1 Introduction: Last Formulation of QA

Recall that the goal of Weinstein’s paper was to find the solution to the following simple equation:

\[QA: \text{Let } f(x) \in \mathbb{Z}[x] \text{ irreducible. Is there a "rule" which determine whether } f(x) \text{ split modulo } p, \text{ for any prime } p \in \mathbb{Z} ? \]

This question can be reformulated using algebraic number theory, since there is a relation between the splitting of \(f_p(x) \equiv f(x)(\text{mod } p) \) and the splitting of \(p \) in \(L = \mathbb{Q}(\alpha) \), where \(\alpha \) is a root of \(f(x) \). Therefore, we can ask the following question instead:

\[QB: \text{Let } L/\mathbb{Q} \text{ a number field. Is there a "rule" determining when a prime in } \mathbb{Q} \text{ split in } L? \]
Let L'/\mathbb{Q} be a Galois closure of L/\mathbb{Q}. Since a prime in \mathbb{Q} split in L if and only if it splits in L', then to answer QB we can assume that L/\mathbb{Q} is Galois.

Recall that if $p \in \mathbb{Z}$ is a prime, and \mathcal{P} is a maximal ideal of \mathcal{O}_L, then a Frobenius element of $Gal(L/\mathbb{Q})$ is any element of $Frob_{\mathcal{P}}$ satisfying the following condition,

$$x^{Frob_{\mathcal{P}}} \equiv x^p (\mod \mathcal{P}), \forall x \in \mathcal{O}_L.$$

If p is unramified in L, then $Frob_{\mathcal{P}}$ element is unique. Furthermore,

$$p \text{ split in } L \iff Frob_{\mathcal{P}} = 1 \text{ in } Gal(L/\mathbb{Q}).$$

To find another formulation of QB, we will use Galois representations. Let $\overline{\mathbb{Q}}$ denote the algebraic closure of \mathbb{Q}, recall the following:

1.1 Absolute Galois Group of \mathbb{Q}:

The absolute Galois group of \mathbb{Q} is the group of automorphisms of $\overline{\mathbb{Q}}$, denoted by,

$$G_{\mathbb{Q}} = Gal(\overline{\mathbb{Q}}/\mathbb{Q}),$$

since $\overline{\mathbb{Q}}$ is the union of all Galois number fields $F \subseteq \overline{\mathbb{Q}}$, then

$$\forall \sigma \in G_{\mathbb{Q}} \implies \sigma|_F \in Gal(F/\mathbb{Q}),$$

these restrictions are compatible, i.e.

$$\sigma_F = \sigma_{F'}|_F \text{ if } F \subseteq F'.$$

Conversely, every compatible system of automorphism $\{\sigma_F\}$ over all Galois number fields F defines an automorphism of $\overline{\mathbb{Q}}$. Therefore,

$$G_{\mathbb{Q}} = \lim_{\leftarrow F} Gal(F/\mathbb{Q}).$$

1.2 Absolute Frobenius Element over $p \in \mathbb{Q}$:

For a prime $p \in \mathbb{Z}$, let

$$\mathcal{P} \subseteq \mathbb{Z} = \{\alpha \in \overline{\mathbb{Q}} : \exists f \in \mathbb{Z}[x] \text{ monic s.t. } f(\alpha) = 0\} = \bigcup_{\mathcal{O}_K} \mathcal{O}_K$$

= The ring of algebraic integers,
be a maximal ideal over p, i.e. $\mathcal{P}|p\mathbb{Z}$.

The **Decomposition group of** \mathcal{P} is

$$D_{\mathcal{P}} = \{\sigma \in G_{\mathbb{Q}} : \mathcal{P}^\sigma = \mathcal{P}\},$$

thus each $\sigma \in D_{\mathcal{P}}$ acts on \mathbb{Z}/\mathcal{P}, as

$$(x + \mathcal{P})^\sigma = x^\sigma + \mathcal{P},$$

which can be viewed as an action on \mathbb{F}_p, since $\mathbb{Z}/\mathcal{P} \hookrightarrow \mathbb{F}_p$.

Let $G_{\mathbb{F}_p} = \text{Aut}(\mathbb{F}_p)$ denote the absolute Galois group of \mathbb{F}_p, then we have the following surjective reduction map,

$$D_{\mathcal{P}} \twoheadrightarrow G_{\mathbb{F}_p}.$$

Let $\sigma_p \in G_{\mathbb{F}_p}$ be the Frobenius automorphism on \mathbb{F}_p, which $x \mapsto x^p$ for all $x \in \mathbb{F}_p$.

An **absolute Frobenius element over** p is any preimage of the Frobenius automorphism $\sigma_p \in G_{\mathbb{F}_p}$, denoted by $\text{Frob}_\mathcal{P}$. It is defined up to the kernel of the reduction map, which is called the **inertia group of** \mathcal{P}:

$$I_{\mathcal{P}} = \{\sigma \in D_{\mathcal{P}} : x^\sigma \equiv x \pmod{\mathcal{P}} \ \forall x \in \mathbb{Z}\}.$$

It has the following properties:

- For each Galois number field F, the restriction map

 $$G_{\mathbb{Q}} \to \text{Gal}(F/\mathbb{Q}),$$

 takes an absolute Frobenius element to a corresponding Frobenius element over F,

 $$\text{Frob}_{\mathcal{P}}|_F = \text{Frob}_{\mathcal{P}_F},$$

 where $\mathcal{P}_F = \mathcal{P} \cap F$.

- Since all maximal ideals of $\overline{\mathbb{Z}}$ over p are conjugate to \mathcal{P}, we have that

 $$\text{Frob}_{\mathcal{P}^\sigma} = \sigma^{-1}\text{Frob}_\mathcal{P} \sigma, \ \sigma \in G_{\mathbb{Q}}.$$
1.3 Galois Representations:

A Galois representation ρ is a continuous homomorphism

$$\rho : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_n(K),$$

where K is a topological field.

We want to know the values of $\rho(\sigma)$ for $\sigma \in G_{\mathbb{Q}}$. In particular, we want to evaluate ρ at the absolute Frobenius element:

- The notation $\rho(\text{Frob}_p)$ is well defined if and only if $I_P \subset \text{Ker}\rho$, since Frob_p is defined up to I_P.

- If P, P' lie over p, then there exists some $\sigma \in G_{\mathbb{Q}}$ such that $P' = P^\sigma$ \Rightarrow $I_{P'} = \sigma^{-1}I_P\sigma$.

So, if $I_P \subset \text{Ker}\rho$, then $I_{P'} \subset \text{Ker}\rho$. Therefore,

$$\rho(\text{Frob}_P') = \rho(\sigma^{-1}\text{Frob}_P \sigma) = \rho^{-1}(\sigma)\rho(\text{Frob}_P)\rho(\sigma).$$

So, the primes lying over p define a conjugacy class in $GL_n(K)$. Since all elements in this conjugacy class have the same characteristic polynomial, we see that the characteristic polynomial only depend on p.

Definition 1.1. ρ is unramfied at p if $I_P \subset \text{Ker}\rho$ for any maximal ideal $P \subset \mathbb{Z}$ lying over p.

Definition 1.2. Two representations ρ, ρ' are said to be equivalent if there exists $M \in GL_n(K)$ such that

$$\rho'(\sigma) = M^{-1}\rho(\sigma)M, \ \forall \sigma \in G_{\mathbb{Q}}.$$

Definition 1.3. Let $c \in G_{\mathbb{Q}}$ be complex conjugation then ρ is said to be odd if $\det(\rho(c)) = -1$, and even if $\det(\rho(c)) = 1$.

Let V be an n dimensional vector space over K, then $GL_n(K) = GL(V)$.

Definition 1.4. A representation ρ is said to be irreducible if V is not zero and if no vector subspace is stable under $G_{\mathbb{Q}}$ except 0 and V.

4
Now, after defining Galois representations we want to try to find a solution to the following question:

QC: Given a Galois representation

\[\rho : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_n(K), \]

is there a “rule” for determining the conjugacy class of \(\rho(Frob_P) \) when \(p \) is unramified?

2 Modular Galois Representation

The following theorem, Theorem 4.4.1 in Weinstein’s paper, is a construction due to Deligne and Serre, which associate a 2-dimensional Galois representation with modular forms.

Theorem 2.1. Let \(g(\tau) = \sum_{n \geq 1} a_n(g)q^n \) be a cuspidal eigenform of weight \(k \), level \(N \), and character \(\chi : (\mathbb{Z}/N\mathbb{Z})^\times \to \mathbb{C}^\times \), normalized so that \(a_1 = 1 \).

Let \(F \) be a number field containing \(a_n(g) \) and the values of \(\chi \).

- **Suppose** \(k \geq 2 \). Then for all primes \(P \) of \(F \) there exists an odd irreducible Galois representation

 \[\rho_{g,P} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(F_p) \]

 where \(F_p \) is the completion of \(F \) with respect to the \(p \)-adic absolute value, such that for all \(\ell \) prime to \(N \) and \(P \), \(\rho_{g,P} \) is unramified at \(\ell \) and the characteristic polynomial of \(\rho_{g,P}(Frob_\ell) \) is

 \[x^2 - a_\ell(g)x + \chi(\ell)\ell^{k-1}. \]

- **Suppose** \(k = 1 \). Then there exists an odd irreducible Galois representation

 \[\rho_g : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\mathbb{C}), \]

 such that for all \(\ell \) prime to \(N \), \(\rho_g \) is unramified at \(\ell \), and the characteristic polynomial of \(\rho_g(Frob_\ell) \) is

 \[x^2 - a_\ell(g)x + \chi(\ell). \]
We call an odd, irreducible, 2-dimensional Galois representation associated to a cuspidal eigenform Modular, if it arises in the way described in Theorem 2.1.

Note that for any modular Galois representation the characteristic polynomial is a "rule" determining the conjugacy class of \(\rho(\text{Frob}_p)\) unramified at \(p\).

Therefore, for modular Galois representation we have an answer to QC.

3 Modular Galois Representations and FLT

The question of which Galois representations are modular is closely related to Fermat’s Last Theorem.

Theorem 3.1 (Fermat’s Last Theorem). \(x^n + y^n = z^n\) has no nontrivial integer solutions when \(n > 3\).

It can be reduced to the case \(n = p\), \(p\) prime such that \(p \geq 5\).

To see this link, we will be interested in Galois representations coming from geometry. Recall the following:

Let \(E : y^2 = f(x)\) be an elliptic curve such that \(f(x) \in \mathbb{Q}[x]\), and take \(m \geq 2\).

Definition 3.1. The \(m\)-torsion subgroup of \(E\), is

\[
E[m] = \{P \in E : [m]P = 0\}.
\]

Proposition 3.1. If \(m \neq 0\), \(E[m] \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}\).

Since \(G_\mathbb{Q}\) acts on \(E[m]\), we have the following representation

\[
G_\mathbb{Q} \to \text{Aut}(E[m]) \cong GL_2(\mathbb{Z}/m\mathbb{Z})
\]

Definition 3.2. Let \(p \in \mathbb{Z}\). The \(p\)-adic Tate module of \(E\) is the group

\[
T_p(E) = \lim_{\leftarrow n} E[p^n],
\]

where the inverse limit taken with respect to the natural maps

\[
E[p^{n+1}] \xrightarrow{[p]} E[p^n].
\]

Proposition 3.2. As a \(\mathbb{Z}_p\)-module, the Tate module has the following structure:

\[
T_p(E) \cong \mathbb{Z}_p \times \mathbb{Z}_p.
\]
The p-adic representation of $G_{\mathbb{Q}}$ associated to E is the homomorphism
\[\rho_{p,E} : G_{\mathbb{Q}} \to \text{Aut}(T_p(E)) \cong GL_2(\mathbb{Z}_p) \subseteq GL_2(\mathbb{Q}_p), \]
induced by the action of $G_{\mathbb{Q}}$ on the p^n-torsion points.

Therefore, we obtained a 2-dimensional representation of $G_{\mathbb{Q}}$ over a field of characteristic zero.

Also, recall that $\rho_{p,E}$ is unramified at primes ℓ such that $\ell \nmid p\Delta$, where $\Delta = \text{discriminant of } f(x)$, and for such ℓ the characteristic polynomial of $\rho_{p,E}(\text{Frob}_\ell)$ is:
\[\det(xI - \rho_{p,E}(\text{Frob}_\ell)) = x^2 - (\ell + 1 - N_\ell)x + \ell, \tag{1} \]
where N_ℓ is the number of points of E with coordinates in the finite field \mathbb{F}_ℓ.

Definition 3.3. We say E is modular if the Galois representation $\rho_{p,E}$ is modular.

Therefore, from Theorem 2.1, E is modular if there exist a cuspidal eigenform g of weight k and character χ, such that for almost all primes ℓ the characteristic polynomial of Frob_ℓ is
\[x^2 - a_\ell(g)x + \chi(\ell)\ell^{k-1}, \tag{2} \]
comparing (1) with (2), we say E is modular if there exists a cuspidal eigenform of weight 2 and trivial character χ, such that for almost all primes, the number of points on E with coordinates in \mathbb{F}_ℓ is $\ell + 1 - a_\ell(g)$.

Now, what does this have to do with FLT?

Take $E : y^2 = x(x - A)(x - B)$ such that $A, B \in \mathbb{Z}$ and $(A, B) = 1$, then E is semistable.\(^1\)

Proposition 3.3. Assume that E is modular and $p\mid AB(A - B) = \Delta_E$ exactly with a power divisible by p i.e. $p^n p \parallel AB(A - B)$. Then, $\rho_{E,p}$ is modular of level $N = 2 \prod_{\ell \mid AB(A - B)} \ell$.

Now, take $A = x^p, B = -y^p$. Assume $A - B = x^p + y^p = z^p$. Then if E is modular and $p^n p \parallel -x^p y^p z^p = -(xyz)^p$ for some n, then $\rho_{E,p}$ is modular of level
\[N = 2 \prod_{\ell \mid -(xyz)^p} \ell = 2 \times 1, \]

\[^1\text{we say that } E \text{ is semistable at all } p \text{ if } f(x) \equiv f_p(x)(\text{mod } p) \text{ has at least two different roots module } p.\]
which means that \(\rho_{E,p} \) is modular of level 2, but since there are no nontrivial cusp forms of weight 2 and level 2, we get a contradiction.

So we showed that if there exists a nontrivial solution of \(x^p + y^p = z^p \), then \(E \) is not modular.

It has been proven that

Theorem 3.2 (The Shimura-Taniyama-Weil Conjecture). *Every elliptic curve defined over the rational numbers is modular.*

which implies Fermat’s claim.

4 Modular Artin Representations

In the previous section, we saw that the Tate module of an elliptic curve gives an example of 2-dimensional modular \(p \)-adic Galois representation which was associated with a cuspidal eigenform of weight 2.

In this section, we discuss the case of 2-dimensional Artin representations, i.e.

\[\rho : G_{\mathbb{Q}} \to GL_2(\mathbb{C}). \]

Conjecture. Let \(\rho : G_{\mathbb{Q}} \to GL_2(\mathbb{C}) \) be an odd irreducible Galois representation. Then, \(\rho \) is equivalent to \(\rho_g \) for some cuspidal eigenform \(g \) of weight 1.

where \(\rho_g \) is the Artin representation associated to \(g \) by the Deligne and Serre construction.

This construction is the two dimensional case of Artin conjecture, which can be stated for all dimensions in terms of the analytic continuation of an \(L \)-function attached to \(\rho \).

A large part of the conjecture was proved by Langlands and was extended by Tunnel. They proved the following:

Theorem 4.1. \(\rho : G_{\mathbb{Q}} \to GL_2(\mathbb{C}) \) odd irreducible Galois representations such that \(\rho(G_{\mathbb{Q}}) \) is solvable. \(^2\) Then \(\rho \) is equivalent to \(\rho_g \) for some cuspidal eigenform \(g \) of weight 1.

Since an Artin representation has a finite image, \(\rho(G_{\mathbb{Q}}) \) can be classified by its projective image, which is a finite subgroup in the projective general linear group \(PGL_2(\mathbb{C}) \cong GL_2(\mathbb{C})/\{\text{nonzero scalar matrices}\} \).

\(^2\)A group \(G \) is solvable if there is a chain

\[G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_s = G \]

such that \(G_{i+1}/G_i \) is abelian.
Theorem 4.2. If H is a finite subgroup of $PGL_2(\mathbb{C})$, then H is isomorphic to one of the following groups:

- the cyclic group C_n of order n, $n > 0$.
- the dihedral group D_{2n} of order $2n$, $n > 1$.
- tetrahedral A_4.
- octahedral S_4.
- icosahedral A_5.

Therefore, the only excluded case in the previous theorem is when the projective image of $\rho(G_\mathbb{Q})$ is isomorphic to A_5, which was proven later by Khare and Wintenberger. As a result, the 2-dimensional Artin conjecture was proven for all cases.

If the projective image of $\rho(G_\mathbb{Q})$ is dihedral, then the required eigen form g is a theta function, which is similar to the one appearing in Example 3.14 and Example 3.4.2 of Weinstein’s paper:

for a polynomial $f(x) = x^4 - 2$, the splitting field of f over \mathbb{Q} is $L = \mathbb{Q}(\sqrt[4]{2})$, and $\text{Gal}(L/\mathbb{Q}) \cong D_8$ generated by:

$r(\sqrt[4]{2}) = i\sqrt[4]{2},$
$s(\sqrt[4]{2}) = \sqrt[4]{2}$

$r(i) = i, s(i) = -i$

which satisfies the relations $r^4 = 1, s^2 = 1$ and $srs^{-1} = r^{-1}$.

The group D_8 has a 2-dimensional representation which sends:

$r \mapsto \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},$

$s \mapsto \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Therefore, we can construct a 2-dimensional Artin representation

$\rho : \text{Gal}(\mathbb{Q}/\mathbb{Q}) \to GL_2(\mathbb{C}),$

which factors through $\text{Gal}(\mathbb{Q}(i, \sqrt[4]{2})/\mathbb{Q})$.

References

