
Some algebraic number theory and the
reciprocity map

Ervin Thiagalingam

September 28, 2015

Motivation

In Weinstein’s paper, the main problem is to find a rule (reciprocity law)
for when an irreducible polynomial f ∈ Z[X] splits modulo a prime p. For
quadratic polynomials, splitting happens exactly when the discriminant is a
square mod p and this is governed by quadratic reciprocity. Similarly, cubic
reciprocity helps to answer the question for cubics. In this talk, I will explain
the solution to this problem in the case f has an abelian Galois group given
by class field theory and the generalized reciprocity laws obtained from it.

The first step in the solution is to move the problem into the setting
of algebraic number theory. Let f ∈ Z[X] be an irreducible polynomial
of degree n and let K be the splitting field of f so K/Q is a finite Galois
extension with [K : Q] = n. Let OK be the integral closure of Z in K. This
is the ring of integers in K and it has unique factorization of ideals. We will
show that for all but finitely primes, f splitting mod p is equivalent to the
prime ideal (p) splitting (completely) into n distinct prime ideals of OK , i.e.
pOK = P1P2 · · ·Pn. We can do this for an extension of number fields L/K
and so now the problem is to figure out when a prime in OK splits in OL.

The Galois group G(L/K) acts on the primes Pi and permutes them.
Using this action, we can associate to all but a finite number of primes in OL
a conjugacy class of G(L/K) denoted Frobp. The conjugacy class determines
the splitting of p in that Frobp is trivial if and if only if p splits. When
G(L/K) is abelian, class field theory gives conditions on the prime p in terms
of generalized congruence relations. Namely, p must be a product of a norm
from OL and a principal ideal generated by a ”local” unit. The generalized
congruence relations appear when determining the ”local” units.



The Ring of Integers OK
To study extensions of prime ideals, we first need to know some properties

ofOK . The most important being unique factorization of ideals. To get there,
we introduce a special class of integral domains.

Definition. A ring R is a Dedekind ring if it is a noetherian integral domain
such that the localization Rp is a discrete valuation ring (DVR) for every
non-zero prime ideal p of R.

It is not clear by this definition that OK is a Dedekind ring but we have
the following characterization.

Theorem. (Janusz [2], Pg. 13) Let R be an integral domain which is not a
field. The following are equivalent statements.

(1) R is a Dedekind ring.

(2) For each maximal ideal p of R, Rp is a DVR and for each element
a 6= 0 there exists only a finite number of prime ideals containing a.

(3) R is a noetherian, integrally closed domain and each non-zero prime
ideal is a maximal ideal.

We have defined OK as the integral closure of Z in K so it is already an
integrally closed domain. To show OK is Noetherian, we apply the Primitive
Element Theorem. K over Q is a finite separable (characteristic 0) extension
so there exists α ∈ K so that K = Q(α). Now, we can assume α is an
algebraic integer as follows. K is an algebraic extension of Q so α is a root
of a polynomial in Q[X]. By clearing denominators, we can assume the
polynomial is in Z[X]. Now,

anα
n + an−1α

n−1 + . . .+ a1α + a0 = 0

where ai ∈ Z and an 6= 0. Then we have:

0 = an−1n · (anαn + an−1α
n−1 + . . .+ a1α + a0)

= (anα)n + an−1(anα)n−1 + an−2an(anα)n−2 . . .+ a1a
n−2
n (anα) + an−1n a0

so anα is an algebraic integer. With the existence of a basis of algebraic
integers for K over Q, we construct a integral basis for OK , i.e. a basis as
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a free abelian group under addition. If we do this any subgroup (including
ideals) will also be a free abelian group of at most the same rank (Stewart
[1], Pg. 28) and so will be finitely generated.

First we note that we have shown above that for any α ∈ K there exists
an algebraic integer β and non-zero integer c so that cα = β. So it is now
easy to see that the field of fractions of OK is K. Moreover, an integral basis
for OK will also be a basis for K over Q. If [K : Q] = n, we are looking for n
independent algebraic integers spanning OK . The idea is to pick a Q-basis of
algebraic integers so that the discriminant is a minimum. The discriminant
of any Q-basis B = {α1, α2, . . . , αn} for K is the [det(σi(αj))]

2 where the σi
are the n distinct embeddings of K into C. It is always rational and in the
case when B ⊂ OK , it is a positive integer.

Theorem. (Stewart [1], Pg. 46) Every number field K possess an integral
basis, and the additive group of OK is free abelian of rank n equal to the
degree of K.

Finally, to show every non-zero prime ideal p of OK is maximal, its is
enough to show that the quotientOK

/
p is finite since a finite integral domain

is a field. The norm of an ideal N(p) is defined to be the cardinality of
the quotient so we want to show this norm is finite. Let 0 6= α ∈ p so
that N(α) = ασ1(α)σ2(α) . . . σn−1(α) ∈ p. Therefore the principal ideal

(N(α)) ⊂ p so OK
/
p is a quotient of OK

/
(N(α)) . Since α is an algebraic

integer, N(α) is an integer and so as an abelian group OK
/

(N(α)) is finite

since OK is finitely generated and every element in the quotient has order
(additive) at most |N(α)|. So OK

/
p is also finite.

Unique Factorization and the Ideal Class Group

From the equivalences above, all primes ideals in Dedekind rings are
maximal. This is actually easy to see since for a prime ideal p ∈ R, prime
ideals in Rp correspond to primes ideals contained in p. So if p1 ⊂ p2, p1Rp2

is a prime ideal. But there are only two prime ideals in a DVR, 0 and the
maximal ideal p2Rp2 . So either p1 = 0 or p1 = p2. From this, we can get a
factorization for an ideal.

Let I be an ideal of R. We show every ideal in R/I contains a product of
prime ideals. Suppose there exists an ideal that does not contain a product
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of prime ideals. Let J be maximal w.r.t. to this property. So J is not
prime and there exists x, y ∈ R/I such that xy ∈ J but x, y 6∈ J . Then
(J + (x))(J + (y)) = J contains a product of primes. So 0 = pa11 · · · pann in
R/I, i.e. pa11 · · · pann ⊂ I. Looking at the image of I in R/(pa11 · · · pann ) gives
the factorization of I.

Now that we know OK is a Dedekind domain we have the fact that
any Dedekind ring has unique factorization of ideals into prime ideals. To
measure unique factorization in OK , we would like to form a multiplicative
group from the set of ideals which we will be a free abelian group generated
by the prime ideals. The technical problem arises from requiring inverses but
is remedied by introducing fractional ideals.

Definition. A fractional ideal of a Dedekind ring R is a non-zero finitely
generated R-submodule of its field of fractions K.

Non-zero ideals are finitely generated R-modules so are also fractional
ideals. Fractional ideals U are of the form c−1B for an ideal B and non-zero
c ∈ R. c is obtained by taking the common denominators of the finitely
many generators of U when written as fractions in R.

The inverse of a fractional ideal U is the set U−1 = {x ∈ K | xU ⊆ R}.
U−1 is also a fractional ideal and UU−1 = R.

Theorem. (Janusz [2], Pg. 18) Any fractional ideal U of a Dedekind ring
R can be uniquely expressed as a product

U =
n∏
i=1

paii ,

with p1, . . . , pn distinct prime ideals and a1, . . . , an positive or negative inte-
gers. If U is an ideal, the exponents will be positive.

With inverses and ideal multiplication defined, we can now form the ideal
class group C(R). First, we have that the set of all fractional ideals I(R)
is a free abelian group under multiplication with prime ideals as generators
and R as the identity. P (R) is the subgroup of principal fractional ideals of
R. The quotient

C(R) = I(R)
/
P (R)

is the ideal class group of R. The group is trivial if and only if R is a PID. A
PID is always a UFD but for Dedekind rings which already have the property
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that all non-zero prime ideals are maximal, being a UFD implies being a PID.
So C(R) measures unique factorization.

In the case of a number field K, we are always working with its unique
ring of integers and so we denote CK as the ideal class group of its ring of
integers OK . CK turns out to be a finite group and this relies heavily on the
embeddings of K into R and C. The order of CK is the class number hK of
K.

Finiteness of the Class Number

To show Ck is finite, we follow a proof using Minkowski’s bound on
convex sets and lattices. The idea is to embed K into complex space in such
a way that ideals become lattices and the norm of an ideal corresponds to
the volume of the fundamental domain.

Theorem. (Minkowski’s Theorem) Let L be an n-dimensional lattice in Rn

with fundamental domain T , and let X be a bounded symmetric convex subset
of Rn. If

v(X) > 2nv(T )

where v denotes the volume, then X contains a non-zero point of L.

To apply Minkowski’s Theorem, we embed K as follows. First we write
the degree [K : Q] = n as s + 2t where s is the number of real embeddings
of K and t is the number of pairs of complex embeddings. Then we order
the monomorphisms of K into C as σ1, σ2, . . . , σs, σs+1, σs+1, . . . , σs+t, σs+t,
where the first monomorphisms are the real embeddings and the others are
complex embeddings and their complex conjugates. Now we map x ∈ K to

σ(x) = (σ1(x), σ2(x), . . . , σs(x), σs+1(x), . . . , σs+t(x))

in the space Lst := Rs × Ct. The important property of this map is that
it takes free abelian subgroups of rank m of K to lattices of dimension m.
Ideals of OK are free of rank n so are taken to n-dimensional lattices in Lst

which is also n-dimensional over R. The volume of the fundamental domain
is related to the norm of the ideal and the discriminant ∆ of K defined as
the discriminant an integral basis for OK (which is also a Q-basis for K
and unique up to a unimodular change of basis matrix). With Minkowski’s
theorem, we can find an ideal equivalent (differing by a principal fractional
ideal) to an ideal a with a bounded norm.
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Corollary. (Stewart [1], Pg. 157) Every non-zero ideal a of OK is equivalent
to an ideal whose norm is at most ( 2

π
)t
√
|∆|.

Now given a non-zero fractional ideal a, we know it is of the form c−1b
for 0 6= c ∈ OK and b an ideal of OK . So a is equivalent to the ideal b since
it differs by the principal ideal cOK . Applying the corollary gives that a is
equivalent to an ideal c with norm N(c) ≤ ( 2

π
)t
√
|∆|. There are only finitely

many positive integers less than the bound so finitely many possible norms
of c. For a particular norm N = N(c), N ∈ c and so c divides N (or the ideal
NOK). But by unique factorization, only finitely many ideals can divide N
and so there are only finitely many choices for c. Since any fractional ideal
is equivalent to a choice of c, CK is finite.

Units

To complete our picture of the ring of integers OK , we want to know the
structure of the units. The connection between principal ideals and elements
is governed by units since associate elements will generate the same ideals.
Let UK denote the unit group. We have the following exact sequence:

1→ UK → K → I(K)

Theorem. (Dirichlet’s Unit Theorem) UK ∼= C×Zs+t−1 where C is the finite
cyclic group of roots of unity in OK.

To show this, we define a homomorphism l : K× → Rs+t by:

l(a) = (ln |σ1(a)|, . . . , ln |σr(a), 2 ln |σr+1(a)), . . . , 2 ln |σr+s(a)|).

This homomorphism maps the unit group to the subspace given by
s+t∑
i=1

xi = 0.

Using the previous embedding of K, σ, we can show that the unit group is
mapped to a lattice (of dimension at most s + t − 1). Using Minkowski’s
Theorem, we can show that the lattice is of dimension s + t − 1. The last
step is to show that the kernel of l is finite using the old embedding σ on
elements of the kernel. It is easy to see all roots of unity are in the kernel
and so we are done. The volume of the fundamental domain of the lattice
formed by the unit group is called the regulator of K, reg(K).
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Decomposition of Primes

Given an extension K ⊂ L of number fields, prime ideals in OK can
factor in OL. We would like to also include the ”factoring” of ”infinite”
primes.

Theorem. F (Janusz [2], Pg. 30) Let R be a Dedekind ring with quotient
field K and let L be a finite dimensional, separable extension of K. Let R′

be the integral closure of R in L and let p be a non-zero prime ideal of R.
Let pR′ have the factorization Pe1

1 . . .P
eg
g . Then

g∑
i=1

eifi = [L : K]

where fi = [R′/Pi : R/p]. In the case of a Galois extension, all the exponents
ei are equal and all the relative degrees fi are equal and so we obtain efg =
[L : K].

To prove this, we use the fact that R′ is a finitely generated R module
so the localization R′p is finitely generated over Rp. We can then show that
a minimal generating set is linearly independent over K using the fact that
Rp is a DVR. The last step is to show that the minimal set has size n. In
the Galois case, it is enough to show that the Galois group acts transitively
on the prime factors.

Ramification

Definition. A prime ideal p of OK is ramified in a finite extension L if a
prime ideal P lying above it (P ∩K = p) has e(P/p) > 1 where e(P/p) is
the exponent in the factorization of p in OL.

Let If such a prime ideal exists in an extension, we say the extension is
ramified at the finite prime p.

Definition. An infinite prime of a number field K is an embedding of K into
C. It is a real infinite prime if the embedding is real and complex otherwise.

A finite extension L is said to be ramified at an infinite prime of K if first
the infinite prime is real and the embedding extends to a complex embedding
of L. We can characterize which finite primes will ramify.
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Theorem. (Janusz [2], Pg. 35) Let R be a Dedekind ring with quotient field
K and let L be a finite dimensional, separable extension of K. Let R′ be the
integral closure of R in L. The prime ideals of R which ramify in R′ are
those containing the discriminant ∆(R′/R).

As we saw before, only finitely many ideals can divide (contain) an integer
so there are only finitely many ideals which ramify in an extension.

Decomposition and Inertia Groups

Now we would like to answer the main question of when does a prime
ideal split into distinct primes in an extension. We saw that a prime ideal p in
OK will factor and possibly be ramified in an extension. There are subfields
between K and L in which the ramification, change in relative degree and
splitting happen separately.

Let p be a prime ideal in OK and P a prime above it in OL. Define the
decomposition group of P as

G(P) = {σ ∈ G(L/K) | σ(P) = P}.

σ ∈ G(P) gives rise to an automorphism σ of R′ = OL/P over R = OK/p.
Define the inertia group T (B) to be the kernel of this map so

T (B) = {σ ∈ G(B | σ(x) ∈ x+ B,∀x ∈ R′}.

Assuming L is Galois, we have two fixed subfields: the decomposition field
LG(P) and the inertia field LT (P). Then the splitting of p happens between K
and LG(P), the change in relative degree happens between LG(P) and LT (P)

and ramification happens between LT (P) and L. F More importantly, the
Galois group of the extension of finite fields R′ = OL/P and R = OK/p,
G(R′/R) is isomorphic to G(P)/T (P). The proof involves working in the
completions LP and Kp to compute the order of each subgroup. Namely,
|G(P)| = [LP : Kp] = ef and [G(P) : T (P)] = f .
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Frobenius Elements and the Artin Map

By counting orders of groups, we have G(R′/R) ∼= G(P)/T (P) but
G(R′/R) is the Galois group of an extension of finite fields and so is cyclic.
Define the Frobenius element of P, FrobP, to be the coset σT (P) corre-
sponding to the generator of G(R′/R). Now if P is unramified, this is a
unique element of G(P). Moreover, Frob′P, for a different prime P′ above
p, is conjugate. The converse holds as well so we can associate a conjugacy
class, Frobp in G(L/K) to each unramified (finite) prime p. So now by the
definition, p splits (f = 1) if and only if Frobp is trivial (or FrobP is trivial for
some prime lying above). If we assume that G(L/K) is also abelian, Frobp

is a unique element.
In the abelian case, the unique Frobenius element only depends on the

prime p which allows us to define a map from the ideals ofOK toG(L/K). Let
S be a finite set of (finite) primes ifOK containing atleast the ramified primes.
Define ISK to be the subgroup of the group of fractional ideals containing only
ideals divisible by primes outside S. Each I ∈ ISK factors as I = pe11 . . . p

eg
g

for pi ∈ ISK . Now we can define the Artin map:(
L/K

•

)
: ISK → G(L/K)

I 7→ Frobe1p1 · · · Frob
eg
pg

This map is only well defined for abelian extensions since we can always
reorder the factorization of an ideal. The Artin map (symbol) generalizes
the Legendre symbol and a reciprocity law is a description of the kernel of
the Artin map since primes in the kernel are exactly those split.

Properties of the Artin Map

Theorem. F The kernel of the Artin map contains N(ISL(L)) where S(L)
is the finite set of primes of OL dividing primes of S.
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Density of Primes

Definition. Let S be a set of prime ideals of OK. If there exists a real
number δ such that

−δ log(s− 1) ∼
∑
p∈S

1

N (p)s

then we say the Dirichlet density of S is δ(S) = δ.

Definition. Let σ be an element of order n in a group G. The division of σ
is the collection of all elements of G that are conjugate to some σm with m
relatively prime to n.

Theorem. (Frobenius Density Theorem) Let L be a Galois extension of K
and let σ ∈ G(L/K) be an element having t elements in its division. Let
S1 be the set of primes of K which are divisible by a prime of L having
Frobenius automorphism in the division of σ. Then S1 has Dirichlet density
δ(S1) = t/|G|.
Theorem. (Janusz [2], Pg. 164) For any finite set of primes S containing
atleast the ramified primes, the Artin map is surjective.

Let σ ∈ G(L/K) so there exists infinitely many primes whose Frobenius
automorphism generates 〈σ〉 (G abelian). Since S is finite, we can always
find a prime with factors outside of S that still generates 〈σ〉.
Corollary. Let L1 and L2 be Galois extensions of K and let Si be the set
of primes ideals in OK that split completely in Li for i = 1, 2. If S1 ⊂ S2

(except possibly for a set of density zero) then L2 ⊂ L1.

Let L = L1L2. The primes of K that split completely in L are the primes
that split completely in both L1 and L2, i.e S1 (except possibly for a set of
density zero). Then by the Frobenius density theorem,

[L : K]−1 = δ(S1) = [L1 : K]−1.

So L2 ⊂ L1.
The converse is also true. Let n1 = [L1 : K] and n2 = [L2 : K]. Sup-

pose L2 ⊂ L1. If p = Q1 · · · Qn in L2 for n < n1, we have n2 = f ∗ n
where f is the relative degree of Qi over p. Suppose P is above Q1. Then
f(P/p) = f(P/Q1) · f > 1.

Remark: Galois (even non-abelian) extensions of number fields are char-
acterized by which primes split completely in them.
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Reciprocity Theorem

A modulus of K is a formal product of primes (finite and infinite)

m =
∏
p

pn(p)

where only finitely many of the n(p) are non-zero. Moreover, for real infinite
primes n(p) is 0 or 1 and for complex infinite primes, n(p) = 0. We take S to
be the finite set of (finite) primes dividing m and denote ISK by ImK . The goal
is to define congruence relations mod m so that for a large enough modulus,
we can determine the kernel of the Artin map.

For α, β ∈ K×, we say α ≡ β mod m if α/β is positive for every real
prime/embedding of m and α ∈ β(1 + pn(p)(OK)p) for every finite prime p
with n(p) 6= 0. Separate the modulus m into its finite and infinite parts:
m = m0m∞. We define two important subgroups of K×.

Km = {a/b | a, b ∈ OK , aOK and bOK are relatively prime to m0}

Km,1 = {α ∈ Km | α ≡ 1 mod m}

Theorem. (Artin Reciprocity Theorem) Let m be a modulus divisible by all
ramified primes. If the exponents of m are sufficiently large, then the kernel
of the Artin map is i(Km,1)N(ImL ). The smallest modulus for which this is
true is called the conductor of L/K, f.

The first step is to prove this for cyclic extensions since finite abelian
groups are just products of cyclic groups. The condition on the exponents
guarantees convergence of the exponential and logarithm maps in the com-
pletions. Using the completions and some cohomology of cyclic groups (0th

and 1st groups), we can compute the index [ImK : N(ImL )i(Km,1)] which turns
out to be [L : K]. We also know that [ImK : ker(ϕL/K)] = [L : K]. So it is
enough to show either ker(ϕL/K) ⊂ N(ImL )i(Km,1) or i(Km,1) ⊂ ker(ϕL/K).
For cyclic extensions, we can show the first one by working in a larger field
with certain roots of unity. When the second (equivalent) condition holds,
we say the reciprocity law holds for (L,K,m).
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Concluding Remarks

Classification of Abelian Extensions

Class field theory goes further and classifies all abelian extensions of a
number field k by objects internal to K. It gives a correspondence between
abelian extensions and certain equivalence classes of subgroups of IK called
ideal groups. The proof relies strongly on the Artin map and the important
fact that an extension of a number field is almost determined by which primes
split completely. The kernel of the Artin map falls into one of these ideal
groups and conversely, for each ideal group, an abelian extension (a class
field) exists for which the kernel of the Artin map lies in the ideal group.

The Hilbert Class Field

Definition. The Hilbert class field K(1) of a number field K is the unique
maximal unramified abelian extension of K.

The existence of K(1) is given by the main result of class field theory
(Janusz [2], Pg. 215) which classifies all finite abelian extensions in terms
of generalized class groups. The Hilbert class field corresponds to the usual
ideal class group in a very strong way.

Theorem. (Cox [3], Pg. 109) If K(1) is the Hilbert class field of a number
field K, then the Artin map(

L/K

•

)
: IK → Gal(L/K)

is surjective, and its kernel is exactly the subgroup PK of principal fractional
ideals. Thus the Artin map induces an isomorphism

CK
∼−→ Gal(L/K).

So knowing the class number hK gives a way of finding K(1) since [K(1) :
K] = hk. The final property of the Hilbert class field is what it does to ideals
in K.

Theorem. (Principal Ideal Theorem) Every fractional ideal in K becomes
principal when extended to an ideal in K(1).
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We can repeat the process of taking Hilbert class fields to obtain a tower
of maximal unramified abelian extensions.

K ⊆ K(1) ⊆ K(2) ⊆ . . .

It is an amazing fact that this tower can be infinite and moreover, in the
”simple” case of a quadratic extension.

Theorem. (Golod and Shafarevich) K = Q(
√
d) has an infinite class field

tower if d is a square free integer divisible by eight or more primes.

Explicit Class Field Theory

The classification of abelian extensions of number fields in general is
not explicit since the class fields are not constructed. In the case of abelian
extensions over Q, we have a concrete picture of the extensions since they are
all subfields of cyclotomic extensions. Another large class of number fields
that have an explicit class field theory are imaginary quadratic fields and
CM (Complex Multiplication) fields. The abelian extensions in this case are
described by elliptic curves and their associated modular forms.

One of the reasons why these classes of number fields can be worked
with it that these are exactly the fields with a finite number of units. From
Dirichlet’s Unit Theorem, K/Q has a finite unit group exactly when K = Q
or K is am imaginary quadratic field. This simplifies some calculations since
the regulator is trivial. Even the real quadratic case is difficult and there is
still the open problem of determining how many (and which) real quadratic
fields have class number 1.
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Examples

Quadratic Fields

Now we apply the theory to quadratic number fields K ([K : Q] = 2).
K is of the form Q(

√
d) for d a square-free integer.

Theorem. (Stewart [1], Pg. 62) Let d be a square-free integer. Then the
ring of integers of Q(

√
d) are:

(a) Z(
√
d) if d ≡ 2, 3 (mod 4)

(b) Z(1
2

+ 1
2

√
d) if d ≡ 1 (mod 4)

This gives us an integral basis for OK so we can compute the discriminant
of K. There are of course only two embeddings of K into C given by sending√
d 7→

√
d and

√
d 7→ −

√
d. So we have:

∆ =

∣∣∣∣1 √
d

1 −
√
d

∣∣∣∣2 = 4d if d ≡ 2, 3(mod 4)

∆ =

∣∣∣∣1 1
2

+ 1
2

√
d

1 1
2
− 1

2

√
d

∣∣∣∣2 = d if d ≡ 1(mod 4)

To compute CK , it will be useful to compute Minkowski’s bound ( 2
π
)t
√
|∆|.

The number t of complex embeddings of K is either 0 or 1.

∆ t Bound

d 0
√
|d|

d 1
2
√
|d|
π

4d 0 2
√
|d|

4d 1
4
√
|d|
π

We can quickly see that for d = −7,−3,−2,−1, CK is trivial (the bound
is less than two). There are some other cases for which it can be shown
that OK has an Euclidean algorithm and so is a PID and UFD. For small
positive d the algorithm involves taking the nearest integer or half-integer
approximations.
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For d = −19,−15,−11,−5, 2, 5, the bound is 2. For d = 2, 5, we do have
Euclidean algorithms. We show that hK = 2 for K = Q(

√
−5) and compute

the Hilbert class field which will then be of degree 2 over K.
Since 2 is the bound for the norm, we look at the factorization of the

ideal generated by 2, 2OK . It is ramified since 2 divides the discriminant
4 · (−5) = −20. The degree of K is 2 so we have 2OK = B2 for some prime
ideal B. So B is the only ideal of norm 2 and so hK ≤ 2. Now, K is not a
UFD so hK = 2 since we have two distinct factorizations into irreducibles for
6 as 6 = 2 · 3 = (1 +

√
−5)(1 −

√
−5). We know [K(1) : K] = hK = 2 so to

find K(1), we are looking for a unramified abelian extension of degree 2. Of
course, any degree 2 extension is already abelian.

If we take K(1) = K(i) = Q(
√

5, i), we claim it is unramified over K.
The discriminant over Q of K(1) can be obtained by taking the integral basis
{1, i, 1

2
+ 1

2

√
5, (1

2
+ 1

2

√
5)i} to obtain ∆ = −2452. So the only primes of Q

that ramify are 2 and 5. But each of these already ramify in K. Let B be
a prime lying over 5 in K(1) and p = P ∩ K. We have another subfield of
interest in K(1), namely L = Q(i). Let p′ = P ∩ L. The prime 5 does not
ramify in L since the discriminant is −4 so e(p′/3) = 1. We already know 5
ramifies in K so e(p/3) = 2. Then we have the following:

e(P/3) = e(P/p)e(p/3) = e(P/p′)e(p′/3)

Since L is a degree 2 extension, the product formula forces e(P/p′) ≤ 2. This
means e(P/p) = 1 and so primes above 5 do not ramify. We can make a
similar argument for primes above 2 using the subfield Q(5). Finally, K has
no real infinite primes so cannot ramify at an infinite prime. So K(1) is the
Hilbert class field of K.

For quadratic extensions, Frobenius elements lie in the Galois group 〈−1〉.
As we expect, quadratic reciprocity governs whether or not Frobp is 1 or −1.
To talk about this, we need to discuss cyclotomic fields.

To compute the conductor f of a number field, it is useful to work locally
and compute ”local” conductors. It is also useful to know that f, being the
smallest modulus satisfying the reciprocity law, is only divisible by primes
that ramify (further evidence that the bad primes are exactly the ramified
primes). We know the discriminant of a quadratic field and so, depending on
d mod 4, we have to check locally at the odd primes dividing d and possibly
2. The result is f = (∆) if d > 0 and f = (∆)p∞ otherwise.
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Cyclotomic Fields

Let K = Q(ζn) and denote the homomorphism of K taking ζn to ζmn
by σm. We know the Galois group G(K/Q) ∼= (Z/nZ)×, OK = Z[ζn] and
∆K is only divisible by primes dividing n. For a prime q not dividing n (so

unramified), Frobq = σq. To see this, write x ∈ OK as x =
n−1∑
i=0

aiζ
i
n for ai ∈ Z

and let Q be a prime above q. Then OK/Q is a finite field of characteristic
q so

xq ≡
n−1∑
i=0

aqi ζ
q
ni ≡

n−1∑
i=0

aqi ζ
q
ni ≡ σq(x) (mod Q)

So σq corresponds to the generator of OK/Q and σq ∈ G(Q) since for x ∈ Q,
σq(x) ≡ xq ≡ 0 (mod Q).

Now that we know what the Frobenius elements look like we can easily
figure out when they are trivial. Let n =

∏r
i=1 p

ki
i . Then Frobq = σq = σ1 if

m|q − 1, i.e. q ≡ 1 (mod m).

Example: K = Q(ζ3)

Theorem. (Kronecker-Weber) A number field K is an abelian extension of
Q if and only if K ⊂ Q(ζn) for some n.

We know there exists a modulus m so that the reciprocity law holds for K
so the kernel of the Artin map on ImK is i(Qm,1)N(ImK) which contains i(Qm,1),
the kernel of the Artin map on Q(ζm). So the primes that split in Q(ζm) also
split in K. This is enough to imply K ⊂ Q(ζm) by a previous theorem.

Remark: The fields over Q with nice reciprocity laws (i.e. in terms of some
congruence condition) are the abelian ones since they behave like cyclotomic
fields.

The smallest n for which K ⊂ Q(ζn) turns out to be the conductor of
K/Q. One way to see this is to use the classification of abelian extensions.
The kernel of the Artin map for both extensions are ”defined” mod n = (n)p∞
but ker(ϕQ(ζn)/Q) is the smallest subgroup defined for n. This is because
ker(ϕQ(ζn)/Q) = i(Qm,1) which is always contained in the kernel of the Artin
map.
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Quadratic Reciprocity

Let K = Q(
√
d) where d = (−1)

p−1
2 p for an odd prime p and let ∆ be

the discriminant. d ≡ 1 mod 4 so ∆ = d.
Let f = (d)p∞ be the conductor of K/Q. We know that i(Qf,1) ⊂ ker(ϕ).

Qf,1 = {a/b ∈ Q|(a, p) = (b, p) = 1, ab−1 ≡ 1 mod p, a/b > 0} and

I fQ = {(a/b)|(a, p) = (b, p) = 1}. We have a surjective homomorphism from

I fQ to (Z/pZ)× with kernel i(Qf,1). So ϕ reduces to a homomorphism from
(Z/pZ)× → {±1}, i.e. a quadratic character. It is non-trivial since ϕ is onto
so it must be the Legendre symbol (−/p). But we also know that for an odd
prime q, ϕ(q) = (∆/q) since q splits in K if and only if ∆ is a square mod q.

So (∆/q) = (−1/q)
p−1
2 (p/q) = (q/p). Using the fact (−1/q) = (−1)

q−1
2 , we

have quadratic reciprocity.

Theorem. (Kummer’s Theorem) Let L/K be number fields and p ∈ OK.
Suppose there is θ ∈ L such that the integral closure of (OK)p in L is (OK)p[θ].
Let f(X) be the minimum polynomial of θ over K. Let f(X) be f(X) modulo
p. Suppose

f(X) = g1(X)a1 · · · gt(X)at

is the factorization of f(X) as product of distinct irreducible polynomials
gi(X) over OK/p. Then

pOL = Pa1
1 · · ·Pat

t

for certain prime ideals Pi of OL corresponding one to one with the irre-
ducible factors gi(X); the relative degree fi(Pi/OK) equals the degree of the
polynomial gi(X).
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