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1 Introduction: Last Formulation of QA

Recall that the goal of Weinstein’s paper was to find the solution to the
following simple equation:

QA: Let f(x) € Zx] irreducible. Is there a "rule” which determine
whether f(z) split modulo p, for any prime p € Z?

This question can be reformulated using algebraic number theory, since
there is a relation between the splitting of fy,(z) = f(z)(mod p) and the
splitting of p in L = Q(«), where « is a root of f(z). Therefore, we can ask
the following question instead:

QB: Let L/Q a number field. Is there a "rule” determining when a
prime in Q split in L7



Let L'/Q be a Galois closure of L/Q. Since a prime in Q split in L if
and only if it splits in L', then to answer QB we can assume that L/Q is
Galois.

Recall that if p € Z is a prime, and P is a maximal ideal of O, then
a Frobenius element of Gal(L/Q) is any element of Frobp satisfying the
following condition,

2FT°PP = gP(mod P), Yz € Of.
If p is unramifed in L, then Frobp element is unique. Furthermore,
psplit in L <= Frobp =1 in Gal(L/Q).

To to find another formulation of QB, we will use Galois representations.
Let Q denote the algebraic closure of Q, recall the following:

1.1 Absolute Galois Group of Q :

The absolute Galois group of Q is the group of automorphisms of Q, denoted
by,
Go = Gal(Q/Q),

since Q is the union of all Galois number fields F C Q, then
Vo € Gg = o|r € Gal(F/Q),
these restrictions are compatible, i.e.
op =op|pif FCF.

Conversely, every compatible system of automorphism {op} over all Galois
number fields F' defines an automorphism of Q. Therefore,

Go = 1(1%1@&1(11/@).

1.2 Absolute Frobenius Element over p € Q :

For a prime p € Z, let
P CZ={acQ:3f € Zx] monic s.t. f(a) =0}
:UOK
K

= The ring of algebraic integers,



be a maximal ideal over p, i.e. P|pZ.
The Decomposition group of P is

Dp ={o € Gy : P’ =P},
thus each o € Dp acts on Z/P, as
(x+P)7 =27 +P,

which can be viewed as an action on F,, since Z/P < F,,.

Let Gy, = Aut(IF,,) denote the absolute Galois group of Iy, then we have
the following surjective reduction map,

Dp — G]Fp-

Let 0, € Gr, be the Frobenius automorphism on F,, which z + 2P for
all z € E,.

An absolute Frobenius element over p is any preimage of the Frobenius
automorphism o}, € Gp,, denoted by Frobp. It is defined up to the kernel
of the reduction map, which is called the inertia group of P:

Ip ={0 € Dp : 2° = (mod P) Vz € Z}.
It has the following properties:
e For each Galois number field F', the restriction map
Gq - Cal(F/Q),

takes an absolute Frobenius element to a corresponding Frobenius el-
ement over I,
Frobp|r = Frobp,,

where Pr =P N F.

e Since all maximal ideals of Z over p are conjugate to P, we have that

Frobpes = ¢ 'Frobp o, o € Go.



1.3 Galois Representations :

A Galois representation p is a continuous homomorphism

p: Gal(Q/Q) — GLn(K),

where K is a topological field.
We want to know the values of p(o) for o € Gg. In particular, we want
to evaluate p at the absolute Frobenius element:

e The notation p(Frobp) is well defined if and only if Ip C Kerp, since
Frobp is defined up to Ip.

e If P, P’ lic over p, then there exists some o € Gg such that
Pl _ Pcr
= Ip = 0'_1[730.

So, if Ip C Kerp, then Ipr C Kerp. Therefore,

p(Frobpr) = p(o~'Frobp o) = p~" () p(Frobp)p(o).

So, the primes lying over p define a conjugacy class in GL, (K). Since
all elements in this conjugacy class have the same characteristic poly-
nomial, we see that the characteristic polynomial only depend on p.

Definition 1.1. p is unramfied at a p if Ip C Kerp for any maximal ideal
P C Z lying over p.

Definition 1.2. Two representations p, p’ are said to be equivalent if there
exists M € GL,,(K) such that

pl(o) = M~ p(o)M, Vo € Gg.

Definition 1.3. Let ¢ € G be complex conjugation then p is said to be
odd if det(p(c)) = —1, and even if det(p(c)) = 1.

Let V' be an n dimensional vector space over K, then GL,,(K) = GL(V).

Definition 1.4. A representation p is said to be irreducible if V' is not zero
and if no vector subspace is stable under Gg except 0 and V.



Now, after defining Galois representations we want to try to find a solu-
tion to the following question:

QC: Given a Galois representation

p: Gal(Q/Q) — GLn(K),

is there a ”rule” for determining the conjugacy class of p(Frobp) when p is
unramfied?

2 Modular Galois Representation

The following theorem, Theorem 4.4.1 in Weinstein’s paper, is a construction
due to Deligne and Serre, which associate a 2- dimensional Galois represen-
tation with modular forms.

Theorem 2.1. Let g(7) = > an(g9)q™ be a cuspidal eigenform of weight k,
n>1

level N, and character x : (Z/N7Z)* — C*, normalized so that a; = 1.
Let F be a number field containing a,(g) and the values of x.

e Suppose k > 2. Then for all primes P of F there exists an odd irre-
ducible Galois representation

Pg.P Gal(Q/Q) — GLy(F,)

where I, is the completion of F' with respect to the p — adic absolute
value, such that for all £ prime to N and P, pyp is unramfied at £ and
the characteristic polynomial of py p(Froby) is

2% — ag(g)x + x ()1,

e Suppose k = 1. Then there exists an odd irreducible Galois represen-
tation

Py : Gal(@/Q) — GLx(C),

such that for all ¢ prime to N, pg is unramfied at £, and the charac-
teristic polynomial of pg(Froby) is

2 — ag(g)z + x(0).



We call an odd, irreducible, 2-dimensional Galois representation associ-
ated to a cuspidal eigenform Modular, if it arises in the way described in
Theorem 2.1.

Note that for any modular Galois representation the characteristic poly-
nomial is a ”rule” determining the conjugacy class of p(Frob,) unramfied at

.
Therefore, for modular Galois representation we have an answer to QC.

3 Modular Galois Representations and FLT

The question of which Galois representations are modular is closely related
to Fermat’s Last Theorem.

Theorem 3.1 (Fermat’s Last Theorem). 2" + y" = 2" has no nontrivial
integer solutions when n > 3.

It can be reduced to the case n = p, p prime such that p > 5.

To see this link, we will be interested in Galois representations coming
from geometry. Recall the following:

Let E : 42> = f(z) be an elliptic curve such that f(z) € Q[z], and take
m > 2.

Definition 3.1. The m-torsion subgroup of E, is
E[m] ={P € E : [m|P = 0}.
Proposition 3.1. If m # 0, E[m] = Z/mZ x Z/mZ.
Since G acts on E[m], we have the following representation
Go — Aut(E[m]) = GLy(Z/mZ)
Definition 3.2. Let p € Z. The p-adic Tate module of E is the group

T,(E) = lim E[p"
p( ) %1’1 [p ]7
where the inverse limit taken with respect to the natural maps

B £ Bfp").

Proposition 3.2. As a Z,-module, the Tate module has the following struc-
ture:
Ty(E) = Ly X Ly.



The p-adic representation of G associated to E is the homomorphism
Pp,E - GQ — Aut(Tp(E)) = GLQ(ZP) - GLQ(QP),

induced by the action of Gg on the p"-torsion points.

Therefore, we obtained a 2-dimensional representation of Gg over a field
of characteristic zero.

Also, recall that p,  is unrammfied at primes ¢ such that ¢ { pA, where
A =discriminant of f(z), and for such ¢ the characteristic polynomial of
pp,E(Froby) is:

det(zI — pp p(Froby)) = 2? — (0 + 1 — Ny)z + ¢, (1)

where Ny is the number of points of E with coordinates in the finite field
Fy.

Definition 3.3. We say E is modular if the Galois representation p, g is
modular.

Therefore, from Theorem 2.1, E is modular if there exist a cuspidal
eigenform ¢ of weight k and character x, such that for almost all primes ¢
the characteristic polynomial of Froby is

2 — ag(g)z + x ()1, (2)

comparing (1) with (2), we say E is modular if there exists a cuspidal eigen-
form of weight 2 and trivial character y, such that for almost all primes, the
number of points on E with coordinates in Fy is £ + 1 — ay(g).

Now, what does this have to do with FLT ?

Take E : y? = x(x — A)(x — B) such that A, B € Z and (A, B) = 1, then
E is semistable.!

Proposition 3.3. Assume that E is modular and p|AB(A — B) = Ag
exactly with a power divisible by p i.e. p™ || AB(A — B). Then, pgyp is
modular of level N = 2 I1 L.

¢{|AB(A—B)

{ prime
L™||AB(A—B) s.t. ptm

Now, take A = a2, B = —yP. Assume A — B = aP + y? = 2P. Then if £

is modular and p"? || —azPyPzP = —(zyz)P for some n, then pg, is modular
of level
N=2 11 (=2x1,
(= (zyz)?

L% ||—(zyz)P s.t. pin

'we say that F is semistable at all p if f(z) = f,(z)(modp) has at least two different
roots module p.



which means that pg , is modular of level 2, but since there are no nontrivial
cusp forms of weight 2 and level 2, we get a contradiction.

So we showed that if there exists a nontrivial solution of x? 4+ y? = 2P,
then F is not modular.

It has been proven that

Theorem 3.2 (The Shimura-Taniyama-Weil Conjecture). Every elliptic
curve defined over the rational numbers is modular.

which implies Fermat’s claim.

4 Modular Artin Representations

In the previous section, we saw that the Tate module of an elliptic curve gives
an example of 2-dimensional modular p-adic Galois representation which was
associated with a cuspidal eigenform of weight 2.

In this section, we discuss the case of 2-dimensional Artin representa-
tions, i.e.

p: Gg — GLy(C).

Conjecture. Let p : Gg — GL2(C) be an odd irreducible Galois represen-
tation. Then, p is equivalent to py for some cuspidal eignform g of weight
1.

where p, is the Artin representation associated to g by the Deligne and
Serre construction.

This construction is the two dimensional case of Artin conjecture, which
can be stated for all dimensions in terms of the analytic continuation of an
L-function attached to p.

A large part of the conjecture was proved by Langlands and was extended
by Tunnel. They proved the following;:

Theorem 4.1. p : Gg — GL2(C) odd irreducible Galois representations
such that p(Gq) is solvable. 2 Then p is equivalent to pg for some cuspidal
etgenform g of weight 1.

Since an Artin representation has a finite image, p(Gg) can be classified
by its projective image, which is a finite subgroup in the projective general
linear group PGLs(C) = G'Lo(C)/{nonzero scalar matrices}.

2A group G is solvable if there is a chain
Go<G1<---<1Gs =G

such that G;41/G; is abelian.



Theorem 4.2. If H is a finite subgroup of PGLy(C), then H is isomorphic
to one of the following groups:

e the cyclic group Cy, of order n, n > 0.

the dihedral group Doy, of order 2n, n > 1.

terahedral Ay.
e octahedral Sy.
e jcosahedral As.

Therefore, the only excluded case in the previous theorem is when the
projective image of p(Gg) is isomorphic to As, which was proven later by
Khare and Wintenberger. As a result, the 2-dimensional Artin conjecture
was proven for all cases.

If the projective image of p(Gg) is dihedral, then the required eigen form
g is a theta function, which is similar to the one appearing in Example 3.14
and Example 3.4.2 of Weinstein’s paper :

for a polynomial f(z) = x* — 2, the splitting field of f over Q is
L = Q(i,v2), and Gal(L/Q) = Dg generated by:

r(V2) = iv2, s(V2) = V2
r(i) =1, s(i) = —i

1 1

which satisfies the relations r* = 1,52 =1 and srs™! = r~ 1.

The group Dg has a 2-dimensional representation which sends:
r— 0 1
-1 0/’
s —> 0 1
10
Therefore, we can construct a 2-dimensional Artin representation

p: Gal(Q/Q) — GLy(C),
which factors through Gal(Q(i, v/2)/Q).
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