Characters (definition)

Let p be a prime. A character on [F,, is a group homomorphism
Fy — C*.

Themapa—1Vae IF;; is called the trivial character, henceforth
denoted by e.

If g is a generator of F and ( is any (p — 1)t root of unity in C,
the map F; — C*, gk — ¢k is a character. In fact, it is easy to
show that every character on F, is of this form.
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Characters (properties)

For any character x on Fp,, a € F
0 x(1)=1
@ x(a) =1
@ x(ah) =x(a) ' =x(a)
Under multiplication of functions, the characters on [F, form a

cyclic group of order p — 1. The generators are the maps gk — ¢,
where g, ( are generators of F, 151, respectively.
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Characters (extending domain)

For the rest of this discussion, we will extend the domain of a
character on F,, to include 0 using the following rule:

Q x(0)=0for x #e¢

Q@ ¢0)=1
Note that this does not compromise the multiplicativity of
characters.

For any non-trivial character x on IFp,

> x(a)=0

aclF,
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A particular character: the Legendre symbol

Let p be an odd prime. For any integer a, we define the Legendre
symbol

1 a=0#0 (p)
<Z>= -1 aZ0 (p)
0 a=0 (p)

It is straightforward to show that

3)sm o
()

from which we get,

()G ()
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A particular character: the Legendre symbol (II)

Note that the function Z — C defined by the Legendre symbol
with denominator p does not distinguish between integers in the
same congruence class modulo p. Thus, it defines a function

F, — C. Since the Legendre symbol is multiplicative, this function
is a character; in fact, it is the unique character on [F,, of order 2.
We call it the quadratic character on [F, and denote it by Ap.
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A particular character: the Legendre symbol (IlI)

Lemma 1

Let p be an odd prime, a € IF,, K a field extension of I, and
suppose a = o for some a € K. Then

aP™t = Ap(a)

Pf: In K, we have
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Gauss sums (definition)

Let p be a prime, x a character on IFp,, and a € [F,. We define

g(x) = > x(1)¢*

teF,

where (, = €2™/P, and define g(x) = g1(x). Sums of this form are
called Gauss sums.

gle) = > 1:¢t =0

teF,
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Gauss sums (one result)

For any character x on F, a € F/,

ga(x) = x(a ")g(x)
Proof: We have
g(x) = D X = D x(@atu)g

tEFp u€elp

= x(a) > x(w)gy = x(a Helx)
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Gauss sums (another result)

For any non-trivial character x on Iy,

g = p
Pf: We have
ge() = > x(tu Mgt =Y > x(@+wh
t,uclF, velF, uG]FX
=D 1E> G Y xw=p-1-3 ¢
ueF, veFy weF,—{1} veFy

=p-1-(-1)=p

O
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Gauss sums (yet another result)

Claim

For any character x on IFp,

g(x) = x(-1ex)
Proof: We have

g(x) = D> _x(0G = D> x(-u)h

telF, u€lF,

Now note that x(—1)2 = x((—1)?) = x(1) = 1, so x(—1) = £1.
In particular, x(—1) = x(-1). O
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Gauss sums (final result)

For any odd prime g,

q—1

g(Xg)? = (-1)7 q

Pf: From previous results, g(\q)g(\q) = q and

g(\g) = A\g(—1)g(Nq). We obtain the above statement by noting
that \g(—1) = (—1)(97V/2 and N, = ), since A\, takes values in
{+1}. O

By Lemma 1, this implies
Corollary
For any odd primes p, g,

p—1lg—1
2

g(/\q)”_1 = (—1)2 2 \p(q) modp
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Law of quadratic reciprocity

Theorem

For any pair p, g of distinct odd primes,

(20 -0

Let ¢ # 1 be a gt root of unity in C, and let p be a prime ideal in
Z|¢] containing p (and, hence, excluding g). Define K = Z[(]/p.
K is a finite field of characteristic p, so it is an extension of Fp,.
We will show that

p—1lg

/\q(P) = (_1)TT p(q)

in K and hence in Z[(], proving the theorem.
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Proof of quadratic reciprocity

Pf: Since char(K) = p, in K we have

— (Z Aq(t)gj-;) = ) A1)

teFq telF,

= > Aglpru)Cl = Ag(p)g(Nq)

uely

Since g(A\q)? = £q # 0 in K, we can divide both sides by g()\,) to
obtain

q—1

Aa(p) = g(A)P = (~1)"7 T An(q)

by the corollary to Lemma 2. Since this quantity is 1, equality
must hold in Z[(] as well. O
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Jacobi sums (definition)

For any prime p and characters x, 1 on IFp,, we define

Joow) = ) x(a)w(b)

a,belf,
a+b=1

Such sums are called Jacobi sums.

Q Jee) =2 l= Zae]Fp l=p
Q For X 7é € J(X7 6) = Za—i—b:l X(a) = ZaEFP X(a) =0
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Relation between Jacobi sums and Gauss sums

For any characters x, 1 on F, on F, with x9 # e,

g(x)g(¥)
g(xw)

Pf: Note that g(xt) # 0 since x¢ # €. We have

g()e@) = > x(OWG™ = > ¢ > x(t)(w)

Jx ) =

t,uclFp veF, t+u=v
= (=1 D)D)+ D ¢ > x(vr)w(vs)
telF, veFy r+s=1

= Y )W S x(u(s) = g(x)I(x¥)

VEIF‘,Z< r+s=1




Relation between Jacobi sums and Gauss sums (1)

Lemma 3

Suppose 3‘p — 1, and let x be a non-trivial cubic character on F,
(i.e., a character of order 3). Then

g(x)* = pJ(x. x)

Pf: Note that x? = ¥ is the other non-trivial cubic character on
Fp. From a previous result, we have g(X) = x(—1)g(x) = g(x).
where the last equality holds because x is cubic. Thus, by the
previous claim, we have

Cs()? e)?  e(x)? g(x)?®  ex)?

J(x, x)

e ™ gl g2~ p
0
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Eisenstein integers

Let w = e*™/3. We call D = Z[w] the ring of Eisenstein integers.
Each element of D can be written uniquely as a sum a + bw,
a,b e Z. D is a Euclidean domain under the norm

N(a+ bw) = (a+ bw)(a+ bw) = a*> — ab+ b?

and hence it is a PID. The units in D are the elements of norm 1,

and these are 1,w,w?, —1, —w, —w?, i.e., the sixth roots of unity.

Note that a prime in Z need not be prime in D. Indeed,

3= —w?(l-w)?
7=0B4+w)(2-w)
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Let m € D. If N7 is a prime in Z, one easily shows that 7 is prime
in D.
If 7w is prime in D, then D/wD is a field with N7 elements, and
either

@ Nm = p for some prime pinZ, p=1 mod 3

@ Nr = g for some prime g in Z, g =2 mod 3 ; in this case,

7 is an associate of g

© Nm = 3; in this case, 7 is an associate of 1 — w
So for m £ 1 — w prime in D, 3’/\/7‘(‘ — 1. In addition, for each such
m, 3! associate ' € D s.t. 7’ =2 (3). This happens iff
7’ = a+ bw for some a, b € Z satisfying

A prime 7' € D satisfying 7’ = 2 (3) is called primary.
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Primary Jacobi sums |

Lemma 4
Let p be a prime in Z satisfying p = 1 (3), x a non-trivial cubic
character on Fj,. The Jacobi sum J(x, x) is primary in D.

Pf: One verifies that indeed J(x, x) € D. We have shown that
N(J(x, %)) = |[J06x)12 = p. so J(x, x) is prime in D. In the ring
of algebraic integers, by Lemma 3,

3
J06X) = p0oex) = e(x)® = | D x(1)¢
teF,
= > x(P¢ =D ¢t = -1
teF, teFy
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Primary Jacobi sums ||

where the congruences are modulo (3). Similarly,

JOx, x) =J(x.x) = -1 (3)
Setting J(x, x) = a + bw, we obtain from the above that

0=b(w—-w) = by-3

which implies that —3b% = 0 (9). Since every rational algebraic
integer is an integer, this holds in Z as well, so b =0(3), and
consequently a = —1 = 2 (3). O
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Cubic residue symbol

Let m be a prime in D with N7 # 3. One can show that for any
acDst mta, Ime{0,1,2} st. olN™=D/3 = ym (7).
Thus, for any a € D, we may define the cubic residue character

a 0 a=0 (n)
<;)3 T wm oNT=1)/3 = ym (7)
For any a, 8 € D, we have
@ (a/m)3 =M™ 3 (x)
@ (a/m)s = (a/m)5 = (a?/m)3
@ (a/m)3 = (a/7)s3
Q if o, (a/7); =1iff a = x3 (7) for some x € D

@ (ap/m)3 = (a/m)3(8/m)s
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Special case of cubic reciprocity

Note that properties (2) and (3) imply that for n,q € Z, g a prime

h (2 ()

If g 1 n, this implies (n/q)3 = 1. Thus, if p, q € Z are distinct

This is a special case of the cubic reciprocity law, which we will
soon prove.
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Cubic residue character

Note that the cubic residue symbol with denominator 7w does not
distinguish between Eisenstein integers in the same congruence
class modulo 7, and thus defines a map D/7D — C. We call it
the cubic residue character on D/7D and denote it by xr. It is
multiplicative by property (3) above.

If Nm =p=1 (3), then D/7D is a field with p elements.

Fp = D/mD through the map that sends n to the coset of n in
D/mD. Thus, we may view the cubic residue character as a map
Fp — C. Since the former is multiplicative, this map is in fact a
non-trivial cubic character on I, in the sense defined previously.
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Jacobi sum of a CRC

Lemma 5

Let m be primary in D with Nm =p =1 (3). Then J(Xr,Xrx) = 7
and hence g(xx)® = pr.

Pf: Since N(J(xx,xx)) = p and J(Xx, Xx) is primary by Lemma 4,
it suffices to show that w’J(Xﬂ, Xr).- We have

Jxm Xn) = > xe(@)xa(l—a) = Y alPDB(1 - a)P~ 173

aclF, ackF,
2(p-1)/3 2(p—1)/3 _
=2 > gd= > ) 4
acF, j=0 j=0 acF,

where the congruence is mod 7. But since j < p — 1,
> _acr, @ =0 mod p, and hence mod 7. O
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Law of cubic reciprocity |

Let 71,72 be primary in D, Nm; # N7y, Then

)3 )3
Pf: We have already shown this to be true if w1, 1 € Z. We will
prove it for the case m1 € Z, mo & Z. So w1 = q for some prime g

inZ, g =2 (3) and Nmp = p for some prime pin Z, p=1 (3).
Set mp = w. By Lemma 5, we have

gyt = (pW)# = Xq(pm) (q)
= Xq(P)Xq(W) = Xq(Tr)
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Law of cubic reciprocity Il

and so, since g> =1 (3) and xx(t) is a cube root of unity for

t e IF;,
Xa(Me(x) = elen)™ = | Do xx(®)h] = D xa(t)¥¢TT
teF, teF,
= 3 x0T = gelxn) = xx(a72)g(xx)
telF,
= xw(q)g(xn)

where the congruences are mod g. Since g(xx)g(x=) = p # 0 (q),
we can divide both sides by g(x) to obtain xq(7) = xx(q) (q). O
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Cubic reciprocity for non-primary primes

Note that the law of cubic reciprocity allows us to draw
conclusions about non-primary primes as well. Suppose 7}, 75 are
primes in D, Nmy, Nmj # 3, Nmy # Nmy. Then 7} = ujm; for
some 71,2 primary in D, wuy, up units in D. Thus,

(%), - (), - (%)
T/ 3 u2m2 / 3 T2 /3
(), (@),
T2/)3\7T2/3 T2/ 3

_ U(Nﬂgfl)/g’ ™
1 T /4

by cubic reciprocity.
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When does x3 — 2 split?

We would like to know modulo which primes the polynomial x3 — 2
splits (in the strong sense described in Weinstein's paper). It
clearly does not split mod 2. Modulo 3, we have

B-2=x3+1=(x+1)°

so x3 — 2 does not split in this case.
For primes p =1 (3), it is enough to show that x* — 2 has a root
in F, to show that it splits mod p; if a is one root, the others are

g(P~1)/35 g2(p=1)/35 \where g is a generator for IF;, and these are
all distinct.
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When does x* — 2 split? (Theorem) |

Claim

For p=1 (3), x3 — 2 splits mod p iff there are integers c, d s.t.
p = c?+27d°.

Pf: Let m = a+ bw be primary in D s.t. Nm = p. Note

2\ _ (™ @ -1 _
<7T>3_(2>3_7T - (*)

Suppose x3 — 2 splits mod p. Then it splits mod 7. Thus, by (%),
2
T (E) (2) =1
T/3
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When does x* — 2 split? (Theorem) Il

In particular, b is even. b is also divisible by 3 since 7 is primary.
We have p = Nm = a® — ab+ b? and so

4p = (2a — b)% 4 3b% = 4c® + 4 - 27d?

where ¢ = a— b/2 and d = b/6.
Now suppose p = c? + 27d?. Then

(2a — b)? +27(b/3)? = 4p = (2¢)* 4 27(2d)?
Thus, b/3 = +2d; in particular, b is even. Since 7 is prime, a

must be odd, and so T = a+ bw =1 (2). Thus, by (*), x3 —2
splits in D/mD, and hence in Fp,. O
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