Characters (definition)

Let p be a prime. A <u>character</u> on \mathbb{F}_p is a group homomorphism $\mathbb{F}_p^{\times} \to \mathbb{C}^{\times}$.

Example

The map $a \mapsto 1 \ \forall \ a \in \mathbb{F}_p^{\times}$ is called the <u>trivial character</u>, henceforth denoted by ϵ .

Example

If g is a generator of \mathbb{F}_p^{\times} and ζ is any $(p-1)^{\text{th}}$ root of unity in \mathbb{C} , the map $\mathbb{F}_p^{\times} \to \mathbb{C}^{\times}$, $g^k \mapsto \zeta^k$ is a character. In fact, it is easy to show that every character on \mathbb{F}_p is of this form. For any character χ on \mathbb{F}_p , $a \in \mathbb{F}_p^{\times}$

1 $\chi(1) = 1$

2
$$\chi(a)^{p-1} = 1$$

$$(a^{-1}) = \chi(a)^{-1} = \overline{\chi(a)}$$

Under multiplication of functions, the characters on \mathbb{F}_p form a cyclic group of order p-1. The generators are the maps $g^k \mapsto \zeta^k$, where g, ζ are generators of $\mathbb{F}_p^{\times}, \mu_{p-1}$, respectively.

For the rest of this discussion, we will extend the domain of a character on \mathbb{F}_p to include 0 using the following rule:

Note that this does not compromise the multiplicativity of characters.

For any non-trivial character χ on \mathbb{F}_{p} ,

$$\sum_{{\sf a}\in \mathbb{F}_p}\chi({\sf a})=0$$

A particular character: the Legendre symbol

Let p be an odd prime. For any integer a, we define the Legendre symbol

$$\left(\frac{a}{p}\right) = \begin{cases} 1 & a \equiv \Box \neq 0 \quad (p) \\ -1 & a \neq \Box \quad (p) \\ 0 & a \equiv 0 \quad (p) \end{cases}$$

It is straightforward to show that

$$\left(rac{a}{p}
ight)\equiv a^{rac{p-1}{2}}$$
 (p)

from which we get,

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right) \qquad \qquad \left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$$

Note that the function $\mathbb{Z} \to \mathbb{C}$ defined by the Legendre symbol with denominator p does not distinguish between integers in the same congruence class modulo p. Thus, it defines a function $\mathbb{F}_p \to \mathbb{C}$. Since the Legendre symbol is multiplicative, this function is a character; in fact, it is the unique character on \mathbb{F}_p of order 2. We call it the quadratic character on \mathbb{F}_p and denote it by λ_p .

Lemma 1

Let p be an odd prime, $a \in \mathbb{F}_p$, K a field extension of \mathbb{F}_p , and suppose $a = \alpha^2$ for some $\alpha \in K$. Then

$$\alpha^{p-1} = \lambda_p(a)$$

<u>Pf</u>: In K, we have

$$\alpha^{p-1} = (\alpha^2)^{\frac{p-1}{2}} = a^{\frac{p-1}{2}} = \lambda_p(a)$$

Let p be a prime, χ a character on \mathbb{F}_p , and $a \in \mathbb{F}_p$. We define

$$g_{a}(\chi) = \sum_{t \in \mathbb{F}_{p}} \chi(t) \zeta^{at}$$

where $\zeta_p = e^{2\pi i/p}$, and define $g(\chi) = g_1(\chi)$. Sums of this form are called <u>Gauss sums</u>.

Example

$$g(\epsilon) = \sum_{t\in\mathbb{F}_p} 1\cdot\zeta_p^t = 0$$

For any character χ on \mathbb{F}_p , $a \in \mathbb{F}_p^{\times}$,

$$g_{\mathsf{a}}(\chi) = \chi(\mathsf{a}^{-1})g(\chi)$$

Proof: We have

$$g_{a}(\chi) = \sum_{t \in \mathbb{F}_{p}} \chi(t) \zeta_{p}^{at} = \sum_{u \in \mathbb{F}_{p}} \chi(a^{-1}u) \zeta_{p}^{u}$$
$$= \chi(a^{-1}) \sum_{u \in \mathbb{F}_{p}} \chi(u) \zeta_{p}^{u} = \chi(a^{-1}) g(\chi)$$

____ ▶

For any non-trivial character χ on \mathbb{F}_{p} ,

$$|g(\chi)|^2 = p$$

<u>Pf</u>: We have

$$g(\chi)\overline{g(\chi)} = \sum_{t,u\in\mathbb{F}_p} \chi(tu^{-1})\zeta_p^{t-u} = \sum_{v\in\mathbb{F}_p} \zeta_p^v \sum_{u\in\mathbb{F}_p^\times} \chi(1+vu^{-1})$$
$$= \sum_{u\in\mathbb{F}_p} 1 + \sum_{v\in\mathbb{F}_p^\times} \zeta_p^v \sum_{w\in\mathbb{F}_p-\{1\}} \chi(w) = p-1 - \sum_{v\in\mathbb{F}_p^\times} \zeta_p^v$$
$$= p-1 - (-1) = p$$

For any character χ on \mathbb{F}_p ,

$$\overline{g(\chi)} = \chi(-1)g(\overline{\chi})$$

Proof: We have

$$\overline{g(\chi)} = \sum_{t \in \mathbb{F}_p} \overline{\chi(t)} \zeta_p^{-t} = \sum_{u \in \mathbb{F}_p} \overline{\chi(-u)} \zeta_p^u$$
$$= \overline{\chi(-1)} \sum_{u \in \mathbb{F}_p} \overline{\chi(u)} \zeta_p^u = \overline{\chi(-1)} g(\overline{\chi})$$

Now note that $\chi(-1)^2 = \chi((-1)^2) = \chi(1) = 1$, so $\chi(-1) = \pm 1$. In particular, $\chi(-1) = \chi(-1)$.

A∄ ▶ ∢ ∃=

Gauss sums (final result)

Lemma 2

For any odd prime q,

$$g(\lambda_q)^2 = (-1)^{\frac{q-1}{2}}q$$

 $\underline{\underline{Pf:}}$ From previous results, $g(\lambda_q)\overline{g(\lambda_q)} = q$ and

 $\overline{g(\lambda_q)} = \lambda_q(-1)g(\overline{\lambda_q})$. We obtain the above statement by noting that $\lambda_q(-1) = (-1)^{(q-1)/2}$ and $\overline{\lambda_q} = \lambda_q$ since λ_q takes values in $\{\pm 1\}$.

By Lemma 1, this implies

Corollary

For any odd primes p, q,

$$g(\lambda_q)^{p-1} \equiv (-1)^{rac{p-1}{2}rac{q-1}{2}}\lambda_p(q) \mod p$$

Theorem

For any pair p, q of distinct odd primes,

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) \ = \ (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$$

Let $\zeta \neq 1$ be a q^{th} root of unity in \mathbb{C} , and let \mathfrak{p} be a prime ideal in $\mathbb{Z}[\zeta]$ containing p (and, hence, excluding q). Define $K = \mathbb{Z}[\zeta]/\mathfrak{p}$. K is a finite field of characteristic p, so it is an extension of \mathbb{F}_p . We will show that

$$\lambda_q(p) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}\lambda_p(q)$$

in K and hence in $\mathbb{Z}[\zeta]$, proving the theorem.

Proof of quadratic reciprocity

<u>Pf</u>: Since char(K) = p, in K we have

$$g(\lambda_q)^p = \left(\sum_{t \in \mathbb{F}_q} \lambda_q(t) \zeta_q^t\right)^p = \sum_{t \in \mathbb{F}_q} \lambda_q(t) \zeta_q^{tp}$$
$$= \sum_{u \in \mathbb{F}_q} \lambda_q(p^{-1}u) \zeta_q^u = \lambda_q(p) g(\lambda_q)$$

Since $g(\lambda_q)^2 = \pm q \neq 0$ in *K*, we can divide both sides by $g(\lambda_q)$ to obtain

$$\lambda_q(p) = g(\lambda_q)^{p-1} = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}\lambda_p(q)$$

by the corollary to Lemma 2. Since this quantity is ± 1 , equality must hold in $\mathbb{Z}[\zeta]$ as well.

For any prime p and characters χ,ψ on $\mathbb{F}_p,$ we define

$$J(\chi,\psi) = \sum_{\substack{a,b\in\mathbb{F}_p\\a+b=1}} \chi(a)\psi(b)$$

Such sums are called <u>Jacobi sums</u>.

Examples 1 $J(\epsilon, \epsilon) = \sum_{a+b=1} 1 = \sum_{a \in \mathbb{F}_p} 1 = p$ 2 For $\chi \neq \epsilon$, $J(\chi, \epsilon) = \sum_{a+b=1} \chi(a) = \sum_{a \in \mathbb{F}_p} \chi(a) = 0$

For any characters χ, ψ on \mathbb{F}_p on \mathbb{F}_p with $\chi \psi \neq \epsilon$,

$$J(\chi,\psi) = \frac{g(\chi)g(\psi)}{g(\chi\psi)}$$

<u>Pf</u>: Note that $g(\chi\psi) \neq 0$ since $\chi\psi \neq \epsilon$. We have

$$g(\chi)g(\psi) = \sum_{t,u\in\mathbb{F}_p} \chi(t)\psi(u)\zeta_p^{t+u} = \sum_{\nu\in\mathbb{F}_p} \zeta_p^{\nu} \sum_{t+u=\nu} \chi(t)\psi(u)$$
$$= \psi(-1)\sum_{t\in\mathbb{F}_p} (\chi\psi)(t) + \sum_{\nu\in\mathbb{F}_p^{\times}} \zeta_p^{\nu} \sum_{r+s=1} \chi(\nu r)\psi(\nu s)$$
$$= \sum_{\nu\in\mathbb{F}_p^{\times}} (\chi\psi)(\nu)\zeta_p^{\nu} \sum_{r+s=1} \chi(r)\psi(s) = g(\chi\psi)J(\chi,\psi)$$

(a)

Lemma 3

Suppose 3|p-1, and let χ be a non-trivial cubic character on \mathbb{F}_p (i.e., a character of order 3). Then

$$g(\chi)^3 = pJ(\chi,\chi)$$

<u>Pf</u>: Note that $\chi^2 = \overline{\chi}$ is the other non-trivial cubic character on \mathbb{F}_p . From a previous result, we have $g(\overline{\chi}) = \chi(-1)\overline{g(\chi)} = \overline{g(\chi)}$, where the last equality holds because χ is cubic. Thus, by the previous claim, we have

$$J(\chi,\chi) = \frac{g(\chi)^2}{g(\chi^2)} = \frac{g(\chi)^2}{g(\bar{\chi})} = \frac{g(\chi)^2}{g(\chi)} = \frac{g(\chi)^3}{|g(\chi)|^2} = \frac{g(\chi)^3}{p}$$

Let $\omega = e^{2\pi i/3}$. We call $D = \mathbb{Z}[\omega]$ the ring of Eisenstein integers. Each element of D can be written uniquely as a sum $a + b\omega$, $a, b \in \mathbb{Z}$. D is a Euclidean domain under the norm

$$N(a+b\omega) = (a+b\omega)\overline{(a+b\omega)} = a^2 - ab + b^2$$

and hence it is a PID. The units in D are the elements of norm 1, and these are $1, \omega, \omega^2, -1, -\omega, -\omega^2$, i.e., the sixth roots of unity. Note that a prime in \mathbb{Z} need not be prime in D. Indeed,

$$3 = -\omega^2 (1 - \omega)^2$$

7 = (3 + \omega)(2 - \omega)

Primes in D

Let $\pi \in D$. If $N\pi$ is a prime in \mathbb{Z} , one easily shows that π is prime in D.

If π is prime in D, then $D/\pi D$ is a field with $N\pi$ elements, and either

• $N\pi = p$ for some prime p in \mathbb{Z} , $p \equiv 1 \mod 3$

② $N\pi = q^2$ for some prime q in \mathbb{Z} , $q \equiv 2 \mod 3$; in this case, π is an associate of q

③ $N\pi = 3$; in this case, π is an associate of $1 - \omega$

So for $\pi \not\sim 1 - \omega$ prime in *D*, $3 | N\pi - 1$. In addition, for each such π , $\exists !$ associate $\pi' \in D$ s.t. $\pi' \equiv 2$ (3). This happens iff $\pi' = a + b\omega$ for some $a, b \in \mathbb{Z}$ satisfying

$$a \equiv 2 \quad (3)$$
$$b \equiv 0 \quad (3)$$

A prime $\pi' \in D$ satisfying $\pi' \equiv 2$ (3) is called primary.

Lemma 4

Let p be a prime in \mathbb{Z} satisfying $p \equiv 1$ (3), χ a non-trivial cubic character on \mathbb{F}_p . The Jacobi sum $J(\chi, \chi)$ is primary in D.

<u>Pf</u>: One verifies that indeed $J(\chi, \chi) \in D$. We have shown that $N(J(\chi, \chi)) = |J(\chi, \chi)|^2 = p$, so $J(\chi, \chi)$ is prime in D. In the ring of algebraic integers, by Lemma 3,

$$J(\chi,\chi) \equiv p J(\chi,\chi) = g(\chi)^3 = \left(\sum_{t \in \mathbb{F}_p} \chi(t)\zeta_p^t\right)^3$$
$$\equiv \sum_{t \in \mathbb{F}_p} \chi(t)^3 \zeta_p^{3t} = \sum_{t \in \mathbb{F}_p^\times} \zeta_p^{3t} = -1$$

where the congruences are modulo (3). Similarly,

$$\overline{J(\chi,\chi)} = J(\overline{\chi},\overline{\chi}) \equiv -1$$
 (3)

Setting $J(\chi,\chi) = a + b\omega$, we obtain from the above that

$$0 \equiv b(\omega - \overline{\omega}) = b\sqrt{-3}$$

which implies that $-3b^2 \equiv 0$ (9). Since every rational algebraic integer is an integer, this holds in \mathbb{Z} as well, so $b \equiv 0$ (3), and consequently $a \equiv -1 \equiv 2$ (3).

Let π be a prime in D with $N\pi \neq 3$. One can show that for any $\alpha \in D$ s.t. $\pi \nmid \alpha$, $\exists ! m \in \{0, 1, 2\}$ s.t. $\alpha^{(N\pi-1)/3} \equiv \omega^m$ (π). Thus, for any $\alpha \in D$, we may define the cubic residue character

$$\left(\frac{\alpha}{\pi}\right)_{3} = \begin{cases} 0 & \alpha \equiv 0 \ (\pi) \\ \omega^{m} & \alpha^{(N\pi-1)/3} \equiv \omega^{m} \ (\pi) \end{cases}$$

For any $\alpha, \beta \in D$, we have (α/π)₃ $\equiv \alpha^{(N\pi-1)/3}$ (π) ($\overline{\alpha/\pi}$)₃ $= (\alpha/\pi)^2_3 = (\alpha^2/\pi)_3$ ($\overline{\alpha/\pi}$)₃ $= (\overline{\alpha}/\overline{\pi})_3$ ($\overline{\alpha}/\pi$)₃ $= (\overline{\alpha}/\overline{\pi})_3$ ($\overline{\alpha}/\pi$)₃ = 1 iff $\alpha \equiv x^3$ (π) for some $x \in D$ ($\alpha\beta/\pi$)₃ $= (\alpha/\pi)_3(\beta/\pi)_3$ Note that properties (2) and (3) imply that for $n, q \in \mathbb{Z}$, q a prime in D,

$$\left(\frac{n}{q}\right)_3^2 = \left(\frac{n}{q}\right)_3$$

If $q \nmid n$, this implies $(n/q)_3 = 1$. Thus, if $p, q \in \mathbb{Z}$ are distinct primes in D,

$$\left(\frac{p}{q}\right)_3 = 1 = \left(\frac{q}{p}\right)_3$$

This is a special case of the cubic reciprocity law, which we will soon prove.

Note that the cubic residue symbol with denominator π does not distinguish between Eisenstein integers in the same congruence class modulo π , and thus defines a map $D/\pi D \to \mathbb{C}$. We call it the <u>cubic residue character</u> on $D/\pi D$ and denote it by χ_{π} . It is multiplicative by property (3) above.

If $N\pi = p \equiv 1$ (3), then $D/\pi D$ is a field with p elements. $\mathbb{F}_p \cong D/\pi D$ through the map that sends n to the coset of n in $D/\pi D$. Thus, we may view the cubic residue character as a map $\mathbb{F}_p \to \mathbb{C}$. Since the former is multiplicative, this map is in fact a non-trivial cubic character on \mathbb{F}_p in the sense defined previously.

Jacobi sum of a CRC

Lemma 5

Let π be primary in D with $N\pi = p \equiv 1$ (3). Then $J(\chi_{\pi}, \chi_{\pi}) = \pi$ and hence $g(\chi_{\pi})^3 = p\pi$.

<u>Pf</u>: Since $N(J(\chi_{\pi}, \chi_{\pi})) = p$ and $J(\chi_{\pi}, \chi_{\pi})$ is primary by Lemma 4, it suffices to show that $\pi | J(\chi_{\pi}, \chi_{\pi})$. We have

$$J(\chi_{\pi}, \chi_{\pi}) = \sum_{a \in \mathbb{F}_{p}} \chi_{\pi}(a) \chi_{\pi}(1-a) \equiv \sum_{a \in \mathbb{F}_{p}} a^{(p-1)/3} (1-a)^{(p-1)/3}$$
$$= \sum_{a \in \mathbb{F}_{p}} \sum_{j=0}^{2(p-1)/3} c_{j}a^{j} = \sum_{j=0}^{2(p-1)/3} c_{j} \sum_{a \in \mathbb{F}_{p}} a^{j}$$

where the congruence is mod π . But since j , $<math>\sum_{a \in \mathbb{F}_p} a^j \equiv 0 \mod p$, and hence mod π .

Theorem

Let π_1, π_2 be primary in *D*, $N\pi_1 \neq N\pi_2$. Then

$$\left(\frac{\pi_1}{\pi_2}\right)_3 = \left(\frac{\pi_2}{\pi_1}\right)_3$$

<u>Pf</u>: We have already shown this to be true if $\pi_1, \pi_2 \in \mathbb{Z}$. We will prove it for the case $\pi_1 \in \mathbb{Z}, \pi_2 \notin \mathbb{Z}$. So $\pi_1 = q$ for some prime q in $\mathbb{Z}, q \equiv 2$ (3) and $N\pi_2 = p$ for some prime p in $\mathbb{Z}, p \equiv 1$ (3). Set $\pi_2 = \pi$. By Lemma 5, we have

$$g(\chi_{\pi})^{q^{2}-1} = (p\pi)^{\frac{q^{2}-1}{3}} \equiv \chi_{q}(p\pi) \quad (q)$$

= $\chi_{q}(p)\chi_{q}(\pi) = \chi_{q}(\pi)$

and so, since $q^2\equiv 1$ (3) and $\chi_\pi(t)$ is a cube root of unity for $t\in \mathbb{F}_p^{ imes}$,

$$\chi_{q}(\pi)g(\chi_{\pi}) \equiv g(\chi_{\pi})^{q^{2}} = \left(\sum_{t\in\mathbb{F}_{p}}\chi_{\pi}(t)\zeta_{p}^{t}\right)^{q^{2}} \equiv \sum_{t\in\mathbb{F}_{p}}\chi_{\pi}(t)^{q^{2}}\zeta_{p}^{q^{2}t}$$
$$= \sum_{t\in\mathbb{F}_{p}}\chi_{\pi}(t)\zeta_{p}^{q^{2}t} = g_{q^{2}}(\chi_{\pi}) = \chi_{\pi}(q^{-2})g(\chi_{\pi})$$
$$= \chi_{\pi}(q)g(\chi_{\pi})$$

where the congruences are mod q. Since $g(\chi_{\pi})\overline{g(\chi_{\pi})} = p \neq 0$ (q), we can divide both sides by $g(\chi)$ to obtain $\chi_q(\pi) \equiv \chi_{\pi}(q)$ (q). \Box

Note that the law of cubic reciprocity allows us to draw conclusions about non-primary primes as well. Suppose π'_1, π'_2 are primes in D, $N\pi'_1, N\pi'_2 \neq 3$, $N\pi'_1 \neq N\pi'_2$. Then $\pi'_j = u_j\pi_j$ for some π_1, π_2 primary in D, u_1, u_2 units in D. Thus,

$$\begin{pmatrix} \frac{\pi_1'}{\pi_2'} \end{pmatrix}_3 = \left(\frac{u_1 \pi_1}{u_2 \pi_2} \right)_3 = \left(\frac{u_1 \pi_1}{\pi_2} \right)_3$$

$$= \left(\frac{u_1}{\pi_2} \right)_3 \left(\frac{\pi_1}{\pi_2} \right)_3 \equiv u_1^{(N\pi_2 - 1)/3} \left(\frac{\pi_1}{\pi_2} \right)_3 \quad (\pi_2)$$

$$= u_1^{(N\pi_2 - 1)/3} \left(\frac{\pi_2}{\pi_1} \right)_3$$

by cubic reciprocity.

We would like to know modulo which primes the polynomial $x^3 - 2$ splits (in the strong sense described in Weinstein's paper). It clearly does not split mod 2. Modulo 3, we have

$$x^3 - 2 = x^3 + 1 = (x + 1)^3$$

so $x^3 - 2$ does not split in this case.

For primes $p \equiv 1$ (3), it is enough to show that $x^3 - 2$ has a root in \mathbb{F}_p to show that it splits mod p; if a is one root, the others are $g^{(p-1)/3}a, g^{2(p-1)/3}a$, where g is a generator for \mathbb{F}_p^{\times} , and these are all distinct.

For $p \equiv 1$ (3), $x^3 - 2$ splits mod p iff there are integers c, d s.t. $p = c^2 + 27d^2$.

<u>Pf</u>: Let $\pi = a + b\omega$ be primary in *D* s.t. $N\pi = p$. Note

$$\left(\frac{2}{\pi}\right)_3 = \left(\frac{\pi}{2}\right)_3 \stackrel{(2)}{\equiv} \pi^{(4-1)/3} = \pi \qquad (*)$$

Suppose $x^3 - 2$ splits mod p. Then it splits mod π . Thus, by (*),

$$\pi \stackrel{(2)}{\equiv} \left(\frac{2}{\pi}\right)_3 = 1$$

In particular, b is even. b is also divisible by 3 since π is primary. We have $p = N\pi = a^2 - ab + b^2$ and so

$$4p = (2a - b)^2 + 3b^2 = 4c^2 + 4 \cdot 27d^2$$

where c = a - b/2 and d = b/6. Now suppose $p = c^2 + 27d^2$. Then

$$(2a - b)^2 + 27(b/3)^2 = 4p = (2c)^2 + 27(2d)^2$$

Thus, $b/3 = \pm 2d$; in particular, *b* is even. Since π is prime, *a* must be odd, and so $\pi = a + b\omega \equiv 1$ (2). Thus, by (*), $x^3 - 2$ splits in $D/\pi D$, and hence in \mathbb{F}_p .