ for some integer u. Note that if u = 0, then ξ induces a character on the ray class

group modulo m, Cm = Im/Km,1, and that conversely any unitary character of the ray class group can be
seen as a Hecke character with u = 0.

The main result in this subsection is the following theorem.

Theorem 5. Let K = Q(
√
D) be an imaginary quadratic field and ξ a Hecke character modulo m such that

ξ((a)) =

(
a

|a|

)u
if a ≡ 1 (mod m),

where u ∈ Z≥0. Then

θξ(z) =
∑
a

ξ(a)N(a)
u
2 qNa,

where the sum runs over all integral ideals of K, is a modular form of weight u + 1 for Γ0(|D|Nm) with
character (multiplier system) ϑ defined as

ϑ(γ) = χD(d)ξ((d)) for γ =

(
a b
c d

)
∈ SL2(Z).

If u > 0, θξ(z) is a cusp form.

Proof. See [Iwa, Prop 12.5] for a sketch of the proof.

Let us mention that the proof of this theorem uses techniques that are different than the ones used before
(Poisson summation, in particular). In fact, Hecke used his theory of L-functions to prove it.

Example: In [Wei, Sec 4.2], the author mentions the fact that if χ is a character

χ : (Z[i]/(α))∗ −→ C∗

such that χ(i) = 1, where α ∈ Z[i], then the function

θχ(z) =
1

4

∑
a,b∈Z

χ(a+ bi)qa
2+b2
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is a modular form of weight one for Γ1(4|α|
2) (and trivial multiplier system). This follows directly from the

theorem above. The idea is that for any field K and any modulus m of K, one has the following exact sequence

1→ UK/Um,1 → Km/Km,1 → Cm → C→ 1,

where C is the class group of K (see [Mil, Ch.V, Thm 1.7]). Moreover,

Km/Km,1
∼=
∏
p|m
p real

{±1}× (OK/m)
∗
.

For K = Q(i), one has UK = {±1,±i}. Taking m = (α) and remembering that χ(UK) = 1 by assumption,
we see that χ induces a character of the ray class group modulo (α), hence a Hecke character with u = 0.
Finally, note that every ideal of Z[i] is principal and note that the multiplier system of the theorem is trivial
on Γ1(4|α|

2).

4 Modular forms of weight one

Modular forms of weight one are very interesting. For example, one can attach a 2-dimensional representation
of Gal(Q̄/Q) to them (a theorem of Deligne and Serre). This gives a way to prove the Artin conjecture in
certain cases. Following an example of Serre (see [Ser, Note on 5.3]), we will see how modular forms of
weight one appear naturally.

Let f(x) = x3− x− 1, let E = Q[x]/(f) and let L be the Galois closure of E. Then Gal(L/Q) ∼= S3. Since
f has discriminant −23, K := Q(

√
−23) ⊆ L. Since L/K is unramified everywhere (verify this!) and K has

class number 3 (verify this too!), L is the Hilbert class field of K. Our goal is to compute

Np = number of roots of f mod p.

In fact, for p 6= 23, Np is the number of fixed point of σp ∈ Gal(L/Q) (the Frobenius at p) as a permutation
in S3 (see [Ser]). It is not too difficult to prove that for p 6= 23

Np =

0 or 3 if
(

−23
p

)
= 1

1 if
(

−23
p

)
= −1

.

To distinguish between the two cases when
(

−23
p

)
= 1, first write pOK = pp̄. Then

Np = 3⇔ σp = 1⇔ σp = 1⇔ p is principal⇔ p = m2 +mn+ 6n2 for some m,n ∈ Z

where we used the fact that Gal(L/K) is isomorphic to the class group of K to pass from the second to the
third row. This proves that for p 6= 23

Np =


3 if p is representable by x2 + xy+ 6y2

0 if p is representable by 2x2 + xy+ 3y2

1 if
(

−23
p

)
= −1

.

This example leads to the consideration of the following function

1

2

( ∑
m,n∈Z

qm
2+mn+6n2

−
∑
m,n∈Z

q2m
2+mn+3n2

)
=

∞∑
n=1

anq
n.
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Then Np = ap + 1 and using the results of the previous section, we see that it is a cusp form of weight
one for the congruence subgroup Γ0(23) with character χ−23 (the Kronecker symbol). It is natural to ask if
we can use the same technique as in the four square theorem to completely solve the problem, i.e. to find

conditions on p to determine by which quadratic form it is represented when
(

−23
p

)
= 1. Unfortunately, the

space of modular forms of weight one is more difficult to study. Note however that with some work, one can
define Eisenstein series of weight one.

An explicit basis of these spaces would lead to interesting results on the representation of primes by
quadratic forms. A few things are known in this subject, but there are still interesting problems. For example,
since the class group of K = Q(

√
−23) has only one genus with three classes in it, it is not possible to

determine which quadratic form represents p based on congruence conditions. For K = Q(i), this is possible,
since Fermat showed that an odd prime p is a sum of two squares if and only if p ≡ 1 (mod 4). Those
results come from the genus theory of quadratic forms, which was developed by Gauss.
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