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1 Scholze’s Theorem on Torsion classes
To motivate the study of Siegel modular varieties and Borel-Serre compactifica-
tions let me recall Scholze’s theorem on torsion classes.
We start from an Hecke eigenclass h ∈ Hi (Xg/Γ,Fp) where Xg is the locally
symmetric domain for GLg, and we want to attach to it a continuous semisimple
Galois representation ρh : GQ → GLg(Fp) such that the characteristic polyno-
mials of the Frobenius classes at unramified primes are determined by the Hecke
eigenvalues of h.
Problem: Xg/Γ is not algebraic in general, in fact it could be a real manifold
of odd dimension; while the most powerful way we know to construct Galois
representations is by considering étale cohomology of algebraic varieties.
Idea(Clozel): Find the cohomology of Xg/Γ in the cohomology of the boundary
of the Borel-Serre compactification A

BS
g of Siegel modular varieties.

1.0.1 Properties of the Borel-Serre compactification

• A
BS
g is a real manifold with corners.

• The inclusion Ag ↪→ A
BS
g is an homotopy equivalence (same cohomology).

• The boundary of A
BS
g is parametrized by parabolic subgroups of Sp2g and

consists of torus bundles over arithmetic domains for the Levi subgroups
of each parabolic.

It follows from the excision exact sequence for the couple (A
BS
g , ∂) that

one can associate to the Hecke eigenclass h ∈ Hi(Xg/Γ,Fp) another eigenclass
h′ ∈ Hi(Ag,Fp) whose eigenvalues are precisely related to those of h. Scholze’s
main contribution comes in the form of the following theorem.

Theorem 1.1 (Scholze). There exists a Siegel eigencusp form f of genus g
whose eigenvalues are those of h′ modulo p.

Now we are in good shape because we know how to associate Galois repre-
sentations to Siegel modular forms.
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Theorem 1.2. If f is Siegel eigencusp form of genus g, then for every prime
p there exists a continuous semisimple Galois representation

ρg : GQ −→ GL2g+1(Qp)

characterised by the eigenvalues of f .

Finally, as the eigenvalues modulo p of the Siegel modular form f "come
from the boundary", we have

ρf ≡ ρh ⊕ ρ∨h ⊕ I mod p

for some representation ρh : GQ → GLg(Fp) which turns out to be the repre-
sentation we where looking for.

2 Siegel Modular Varieties
Siegel modular varieties are moduli space of abelian varieties endowed with a
principal polarization. They are a generalization of modular curves as elliptic
curves have a unique principal polarization. We would like to think about them
as parametrizing all abelian varieties, however even if the level structure we will
add to rigidify the moduli problem always exists after some finite étale base
change, it is not true that every abelian variety has a principal polarization.
What is true is that every abelian variety has a polarization, being projective,
so one would need to relax the requirement of being principally polarized.
To define the moduli problem we need a good notion of families of abelian
varieties. This is achieved in the following definition of abelian schemes.

Definition 2.1. An abelian scheme A→ S is a group scheme which is smooth,
proper with geometrically connected fibers.

We introduce the notion of dual abelian scheme to later define polarizations.
Consider the functor

Pic(A/S) : Sch/S −→ Sets

which maps a scheme T → S to isomorphism classes of invertible sheaves L on
A×S T with a rigidification ξ : OT

∼→ e∗TL.

Fact 2.1. Pic(A/S) is representable by a reduced group scheme Pic(A/S).

Denote by A∨ the connected component of the identity of Pic(A/S). It is
an abelian scheme and we call it the dual abelian scheme of A/S.
Given an invertible sheaf L on A we can define a morphism

λ(L) : A −→ A∨

by sending a functorial point (a : Z → A) ∈ A(Z) to the invertible sheaf
T ∗aL ⊗ L−1 ⊗ a∗L−1 ⊗ ε∗L ∈ A∨(Z).

Remark 2.1. There is a heavy abuse of notation in the definition of λ(L). Make
sure you uderstand how it should be defined precisely and why it has a natural
rigidification. In this way you know that there is a map λ(L) : A→ Pic(A/S);
you should check that it maps zero to zero to first deduce that the image is
contained in A∨ because A is geometrically connected and finally that it is a
group homomorphism by rigidity of abelian schemes.
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Definition 2.2. A principal polarization of A/S is an isomorphism λ : A→ A∨

such that for each geometric point s̄ ∈ S, λs̄ = λ(Ls̄) for some ample invertible
sheaf Ls̄ on As̄.

2.0.1 Moduli problem

Let g,N be positive integers and consider the functor

Ag,N : SchZ[1/N ] −→ Sets

which maps a scheme S where N is invertible to isomorphism classes of triples
(A, φN , λ)/S where

• A/S is an abelian scheme of relative dimension g.

• φN : (Z/NZ)2g
/S

∼→ A[N ]/S is an isomorphism of group schemes over S.

• λ : A→ A∨ is a principal polarization.

Remark 2.2. The group scheme A[N ]/S of N -torsion points of an abelian
scheme A/S is always finite locally free because [N ]A/S : A → A is an isogeny
(i.e. a quasi-finite surjective group homomorphism) as one can check fiber by
fiber; hence finite and flat. Under the additional assumption that N is invert-
ible over S the group scheme A[N ]/S is also étale, as fiber by fiber the mor-
phism [N ]A/S is unramified. In particular we always have an isomorphism
(Z/NZ)2g

/S′
∼= A[N ]/S′ for some S′ → S finite étale.

It follows that if we want our abelian schemes to have a level N structure φN it
is necessary to work over Spec(Z[1/N ]).

Theorem 2.1 (Mumford). If N ≥ 3, then Ag,N is representable by a smooth
quasi-projective scheme Ag,N → Spec(Z[1/N ]).

A non-trivial (at least for g ≥ 2) straightforward corollary of Mumford’s
representability theorem is the following corollary.

Corollary 2.1. Every (principally polarized) abelian variety in characteristic p
can be lifted to characteristic zero.

As A[N ]/S is finite locally free, it has a Cartier dual A[N ]D/S defined on Sch/S
by

A[N ]D(T ) = HomTGrSch(A[N ]/T ,Gm/T ).

There is a perfect pairing A[N ]×SA[N ]D → Gm/S and we have an identification
A[N ]D/S

∼= A∨[N ]/S . Therefore, using a principal polarization λ : A
∼→ A∨, we

have constructed a Weil pairing

eλA,N : A[N ]×S A[N ]→ µN/S

which is alternating and perfect.
Fix ζN a primitive N -th root of unity, J ∈M2g(Z/NZ) a non-degenerate alter-
nating matrix. We define the following subfunctor

AJg,N : SchZ[ 1
N ,ζN ] −→ Sets
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by mapping S to isomorphism classes of triples (A, φN , λ)/S as before for which
moreover the following diagram commutes:

A[N ]×A[N ]/S
eλA,N

// µN/S

(Z/NZ)2g
/S × (Z/NZ)2g

/S

(φN ,φN )

OO

αJ // µN/S

where αJ(x, y) = ζx
tJy
N .

Remark 2.3. One can prove that the functor AJg,N is representable by a smooth
quasi-projective scheme AJg,N → Spec(Z[1/N, ζN ]) by noting that AJg,N an open
subfunctor of a representable functor and thus representable.

Definition 2.3. The Siegel modular variety Ag,N → Spec(Z[1/N, ζN ]) classi-
fying g-dimensional abelian varieties with full level N structure is defined to be

A
Jg
g,N where Jg =

(
Og −Ig
Ig Og

)
.

Remark 2.4. We could obtain a canonical model of Siegel modular varieties
over Spec(Z[1/N ]) by considering symplectic level N structures

ϕN : µgN ×S (Z/NZ)g
∼→ A[N ]/S

because then the pairing induced by Cartier duality µgN ×S (Z/NZ)g → µN/S
would not require us to choose a primitive N -th root of unity.

3 Algebraic Groups
In this section we recall a little of the theory of algebraic groups that is needed
to talk about the Borel-Serre compactification.
Let K be a field of characteristic zero, G/K a smooth algebraic group which in
this setting is the same as a reduced affine group scheme of finite type over K.

Definition 3.1. The unipotent radical RuG is the maximal connected normal
closed subgroup of G such that its K-points are unipotent.
The (solvable) radical RG is the maximal connected normal closed subgroup of
G such that its group of K-points is solvable.

Remark 3.1. Every smooth algebraic group over K is linear, that is, it has a
faithful representation in some GLn/K . For a K-point to be unipotent we mean
that it correponds to a unipotent matrix under some faithful representation.

We call G reductive if the unipotent radical is trivial, RuG = SpecK, and
semi-simple if the radical is trivial, RG = SpecK. As unipotent groups are
solvable, being semi-simple implies being reductive.
Fact: For any G/K, there exists a maximal reductive subgroup L of G called
Levi subgroup such that

G = L · RuG = RuG · L.
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This fact is relevant for us because in the boundary, of the Borel-Serre compact-
ification of the locally symmetric space for some semi-simple group G, appear
torus bundles of locally symmetric domains of the Levi LP for each parabolic
subgroup P of G.

Definition 3.2. A closed subgroup P of a reductive group G is parabolic if the
quotient scheme G/P is projective.

Example 3.1. The upper triangular matrices B2 ≤ SL2 form a parabolic sub-
group. Indeed SL2 is semi-simple and the natural transformation

B2\SL2(R) −→ P1(R)

sending
(
a b
c d

)
to [a : c] is an isomorphism.

Let’s now prove a proposition that gives us two important families of reduc-
tive and semi-simple groups.

Proposition 3.1. GLn/K is reductive but not semi-simple.

Proof. The center of GLn is Gm, the subgroup of scalar matrices. It’s connected,
commutative (so solvable), normal and closed, thus Gm ≤ RGLn which implies
that GLn is not semi-simple. To prove it is reductive let’s note the following
facts.
Fact 1: Bn ≤ GLn the subgroup of upper triangular matrices is a Borel sub-
group, that is, a maximal, closed, connected subgroup such that Bn(K) is solv-
able. It’s clearly closed, it is connected because Bn ∼= Gnm × An(n−1)/2 and
Bn(K̄) is solvable for we have the following exact sequence

1→ Un(K̄)→ Bn(K̄)→ Gnm(K̄)→ 1.

We do not prove maximality.
Fact 2: All rational Borel subgroups of a given group are conjugated under
GLn(K).
It follows that RGLn ≤ ∩rational BorelB, in particular the radical is contained in
the intersection of upper and lower triangular matrices, RGLn ≤ Bn ∩BTn = Dn
which are the diagonal matrices. The only normal subgroup of GLn contained in
Dn is the subgroup of scalar matrices, therefore RGLn = Gm. Finally RuGLn =
(Gm)u = SpecK because the only unipotent element of a field is the identity.

Corollary 3.1. SLn/K is semisimple.

Proof. As SLn is a closed subgroup of GLn we have that RSLn ≤ RGLn. Fur-
thermore, RGLn∩SLn = µn and we can deduce that RSLn is a subgroup of µn.
The group scheme µn/K is étale because the characteristic of K does not
divide n and since RSLn is a connected subgroup of µn we conclude that
RSLn = SpecK.

4 (Rational) Borel-Serre compactification of mod-
ular curves

We are going to present the Borel-Serre compactification for the group SL2/Q,
even if the construction is much more general and apply to all semisimple groups
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[5, p.301]. The main reason for this choice is that SL2/Q is small enough to
have only Borel subgroups as parabolic subgroups, but still interesting enough
as modular curves arise as quotients of its locally symmetric domain.
We choose the upper-half plane H as model for the locally symmetric domain
SL2(R)/SO2(R) because it is easier to visualize its arithmetic quotients.
The two main steps of the construction are the followings:
Step 1: Construct the bordification H

BS
.

Step 2: Show that the SL2(Q)-action on H extends to a continuous action on
the bordification H

BS
.

The subgroup of upper-triangular matrices B2 is the standard Borel of SL2. To
visualize its role in the bordification of the upper-half plane, you could think
about it as sitting on top ∞ as the upper-triangular matrices are the stabilizer
of ∞, when SL2(R) acts on R ∪ {∞} via Moebius transformations.
Denote by B2 = B2(R) the real points of the standard Borel. It has a rational
Langlands decomposition [5, III.1.3, p.273]

N×A×M ∼−→ B2

given by (n, a,m) 7→ nam, where

N =

{(
1 x

1

)
: x ∈ R

}
, A =

{(
a

a−1

)
: a ∈ R>0

}
and M = {±I2}.
Now, B2 acts on H transitively and the Iwasawa decomposition tells us that
SL2(R) = B2 · SO2(R). Therefore we can talk about the horospherical decom-
position of a locally symmetric domain [5, III.1.4, p.273], which in our case is
the usual decomposition into real and imaginary part:

H ∼= B2/B2 ∩ SO2(R) = B2/M
∼= N×A× {∞}
∼= R× R>0 × {∞} .

The same constructions apply to any other rational parabolic subgroup of SL2;
as they can be thought as the stabilizers of the rationals we will write P = Pξ
where ξ ∈ Q ∪ {∞}. We have

Pξ ∼= NPξ ×APξ ×MPξ , H ∼= NPξ ×APξ ×XPξ .

The idea one should keep in mind is that the horosperical decomposition allows
us to formalize the fact that the rational parabolic subgroups of SL2 "sit above"
the rational numbers at the boundary of the upper-half plane.

Definition 4.1. The boundary component associated to Pξ is defined to be

e(Pξ) = NPξ ×XPξ .

Remark 4.1. In our case the boundary component associated to every parabolic
subgroup is especially simple, indeed e (Pξ) ∼= R×{ξ}. Moreover, e (Pξ) is a NPξ -
bundle over XPξ which can be interpreted as the locally symmetric domain for
LPξ , the Levi subgroup of Pξ. More precisely,

e (Pξ) ∼= Pξ/APξKPξ
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where KPξ = Pξ ∩ SO2(R) and

XPξ = NPξ\Pξ/APξKPξ .

Let’s see what happens for the parabolic B2. It has a Levi decomposition of the
following form B2 = U2 · Gm and the locally symmetric domain for Gm is just
the one-point space:

AGm\Gm(R)/K∞ = R>0\R×/ {±1} = {pt}.

Definition 4.2 (Bordification). The Borel-Serre bordification of the upper-half
plane is the set

H
BS

= H
⊔

P rat. parabolic

e (P) = H
⊔

ξ∈Q∪{∞}

(R× {ξ}) .

To formalize the fact that we want to put the boundary components near
the rational points at the boundary of the upper-half plane in such a way that
they become parameter space for geodesics, we define the topology on the bor-
dification H

BS
using the theory of convergent sequences [5, III.8.13, p.114].

We give H and the boundary components e (P) their natural topologies and then
we say that a sequence {zj}j ⊆ H converges to a boundary point (n∞, ξ) ∈ e (Pξ)
if, under the horospherical decomposition of H with respect to Pξ, we can write

zj = (nj , aj , ξj) ∈ H ∼= NPξ ×APξ ×XPξ

and

• nj → n∞ in NPξ ,

• ξj → ξ in XPξ = {ξ},

• χ(aj) → +∞ in R× where χ : APξ → Gm(R) is the character through
which APξ acts on Lie(NPξ)

Let’s unravel this definition for P∞ = B2 (which is enough to understand them
all because of the SL2(Q) transitive action on rational Borel subgroups). In this
case, AP∞ acts via the character

χ

(
αj

α−1
j

)
= α2

j

so a sequence {zj}j ⊂ H converges to some point (x∞,∞) of e(P∞) = R×{∞}
if the imaginary parts diverge yj = Imzj → +∞ and if the real parts converge
to to the given point xj → x∞.

Proposition 4.1. The SL2(Q)-action on H extends to a continuous action on
H

BS
.

Proof. This is [5, III.9.15, p.333], but let’s see how we can extend the action.
Given g ∈ SL2(Q) we write g = kp = knam using the decompositions

SL2(R) = SO2(R)Pξ ∼= SO2(R)
(
NPξ ×APξ ×MPξ

)
.

Then we define
g : e(Pξ) −→ e(Pg(ξ))

by g(n′,m′) = (kam(nn′),k (mm′)).
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The final theoretical result is the following.

Theorem 4.1. Let Γ ≤ SL2(Q) be an arithmetic subgroup, then H
BS
/Γ is a

compact Hausdorff space. Moreover, if Γ is torsion-free, the quotient has a
canonical structure of real analytic manifold with corners.

Proof. [5, III.9.18, p.337]

If we try to picture what is the Borel-Serre compactification X0(N)
BS

, it’s
easy to see that we are compactifying the open modular curve by adding an S1

at every cusp. Indeed,

Γ0(N) ∩ B2 =

{
±
(

1 n
1

)
: n ∈ Z

}
and one can compute that the action of these elements on e(B2) = R is by
translation by the upper-right entry of the matrix, therefore

(B2 ∩ Γ) \e(B2) ∼= R/Z ∼= S1.
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