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1 Introduction: Last Formulation of QA

Recall that the goal of Weinstein’s paper was to find the solution to the
following simple equation:

QA: Let f(x) ∈ Z[x] irreducible. Is there a ”rule” which determine
whether f(x) split modulo p, for any prime p ∈ Z?

This question can be reformulated using algebraic number theory, since
there is a relation between the splitting of fp(x) ∼= f(x)(mod p) and the
splitting of p in L = Q(α), where α is a root of f(x). Therefore, we can ask
the following question instead:

QB: Let L/Q a number field. Is there a ”rule” determining when a
prime in Q split in L?
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Let L′/Q be a Galois closure of L/Q. Since a prime in Q split in L if
and only if it splits in L′, then to answer QB we can assume that L/Q is
Galois.

Recall that if p ∈ Z is a prime, and P is a maximal ideal of OL, then
a Frobenius element of Gal(L/Q) is any element of FrobP satisfying the
following condition,

xFrobP ≡ xp(mod P), ∀x ∈ OL.

If p is unramifed in L, then FrobP element is unique. Furthermore,

p split in L ⇐⇒ FrobP = 1 in Gal(L/Q).

To to find another formulation of QB, we will use Galois representations.
Let Q denote the algebraic closure of Q, recall the following:

1.1 Absolute Galois Group of Q :

The absolute Galois group of Q is the group of automorphisms of Q, denoted
by,

GQ = Gal(Q/Q),

since Q is the union of all Galois number fields F ⊆ Q, then

∀σ ∈ GQ =⇒ σ|F ∈ Gal(F/Q),

these restrictions are compatible, i.e.

σF = σF ′ |F if F ⊂ F ′.

Conversely, every compatible system of automorphism {σF } over all Galois
number fields F defines an automorphism of Q. Therefore,

GQ = lim←−
F

Gal(F/Q).

1.2 Absolute Frobenius Element over p ∈ Q :

For a prime p ∈ Z, let

P ⊆ Z = {α ∈ Q : ∃f ∈ Z[x] monic s.t. f(α) = 0}

=
⋃
K

OK

= The ring of algebraic integers,
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be a maximal ideal over p, i.e. P|pZ.
The Decomposition group of P is

DP = {σ ∈ GQ : Pσ = P},

thus each σ ∈ DP acts on Z/P, as

(x+ P)σ = xσ + P,

which can be viewed as an action on Fp, since Z/P ↪→ Fp.
Let GFp = Aut(Fp) denote the absolute Galois group of Fp, then we have

the following surjective reduction map,

DP → GFp .

Let σp ∈ GFp be the Frobenius automorphism on Fp, which x 7→ xp for

all x ∈ Fp.
An absolute Frobenius element over p is any preimage of the Frobenius

automorphism σp ∈ GFp , denoted by FrobP . It is defined up to the kernel
of the reduction map, which is called the inertia group of P:

IP = {σ ∈ DP : xσ ≡ x (mod P) ∀x ∈ Z}.

It has the following properties:

• For each Galois number field F , the restriction map

GQ → Gal(F/Q),

takes an absolute Frobenius element to a corresponding Frobenius el-
ement over F ,

FrobP |F = FrobPF ,

where PF = P ∩ F.

• Since all maximal ideals of Z over p are conjugate to P, we have that

FrobPσ = σ−1FrobP σ, σ ∈ GQ.
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1.3 Galois Representations :

A Galois representation ρ is a continuous homomorphism

ρ : Gal(Q/Q)→ GLn(K),

where K is a topological field.
We want to know the values of ρ(σ) for σ ∈ GQ. In particular, we want

to evaluate ρ at the absolute Frobenius element:

• The notation ρ(FrobP) is well defined if and only if IP ⊂ Kerρ, since
FrobP is defined up to IP .

• If P,P ′ lie over p, then there exists some σ ∈ GQ such that

P ′ = Pσ

⇒ IP ′ = σ−1IPσ.

So, if IP ⊂ Kerρ, then IP ′ ⊂ Kerρ. Therefore,

ρ(FrobP ′) = ρ(σ−1FrobP σ) = ρ−1(σ)ρ(FrobP)ρ(σ).

So, the primes lying over p define a conjugacy class in GLn(K). Since
all elements in this conjugacy class have the same characteristic poly-
nomial, we see that the characteristic polynomial only depend on p.

Definition 1.1. ρ is unramfied at a p if IP ⊂ Kerρ for any maximal ideal
P ⊂ Z lying over p.

Definition 1.2. Two representations ρ, ρ′ are said to be equivalent if there
exists M ∈ GLn(K) such that

ρ′(σ) = M−1ρ(σ)M, ∀σ ∈ GQ.

Definition 1.3. Let c ∈ GQ be complex conjugation then ρ is said to be
odd if det(ρ(c)) = −1, and even if det(ρ(c)) = 1.

Let V be an n dimensional vector space over K, then GLn(K) = GL(V ).

Definition 1.4. A representation ρ is said to be irreducible if V is not zero
and if no vector subspace is stable under GQ except 0 and V .
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Now, after defining Galois representations we want to try to find a solu-
tion to the following question:

QC: Given a Galois representation

ρ : Gal(Q/Q)→ GLn(K),

is there a ”rule” for determining the conjugacy class of ρ(FrobP) when p is
unramfied?

2 Modular Galois Representation

The following theorem, Theorem 4.4.1 in Weinstein’s paper, is a construction
due to Deligne and Serre, which associate a 2- dimensional Galois represen-
tation with modular forms.

Theorem 2.1. Let g(τ) =
∑
n≥1

an(g)qn be a cuspidal eigenform of weight k,

level N , and character χ : (Z/NZ)× → C×, normalized so that a1 = 1.
Let F be a number field containing an(g) and the values of χ.

• Suppose k ≥ 2. Then for all primes P of F there exists an odd irre-
ducible Galois representation

ρg,P : Gal(Q/Q)→ GL2(Fp)

where Fp is the completion of F with respect to the p − adic absolute
value, such that for all ` prime to N and P, ρg,P is unramfied at ` and
the characteristic polynomial of ρg,P(Frob`) is

x2 − a`(g)x+ χ(`)`k−1.

• Suppose k = 1. Then there exists an odd irreducible Galois represen-
tation

ρg : Gal(Q/Q)→ GL2(C),

such that for all ` prime to N , ρg is unramfied at `, and the charac-
teristic polynomial of ρg(Frob`) is

x2 − a`(g)x+ χ(`).
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We call an odd, irreducible, 2-dimensional Galois representation associ-
ated to a cuspidal eigenform Modular, if it arises in the way described in
Theorem 2.1.

Note that for any modular Galois representation the characteristic poly-
nomial is a ”rule” determining the conjugacy class of ρ(Frobp) unramfied at
p.

Therefore, for modular Galois representation we have an answer to QC.

3 Modular Galois Representations and FLT

The question of which Galois representations are modular is closely related
to Fermat’s Last Theorem.

Theorem 3.1 (Fermat’s Last Theorem). xn + yn = zn has no nontrivial
integer solutions when n > 3.

It can be reduced to the case n = p, p prime such that p ≥ 5.
To see this link, we will be interested in Galois representations coming

from geometry. Recall the following:
Let E : y2 = f(x) be an elliptic curve such that f(x) ∈ Q[x], and take

m ≥ 2.

Definition 3.1. The m-torsion subgroup ofE, is

E[m] = {P ∈ E : [m]P = 0}.

Proposition 3.1. If m 6= 0, E[m] ∼= Z/mZ× Z/mZ.

Since GQ acts on E[m], we have the following representation

GQ → Aut(E[m]) ∼= GL2(Z/mZ)

Definition 3.2. Let p ∈ Z. The p-adic Tate module of E is the group

Tp(E) = lim←−
n

E[pn],

where the inverse limit taken with respect to the natural maps

E[pn+1]
[p]−→ E[pn].

Proposition 3.2. As a Zp-module, the Tate module has the following struc-
ture:

Tp(E) ∼= Zp × Zp.
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The p-adic representation of GQ associated to E is the homomorphism

ρp,E : GQ → Aut(Tp(E)) ∼= GL2(Zp) ⊆ GL2(Qp),

induced by the action of GQ on the pn-torsion points.
Therefore, we obtained a 2-dimensional representation of GQ over a field

of characteristic zero.
Also, recall that ρp,E is unrammfied at primes ` such that ` - p4, where

4 =discriminant of f(x), and for such ` the characteristic polynomial of
ρp,E(Frob`) is:

det(xI − ρp,E(Frob`)) = x2 − (`+ 1−N`)x+ `, (1)

where N` is the number of points of E with coordinates in the finite field
F`.

Definition 3.3. We say E is modular if the Galois representation ρp,E is
modular.

Therefore, from Theorem 2.1, E is modular if there exist a cuspidal
eigenform g of weight k and character χ, such that for almost all primes `
the characteristic polynomial of Frob` is

x2 − a`(g)x+ χ(`)`k−1, (2)

comparing (1) with (2), we say E is modular if there exists a cuspidal eigen-
form of weight 2 and trivial character χ, such that for almost all primes, the
number of points on E with coordinates in F` is `+ 1− a`(g).

Now, what does this have to do with FLT ?
Take E : y2 = x(x−A)(x−B) such that A,B ∈ Z and (A,B) = 1, then

E is semistable.1

Proposition 3.3. Assume that E is modular and p|AB(A − B) = 4E

exactly with a power divisible by p i.e. pnp ‖ AB(A − B). Then, ρE,p is
modular of level N = 2

∏
`|AB(A−B)
` prime

`m‖AB(A−B) s.t. p-m

`.

Now, take A = xp, B = −yp. Assume A−B = xp + yp = zp. Then if E
is modular and pnp ‖ −xpypzp = −(xyz)p for some n, then ρE,p is modular
of level

N = 2
∏

`|−(xyz)p
`n‖−(xyz)p s.t. p-n

` = 2× 1,

1we say that E is semistable at all p if f(x) ≡ fp(x)(modp) has at least two different
roots module p.
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which means that ρE,p is modular of level 2, but since there are no nontrivial
cusp forms of weight 2 and level 2, we get a contradiction.

So we showed that if there exists a nontrivial solution of xp + yp = zp,
then E is not modular.

It has been proven that

Theorem 3.2 (The Shimura-Taniyama-Weil Conjecture). Every elliptic
curve defined over the rational numbers is modular.

which implies Fermat’s claim.

4 Modular Artin Representations

In the previous section, we saw that the Tate module of an elliptic curve gives
an example of 2-dimensional modular p-adic Galois representation which was
associated with a cuspidal eigenform of weight 2.

In this section, we discuss the case of 2-dimensional Artin representa-
tions, i.e.

ρ : GQ → GL2(C).

Conjecture. Let ρ : GQ → GL2(C) be an odd irreducible Galois represen-
tation. Then, ρ is equivalent to ρg for some cuspidal eignform g of weight
1.

where ρg is the Artin representation associated to g by the Deligne and
Serre construction.

This construction is the two dimensional case of Artin conjecture, which
can be stated for all dimensions in terms of the analytic continuation of an
L-function attached to ρ.

A large part of the conjecture was proved by Langlands and was extended
by Tunnel. They proved the following:

Theorem 4.1. ρ : GQ → GL2(C) odd irreducible Galois representations
such that ρ(GQ) is solvable. 2 Then ρ is equivalent to ρg for some cuspidal
eigenform g of weight 1.

Since an Artin representation has a finite image, ρ(GQ) can be classified
by its projective image, which is a finite subgroup in the projective general
linear group PGL2(C) ∼= GL2(C)/{nonzero scalar matrices}.

2A group G is solvable if there is a chain

G0 / G1 / · · · / Gs = G

such that Gi+1/Gi is abelian.
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Theorem 4.2. If H is a finite subgroup of PGL2(C), then H is isomorphic
to one of the following groups:

• the cyclic group Cn of order n, n > 0.

• the dihedral group D2n of order 2n, n > 1.

• terahedral A4.

• octahedral S4.

• icosahedral A5.

Therefore, the only excluded case in the previous theorem is when the
projective image of ρ(GQ) is isomorphic to A5, which was proven later by
Khare and Wintenberger. As a result, the 2-dimensional Artin conjecture
was proven for all cases.

If the projective image of ρ(GQ) is dihedral, then the required eigen form
g is a theta function, which is similar to the one appearing in Example 3.14
and Example 3.4.2 of Weinstein’s paper :

for a polynomial f(x) = x4 − 2, the splitting field of f over Q is
L = Q(i, 4

√
2), and Gal(L/Q) ∼= D8 generated by:

r(
4
√

2) = i
4
√

2, s(
4
√

2) =
4
√

2

r(i) = i, s(i) = −i

which satisfies the relations r4 = 1, s2 = 1 and srs−1 = r−1.
The group D8 has a 2-dimensional representation which sends:

r 7−→
(

0 1
−1 0

)
,

s 7−→
(

0 1
1 0

)
Therefore, we can construct a 2-dimensional Artin representation

ρ : Gal(Q/Q)→ GL2(C),

which factors through Gal(Q(i, 4
√

2)/Q).
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