Seminar Talk: Galois Representations

Definition Let K be a field and \overline{K} a fixed algebraic closure of K. Then we call the group $G_K := \text{Gal}(\overline{K}/K)$ the absolute Galois group of K.

Note that for a different algebraic closure \overline{K}', the corresponding group $\text{Gal}(\overline{K}'/K)$ is isomorphic to G_K.

As the talk will treat different objects defined via limits, we recall the definition of an inductive limit:

Definition Let I be a small category (i.e., objects and morphisms are sets), \mathcal{C} be an arbitrary category, $F : I \to \mathcal{C}$ a functor and write X_i for the image of $i \in I$ under F. Then the projective limit of F (if it exists) is an object

$$\lim_{\leftarrow i \in I} X_i$$

together with morphisms

$$(\rho_j : \lim_{\leftarrow i \in I} X_i \to X_j)_{j \in I}$$

so that for every object $T \in \text{Ob}(\mathcal{C})$ the map

$$\rho_j \circ \text{Hom}(T, \lim_{\leftarrow i \in I} X_i) \to \{f_j : T \to X_j \mid F(\phi) \circ f_i = f_j \text{ for all } (\phi : i \to j) \in I\}$$

$$g \mapsto \rho_j \circ g$$

is an isomorphism.

We can write the absolute Galois group as a limit:

$$\text{Gal}(\overline{K}/K) = \lim_{\leftarrow L/K} \text{Gal}(L/K)$$

where $I = \text{gal}^{op}_K$ is the opposite category of finite galois extensions of K, i.e.

$$\text{Ob}(I) = \{L \text{ a field} \mid L/K \text{ Galois and finite}\},$$

$$\text{Mor}_I(L, L') = \begin{cases}
\{1\} & \text{if } L' \subseteq L \\
\emptyset & \text{otherwise}
\end{cases}.$$

Writing the Group as a projective limit endows it with a topology compatible with the group structure, called the Krull topology, so that it has the structure of a topological group, i.e., composition and the inverse map are continuous. The open subgroups are of the form $\text{Gal}(\overline{K}/L)$, where L/K is a finite Galois extension.

As G_K is a fairly complicated group, we have to develop some tools to study it. One important approach is to use Galois representations.
Definition A Galois representation (of dimension n) is a continuous homomorphism

$$
\rho : \text{Gal}(\overline{K}/K) \rightarrow \text{GL}_n(F),
$$

where F is a topological field (i.e. $(F,+)$ and $(F \setminus \{0\},\cdot)$ are topological groups. The topology on $\text{GL}_n(F)$ is induced by the topology of F by considering $\text{GL}_n(F)$ as the complement of the open subset

$$
\{M \mid \det(M) = 0\} \subseteq \text{Mat}_{n\times n}(F) \cong F^{n^2},
$$

where F^{n^2} has the canonical topology.

Definition ρ is unramified at a prime p of K if it factors as

$$
\text{Gal}(\overline{K}/K) \xrightarrow{\text{res}} \text{GL}_n(F) \xrightarrow{\rho} \text{Gal}(L/K)
$$

for some Galois extension L/K (infinite extensions are allowed).

Recall the definition of the Frobenius automorphism:

For a Galois extension L/K, p a prime of K that is unramified in L, P a prime in L above p, we define Frob$_{P|p}$ as

$$
\text{Frob}_{P|p}(x) \equiv x^{N_P} \text{mod } P \text{ for all } x \in \mathcal{O}_L
$$

and we can easily see that two Frobenius automorphisms for different primes P, P' above p are conjugate in $\text{Gal}(L/K)$, so that we get a well-defined conjugacy class $[\rho(\text{Frob}_p)]$.

If ρ is unramified, the class $[\rho(\text{Frob}_p)] \subseteq \text{GL}_n(F)$ is well-defined.

This notion allows us to formulate a more general statement as question B:

Question C Given a Galois representation $\rho : G_K \rightarrow \text{GL}_n(F)$, is there a rule to determine the conjugacy class of $\rho(\text{Frob}_p)$ for p an unramified prime of K?

Definition If the field F is equal to the complex numbers equipped with the discrete topology, a Galois representation $\rho : G_K \rightarrow \text{GL}_n(\mathbb{C})$ is called Artin representation.

Note that images of Artin representations are finite, as $\rho^{-1}(\text{id})$ is open. Therefore they factor through representations of finite groups $\text{Gal}(L/K)$, where L/K is a finite Galois extension.

Finding an answer for Question C would also answer Question B, as for L/K finite and Galois, we can find an Artin representation ρ with $\text{Ker}(\rho) = \text{Gal}(\overline{K}/L)$, so that p splits in L if and only if $[\rho(\text{Frob}_p)]$ is trivial.

Example If $n = 1$, we have $\text{GL}_1(\mathbb{C}) = \mathbb{C}^*$, so an Artin representation of dimension one is just a continuous homomorphism $\rho : G_K \rightarrow \mathbb{C}^*$. By the Kronecker-Weber Theorem (every number field is contained in a cyclotomic field) we know that there is some m so that ρ factors through $\text{Gal}Q(\zeta_m)/Q) \cong (\mathbb{Z}/m\mathbb{Z})^*$. Thus we get a correspondence
\{\text{one-dimensional Artin representations}\} \leftrightarrow \{\text{Dirichlet Characters}\} \chi: (\mathbb{Z}/m\mathbb{Z})^* \xrightarrow{\rho} \chi \text{ with } \chi(p) = \rho(\text{Frob}_p).

Example For $L = \mathbb{Q}(i, \sqrt{2})$, the splitting field of the polynomial $x^4 - 2$ over \mathbb{Q}, we know that the Galois group is isomorphic to the dihedral group D_8 that is generated by the two elements r and s, with
\[
 r(\sqrt{2}) = i\sqrt{2}, \\
 r(i) = i, \\
 s(\sqrt{2}) = \sqrt{2}, \\
 s(i) = -i.
\]
We have $r^4 = 1, s^2 = 1, srs^{-1} = r^{-1}$. We get a two-dimensional Artin representation
\[
 \begin{array}{ccc}
 \text{Gal}(\mathbb{Q}/\mathbb{Q}) & \xrightarrow{\rho} & \text{GL}_2(\mathbb{C}) \\
 \text{res} & \downarrow & \\
 \text{Gal}(L/\mathbb{Q}) & \cong & D_8 \\
 \end{array}
\]
via $\rho(r) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \rho(s) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Fact We have
\[
 |\rho(\text{Frob}_p)| = \begin{cases}
 1 & \text{if } p = a^2 64b^2 \\
 r^2 & \text{if } p = a^2 + 16b^2, b \text{ odd} \\
 rs & \text{if } p \equiv 3(8) \\
 r & \text{if } p \equiv 5(8) \\
 s & \text{if } p \equiv 7(8)
\end{cases},
\]
so that
\[
 tr(\rho(\text{Frob}_p)) = \begin{cases}
 2 & \text{if } p = a^2 64b^2 \\
 -2 & \text{if } p = a^2 + 16b^2, b \text{ odd} \\
 0 & \text{otherwise}
\end{cases}.
\]

Example If we take some prime $p \equiv 1(8)$, we know by the quartic reciprocity law that 2 is a quadratic, but not biquadratic residue mod p, so we get the following splitting behaviour:
\[
\begin{array}{ccc}
 \mathbb{Q}(i, \sqrt{2}) & p_1 & p_2 \\
 \mathbb{Q}(i, \sqrt{2}) & p_1 & p_2 \\
 \mathbb{Q}(i) & p_1 & p_2 \\
 \mathbb{Q} & p \\
\end{array}
\]
The fact stated above can be proven by using the quadratic reciprocity law.

Recall The set of rational primes \(p \) so that a polynomial \(f \in \mathbb{Q}[x] \) irreducible splits completely has a density that is \((\#G)^{-1}, G = \text{Gal}(\mathbb{Q}[x]/(f)/\mathbb{Q})\). If we define \(G_0 \) := \(\{ \sigma \in G \mid \sigma \text{ has no solutions mod } p \} \) has a density equal to \(\#G_0/\#G \).

For \(f \in \mathbb{Z}[x], \) \(p \) prime, we denote by \(N_p(f) \) the number of zeros of \(f \) in \(\mathbb{F}_p \) (counted without multiplicity).

Example We want to compute \(N_p(f) \) for \(f(x) = x^n - x - 1 \).

In the case \(n = 2 \), the discriminant of \(f \) is 5, so we can conclude \(N_5(f) = 1 \). If \(n \neq 5 \), we have

\[
N_p(f) = \begin{cases}
2 & \text{if } 5 \text{ is a square mod } p \\
0 & \text{otherwise}
\end{cases}
= \begin{cases}
2 & \text{if } p \equiv \pm 1 \text{ mod } p \\
0 & \text{if } p \equiv \pm 2 \text{ mod } p
\end{cases}
\]

because for \(p \neq 2 \), the roots of \(f \) in \(\overline{\mathbb{F}_p} \) are \((1 \pm \sqrt{5})/2\). The second equality is just quadratic reciprocity.

In the case \(n = 3 \), we write \(E = \mathbb{Q}[x]/(f) \), \(L \) a Galois closure of \(E \). The Galois group is \(\text{Gal}(L/\mathbb{Q}) = S_3 \). We know the discriminant of \(f \) is \(-23\), so that \(L \) contains the field \(K = \mathbb{Q}(\sqrt{-23}) \) and \(L \) is a cubic extension of \(K \).

If \(p \neq 23 \), let \(\text{Frob}_p \) be the Frobenius substitution of \(p \) in \(S_3 \). As we know there is a unique quadratic character associated to \(K/\mathbb{Q} \), we know \(\text{sgn}(\text{Frob}_p) = \varepsilon \), where \(\varepsilon(q) = \left(\frac{q}{p} \right) \). This implies that \(\text{Frob}_p \) is a transposition if \(\left(\frac{p}{23} \right) = -1 \), so we have \(N_p(f) = 1 \) in this case.

If \(\left(\frac{p}{23} \right) = 1 \), \(\text{Frob}_p \) has either order 1 or 3, so \(N_p(f) = 1 \) or 3.

To distinguish these cases, we decompose \(p = p_1p_2 \in K \). By the correspondence between ideal classes and binary quadratic forms we know that \(p_1 \) is principal if and only if we can write \(p = a^2 + ab + 6b^2 \) with \(a, b \in \mathbb{Z} \). In the other case we can write \(p = 2a^2 + ab + 3b \), and as a result we get

\[
N_p(f) = \begin{cases}
3 & \text{if } p = a^2 + ab + 6b^2 \\
0 & \text{if } p = 2a^2 + ab + 3b \\
1 & \text{if } \left(\frac{p}{23} \right) = -1
\end{cases}
\]

Definition If \(F \) is the field of the \(p \)-adic numbers, equipped with the \(p \)-adic topology, a Galois representation \(\rho : G_K \to \text{GL}_n(\mathbb{Q}_p) \) is called \(p \)-adic Galois representation.

Recall The \(p \)-adic integers are defined as the projective limit

\[
\lim_{m \in \mathbb{N}} \mathbb{Z}/p^m\mathbb{Z},
\]

where the limit runs over all positive integers and we have a morphism from \(\mathbb{Z}/p^m\mathbb{Z} \) to \(\mathbb{Z}/p^{m'}\mathbb{Z} \) if and only if \(m \leq m' \), and that morphism is just the inclusion.

Alternatively, they can be defined as the completion of \(\mathbb{Z} \) with respect to the \(p \)-adic absolute value

\[
|n|_p := \begin{cases}
\max\{k : p^k | n\} & \text{if } n \neq 0 \\
0 & \text{if } n = 0
\end{cases}
\]
We then define the \(p \)-adic numbers to be the fraction field of the \(p \)-adic integers. On those we define the \(p \)-adic norm: For any \(x \in \mathbb{Q}_p \setminus \{0\} \) there is a unique \(n \) so that \(x = p^n \frac{a}{b} \), so that \(p \) does not divide \(a \) and \(b \), and we define
\[
|x|_p := \begin{cases}
p^{-n} & \text{if } x \neq 0 \\
0 & \text{if } x = 0 \end{cases}
\]

Remark Every nonzero \(p \)-adic integer \(a \) can be written uniquely as
\[
a = a_0 + a_1p + \ldots + a_{n-1}p^{n-1} \in \mathbb{Z}_p^*
\]
with \(a_i < p \) for all \(i \).

Example The \(p \)-adic cyclotomic character is the one-dimensional representation
\[
\begin{array}{ccc}
\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) & \overset{\rho_{\text{cycl}}}{\longrightarrow} & \mathbb{Q}_p^* \\
\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}_p) & \overset{\text{res}}{\longrightarrow} & \mathbb{Z}_p^*
\end{array}
\]
given by \(\rho_{\text{cycl}}(\sigma) = a = a_0 + a_1p + \ldots + a_{n-1}p^{n-1} \) for
\[
\sigma(\zeta_p^n) = \zeta_p^{a_0 + a_1p + \ldots + a_{n-1}p^{n-1}}
\]

We know that the only prime ramified in \(\mathbb{Q}_p/\mathbb{Q} \) is \(p \). For \(l \neq p \) prime, we have
\[
\text{Frob}_l(\zeta_p^n) = \zeta_p^l
\]
and therefore \(\rho_{\text{cycl}}(\text{Frob}_p) = 1 \).

Artin representations coming from geometry Let \(f(x) = x^3 + ax + b \in \mathbb{Q}[x] \), \(E \) the elliptic curve given by \(y^2 = f(x) \), i.e.
\[
E = \text{Proj} \mathbb{Q}[X, Y, Z]/(Y^2Z - X^3 - aXZ^2 - bZ^3)
\]
\(E \) is an abelian scheme with the well-known group law on \(E(L) \) for any field extension \(L/K \). The multiplication by \(m \in \mathbb{Z} \), denoted by \([m] \) is a group homomorphism.

We define the \(m \)-torsion points to be
\[
E[m] = \{ P \in E(\mathbb{Q}) \mid [m](P) = O \} = \ker([m]),
\]
where \(O = (0:1:0) \) is the point at infinity. \(E[m] \) is a subgroup of \(E(\mathbb{Q}) \) as it is the kernel of a homomorphism.

We have \(E \cong (\mathbb{Z}/m\mathbb{Z})^2 \) as groups because \(E[m] \) is a free \(\mathbb{Z}/M\mathbb{Z} \)-module of rank two.

Why is this the case?

We know that over \(\mathbb{C} \), every elliptic curve can be written as
\[
(E[m], +) \cong (\mathbb{C}/L, +),
\]
where $L \subseteq \mathbb{C}$ is a lattice, i.e., a free abelian group of rank two, so that \mathbb{C}/L is compact.

For a class of complex numbers $[z]$ corresponding to a point $P \in E$ we have $[m]P = [m][z] = [mz]$, because

$$\text{Ker}(\mathbb{C}/L \to \mathbb{C}/L) = \{ z \in \mathbb{C} \mid [m]z \in L \} = \left(\frac{1}{m} L \right)/L \cong L/mL \cong \mathbb{Z}^2/m\mathbb{Z}^2 \cong (\mathbb{Z}/m\mathbb{Z})^2,$$

because $L \cong \mathbb{Z}^2$.

This implies $E[m](\mathbb{C}) = E[m](\mathbb{Q}) \cong (\mathbb{Z}/m\mathbb{Z})^2$ because all points on the curve satisfy an algebraic equation.

Consider the action of G_K on $E[p^n]$:

$$G_{\mathbb{Q}} \times E[p^n] \to E[p^n](\sigma, P) \mapsto P^\sigma := (\sigma(x), \sigma(y)) \text{ for } P = (x, y) \mathcal{O} \mapsto \mathcal{O}$$

This action is well-defined because $(\sigma x)^3 = a(\sigma x) + b = \sigma(x^3 + ax + b) = \sigma(y^2) = \sigma(y)^2$.

This action gives us a Galois representation $\rho_m : G_K \to \text{GL}_2(\mathbb{Z}/m\mathbb{Z})$ and we have a chain

$$\ldots \to E[p^r] \xrightarrow{[p]} E[p^{r+1}] \to \ldots$$

We define the Tate module to be the projective limit

$$\lim_{\leftarrow m \in \mathbb{N}} (E[p^m], [p]).$$

It is a free module over

$$\lim_{\leftarrow m \in \mathbb{N}} \mathbb{Z}/m\mathbb{Z} = \mathbb{Z}_p.$$

We write

$$T_pE := \lim_{\leftarrow m \in \mathbb{N}} E[p^m] \cong \mathbb{Z}_p^2$$

The Tate module acts on $G_{\mathbb{Q}}$ and we obtain a Galois representation

$$\text{Gal}(\overline{\mathbb{Q}}/K) \xrightarrow{\rho} \text{GL}_2(\mathbb{Q}_p)$$

$$\text{Aut}(T_pE) \cong \text{GL}_2(\mathbb{Z}_p)$$

This ρ is unramified at all primes l not dividing $p\Delta$, $\Delta = \text{disc}(f(x))$. The characteristic polynomial of $\rho(Frob_l)$ is

$$\det(x \text{Id} - \rho(Frob_l)) = x^2 - (l + 1 + N_l)x + l,$$

where $N_l = \#E(\mathbb{F}_l)$.

6