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1 Introduction
Consider a linear system of differential equations of one complex variable

d"UJi

5 = 2 b)), =1, )

having singularities at points a1, ..., an; that is, suppose that the b;;(z)’s are
holomorphic functions on P!\ {ai, ..., a;,}. Locally, such a system always
admit a solution, but global solutions are multi-valued in general. Analytic
continuation of a local solution along a closed curve may lead to another solution
if the curve encloses some singularities, so that one gets this way a representation
of the fundamental group

71—1(}P)1 \ {a17 ceey am}) - GL(n7 (C)

on the space of solutions. The Riemann-Hilbert problem asks: can any repre-
sentation of this fundamental group be obtained this way, if possible by starting
with a system of differential equation having “nice” singularities ?

We will see, at least for non-compact Riemann surfaces, that the answer
to this question is basically “yes”. Then we will hint at how this correspon-
dence between representations of the fundamental group of a Riemann surface
and systems of differential equations generalizes to higher dimensional complex
analytic manifolds by introducing the concept of flat connections.

2 Linear differential equations

First, we need to recall some results and terminology pertaining to linear dif-
ferential equations on Riemann surfaces.



For all the following discussion, let X be a Riemann surface. We will denote
by O its structure sheaf, 2 its sheaf of holomorphic 1-forms and p: X — X its
universal covering.

Definition 2.1 A linear differential equation on X is a system of equations in
Q(X) of the form

n
dwi:ijaij, i=1,...,n, (2)
j=1
where the a;;’s are 1-forms, for which we seek solutions wy, ..., w, € O(X).

Example 2.2 The system (1) defines a linear differential equation on P!\
{a1, ..., an} in this sense by setting a;; = b;;(2)dz.

Example 2.3 A single linear differential equation of the form

dny dn—ly
where the b;(z)’s are meromorphic functions on P! having poles at points aj,
..y G, may be viewed as a linear differential equation on P!\ {ay, ..., a,,} by
setting w; :=y~1, i=1, ..., n, i.e. considering the system
dw; .
dZZ:wH_l, Z:L...,n*l,
dw
d—; = —bp(2)w; — ... — b1 (2)w,.

The system of equations (2) may be written more concisely
dw = Aw

if we set A := (a;;) and consider w as the column vector (w1, ...,w,)". We now
have A € Q(X)™*™ and we seek solutions w € O(X)™ for the preceding equality
to hold in Q(X)™.

If we choose a local chart (U, z), each holomorphic 1-form a;; may be written
a;; = b;; dz where b;; € O(U). So A = Bdz, where B := (b;;) € O(U)"*", and
the equation becomes

dw
L= Bz u(z),

that is, a system of the form (1) on a open subset of the complex plane.
Locally, for each choice of ¢ € C™, such a system admits a unique solution
w satisfying w(0) = ¢ ([4], Th. 11.2), which can be analytically continued to a
global solution if X is simply connected ([4], Th. 11.4).
In the general case in which X is multiply connected, since we have p*A €
O(X)™ ", we get a differential equation

dw = (p*A)w

on X which admits global solutions ([4], Cor. 11.5).



3 Monodromy

So, given A € Q(X)"*", let Z4 be the n-dimensional (complex) vector space
of solutions w € O(X) to the equation dw = (p* A)w.

Let G := Deck()N( /X) be the group of deck transformations of the universal
covering of X, which we know is naturally isomorphic to 71 (X). Then G acts
linearly on the vector space .Z,4 via

ow:= (0" ) 'w=woo L.
Indeed, if w is a solution of the differential equation then so is cw, because,
setting 7 := 0! € G, we have

dow) = d(7*w) = 7"dw = 7" (p* Aw) = (po T)* AT W = Aow.

Thus, we get a representation of G ~ 71(X) on the space Z4 of solutions.

We note that this representation tells us exactly how local solutions on X
of dw = Aw behave when we continue them analytically along a closed curve.
Indeed, fix a point ¢y € X and consider a local solution w of the equation
near xg. Let o € m(X, zg) be the homotopy class of a closed curve u, and
Yo € X be some point in the fiber above zy. Then we may view w as a local
solution of dw = (p* A)w near yg, and continuing w along u in X corresponds to
continuing it in X along some lifting u of u starting at yo. If 2z is the endpoint
of @, then via the standard isomorphism, o € 71 (X, x¢) corresponds to the deck
transformation that sends 3y to zg, so that cw = w o o~ ! is exactly the local
solution near zy that we get this way.

Definition 3.1 If wy, ..., w, constitute a basis for .Z4, we call the matrix
D= (wy, ..., wy)
a fundamental system of solutions for the equation dw = Aw.

If @ is a fundamental system of solutions for dw = Aw, then for each x € X ,
®(x) is an invertible matrix, so ® is really an holomorphic mapping

®: X — GL(n, C).

For short, we will call GL(n, O(X)) the subset of O(X)"*™ consisting of all
such mappings, so that we have ® € GL(n, O(X)).

We may remark that the set of fundamental systems of the equation dw =
Aw is precisely the set of ® € GL(n, O(X)) satisfying the matrix equation

dd = Ad.

Also, let us remark that the set GL(n, O(X)) is closed under the operation
of taking matrix inverses. Indeed, if ® € GL(n, O(X)), then det ® is a nowhere
vanishing holomorphic function, so that 1/ det ® is also holomorphic, and hence
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The action of G on solutions extends to an action on fundamental systems
by setting
o® = (own, ..., owy)
if = (wy, ..., wy).
Since each cw; is a solution, it may be written as a linear combination of
the basis elements wy, ..., wy,, i.e.

n
’LUj = E tijwi.
i=1

If we set T, := (t;;) € GL(n, C), the matrix that represents the action of ¢ on
£y in the basis wy, ..., w,, then we may verify that

o® = o7T,.

We will refer to this behavior by saying that ® is automorphic with factors of
automorphy T,, 0 € G.

The function T : G — GL(n, C) defined by T'(¢) := T, is an homomorphism,
because, if 0,7 € G, we have

T, =100 = 7(PT,) = (79)(1T,) = T Ty,

and thus T, = T, T,.
If we choose another fundamental system of solutions ¥ to start with, then
there exists S € GL(n, C) such that ¥ = ®S. Then, for o € G, we have

o¥ = g(®S) = 0dS = ®T,S = US'T,8S.

Hence U has factors of automorphy S~!7T,S conjugate to those of ®, meaning
that the homomorphism 7" : G — GL(n, C) that we get from ¥ is conjugate to
T.

Conversely, if T : G — GL(n, C) is another homomorphism conjugate to
T, so that there exists S € GL(n, C) such that T'(¢) = S™'T,S for all 0 € G,
then it is easy to verify that

U= ®S € GL(n, O(X))

is a fundamental system of solutions of dw = Aw having its factors of automor-
phy given by T, since
dVU =ddS = ADS = AY

and
oV =o®S = dT,8 = VS 'T,S = UT..

This fact allows us to make the following definition.
Definition 3.2 The well-defined conjugacy class of representations
71(X) ~ Deck(X /X) — GL(n, C)

arising this way from factors of automorphy of fundamental systems of solutions
of the differential equation dw = Aw is called the monodromy of this equation.



We may now state precisely the Riemann-Hilbert problem: given a repre-
sentation

T :m(X) — GL(n, C),

does there exist a linear differential equation on X with monodromy given by
T7

We might also want to impose some more conditions on the kind of system
that we seek. For example, if X := P!\ {ay, ..., a;,}, we might want to find
an equation which has poles of order at most one at aq, ..., a,,, which we call
a Fuschian differential equation.

Remark 3.3 Given a Riemann surface X and a representation T : m;(X) —
GL(n, C), the problem of finding A € (X )™*™ such that the differential equa-
tion dw = Aw_has monodromy 71" may be reduced to the problem of finding
® € GL(n, O(X)) with factors of automorphy Ty, o € G.

Indeed, suppose that we have found such a . Then we may set

A= (d®)D € QX))

We remark that this matrix is invariant under covering transformations, because
for 0 € G we have

oA = (0d®)oc® " = d(c®)(c®) " = d(®T,)(PT,) ' = dOT, T, &' = A.

So to A € Q(X)™ " corresponds a matrix A € Q(X)™ " such that p*A = A.
Then clearly ® is a fundamental system of solutions for the system dw = Aw,
so that this system has the required monodromy.

4 The case of the punctured disk

Let us restrict our attention to the punctured disk
X:={z€C|0<|z] <R}, R>O0.

Of course, this special case is particularly important, since it will give us infor-
mation on how the system (1) behaves near one of the singularities a;.
If we let _
X :=exp 1(X)={2€C|R(Z) <log R},
then we know that B
pi=explg: X — X

is the universal covering of X, and that the group Deck()? /X) of covering
transformations is an infinite cyclic group. Let us consider the generator o of
Deck(X /X) defined by o(Z) := Z — 2mi, so that we have 0Z = Z + 2mi, where Z
denotes the usual coordinate on X cC.

So let us consider a differential equation w’ = Aw with A € O(X) and
let ® € GL(n, O(X)) be a fundamental system for this equation. Since @ is
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generated by o, the monodromy of the system is entirely determined by the
matrix T,, € GL(n, C) satisfying c® = ®T,. We call T, the monodromy matric
associated to ®.

Recall that the surjective mapping exp : C**™ — GL(n, C) defined by

exp A := Z ﬁA
k=0
extends to a mapping exp : O(X) — GL(n, O(X)) for any Riemann surface X.

Theorem 4.1 If X is the punctured disk as above, then for any representation
m1(X) — GL(n, C) there exists A € O(X)™"*™ such that the monodromy of the
differential equation w' = Aw on X is given by this homomorphism.

Proof. Let T € GL(n, C) be the image of the generator o of Deck(X/X) by
the given homomorphism. As was noted earlier, it is sufficient to find ® €
GL(n, O(X)) such that ¢"® = ®T™, for all n € Z. For these equalities to hold,
it is only necessary to make sure that c® = ®7T.

Since exp : C"*" — GL(n, C) is surjective, it is possible to find B € C"*"
such that exp(2miB) = T. Now let

® := exp(Bz) € GL(n, O(X)).
We may verify that ® has the required automorphic behavior, since
0® = gexp(BZ) = exp(BoZ) = exp(BZ + 2miB) = exp(BZ) exp(2miB) = ®T.
To find explicitly the equation that we get, one may note that
d® = dexp(Bz) = d(Bz) exp(Bz) = Bexp(Bz)dz = B®dz
so we get A = (d®)®~! = Bdz € Q()?)”X”, to which corresponds A :=

(1/2)Bdz € Q(X)™*", where z stands for the usual coordinate on X.
Thus the differential equation

dw 1
- _-B
dz =z v
on X has the required monodromy. |

This proof in fact allows us to describe in a nice way the solutions of any
linear differential equation on the punctured disk.

Theorem 4.2 Let A € O(X)"*™. Then any fundamental system of solutions
® € GL(n, O(X)) of the differential equation w' = Aw on the punctured disk
X may be written ® = VP, where Py = exp(BZ) for a constant matriz B €
C™™™ and W is invariant under covering transformations, i.e. corresponds to

an element of GL(n, O(X)).



Proof. Let ® be a fundamental system of solutions of the given equation and let
T € GL(n, C) be its monodromy matrix. Just as in the proof of the preceding
theorem, it is possible to find B € GL(n, C) such that ®q := exp(BZ) has the
same monodromy matrix 7.

Now let ¥ := <I><I>51, so that we have ® = U®,, and ¥ is invariant under

covering transformations because for the generator o of Deck(;( /X), we have
o0 =g (D) = (0®)(0Dg) ™! = PTT'®y = .
This concludes the proof. |
Let us illustrate how Theorem 4.1 works on a concrete example.

Example 4.3 Let X := C\ {0} be the punctured plane and consider the
homomorphism 71(X) — GL(n, C) that sends the generator o of m(X) to

1 1 0
T:=10 ¢ 1
0 0 ¢
1/4 —1/2n —i/dn
It is easy to check that if we set B := 0 1/4  —1/2m ], then

0 0 1/4
exp(2miB) is the required monodromy matrix 7'
By calculating ® := exp(Bz), we find that

(1 —Z/2m Z2/8n® —iZ/4m
d=c0 1 —%/27
0 0 1

so that

~ z Z ' z A z - t
wy = e7* (1,0, 0)", wy 1= /4 (_2277 1, 0) wy 1= e/t <8Z7r2 B %’ % 1)

form a basis of the space of solutions of the equation w’ = Bw on X , and we
may readily check that they exhibit the required monodromy. For example,

) _ 549 ) ~
owy = 6(z+27rz)/4 (Z‘;ﬂ-ﬂ'Z’ 1, 0) — i62/4 (27;- —i, 1, O> = wqy + 1ws.

So, as multi-valued functions,

log z ¢ log? 2z ilogz logz K
21/4(1, 0, 0)t721/4 (_ g 1, 0> ’Zl/4< gz g g ’1>

o 872 A 7 Arx

form a basis for the space of solutions of the equation w’ = (1/z)Bw on the
punctured plane X.



5 Solution for non-compact Riemann surfaces

We will now give the solution to the Riemann-Hilbert problem on any non-
compact Riemann surface, using the fact that every holomorphic vector bundle
on a non-compact Riemann surface is trivial ([4], Th. 30.4).

Theorem 5.1 If X is a non-compact Riemann surface, then for any homomor-
phism T : m(X) — GL(n, C) there exists a linear differential equation on X
with monodromy T .

Proof. Once again, we only need to find a ® € GL(n, O(X)) which has the
T,, o € m(X), as factors of homomorphy. Let G := Deck(X/X) denote the
group of covering transformation of X and consider 7" as an homomorphism
G — GL(n, C).

Since p : X > Xisa covering, we know that each point x € X has an
open neighbourhood U such that its pre-image is a disjoint union of sheets

homeomorphic to U via p, i.e.

p(U) = S

AEA

where each p|g, : Sy — U is a homeomorphism.

Let us remark that we may, in fact, index the sheets over U by the elements
of G, because if we fix an index A\g € A, then for each \ € A, there exists exactly
one covering transformation o € G such that o(Sy,) = Sx.

So define

o:p Y U) —UxG
by sending y € Sy to
e(y) = (p(y), 0),

where o is the unique element of G mapping Sy, onto Sy. Note that ¢ depends
on the choice of \g € A.

If we endow G with the discrete topology, it is easy to check that ¢ is in
fact an homeomorphism of p~!(U) onto U x G such that the following diagram
commutes :

Moreover, if ¢(y) = (z, o), then for each 7 € G we have p(ty) = (z, 70) so
i is compatible with the action of G. Such a fiber-preserving homeomorphism
compatible with the action of G is called a G-chart.

We remark that any G-chart ¢ : p~}(U) — U x G may be decomposed as
o = (p, n), where n: p~*(U) — G satisfies

n(ry) =my) yep *(U), r€q.



Now we may cover X by open subsets U; with G-charts
pi=(p,mi) 9" (Ui) = Ui x G.
We set Y; := p~1(U;) and define ¥, : Y; — GL(n, C) by
Vi(y) =Ty,

Each ¥; is in GL(n, O(Y;)) since ¥; is locally constant.
We now verify that the ¥; have the required automorphic behavior on Y;.
Indeed, for each o € G, we have

U\Ifl(y) = \I’i(dily) = Tni(o-—ly)—l = Tm(y)—la = Tm(y)—ng =v,T,.
Now we define
Hij = Wﬂl’;l S GL(n, (’)([]z N UJ))
H;; is invariant under covering transformations since for o € G we have
oHy; = o(W;0; 1) = (0W,)(0¥;) " = W, T,T, " ¥; = Hyj,

so H;; defines an element F;; € GL(n, O(U; NUj)) such that H;; = p*F};.
Moreover,

p*(FijFji) = (p"Fij) (0" Fjx) = HijHji = Hix = p* Fig,

hence we conclude that the Fj;’s satisfy the cocyle relation Fj;Fj, = Fj on
U;NU; NUy, so that we may view them as transition functions for a vector
bundle on X. Since every vector bundle on X, a non-compact Riemann surface,
is trivial, we know that is it possible to factorize F;; = FiFj_1 on U; NUj;, where
each F; € GL(n, O(U;)).

The element H; := p*F; € GL(n, O(Y;)) is invariant under covering trans-
formations. We now set

®; := H;'W,; € GL(n, O(Y})).
Each ®; has the required automorphic behavior since
o®; = (cH; ) (oW;) = H "W, T, = &;T,.
Moreover, on U; N Uj;, we have
7' = U HH W = W H W = U =

so that the ®; € GL(n, O(U;)) define a global ® € GL(n, O(X)) which has the
required automorphic behavior, i.e.

c®=9T,, oed.



Then, using Remark 3.3, we obtain the required linear differential equation on
X. [ ]

In particular, this theorem applied to X := P\ {ay, ..., a,,} guarantees
us the existence of a differential equation on X having prescribed monodromy,
but tells us nothing about the nature of the singularities that this equation may
have in ay, ..., a,,. We will now assess this problem.

Definition 5.2 Let X be a Riemann surface, S C X a closed discrete subset of
X and X' := X\ S. Let A € Q(X')"*™. We say that the differential equation
dw = Aw on X' has a reqular singular point or a singularity of Fuchsian type
at a € S if each fundamental system of solutions ® on the universal covering of
X’ has at most poles of first order at points of p~*({a}).

Example 5.3 The linear differential equation

dw
Y_ 4
- (z)w

on P\ {ay, ..., an} is Fuchsian if and only if A(z) may be written

m@=2:1 A,

z—a;
i=1 v

where the A; € C"*" are constant matrices ([1], 1.2.1).

Theorem 5.4 ([4], Th. 11.13) If the matriz A € Q(X')"*" has at most a
pole of first order at a € S, then the differential equation dw = Aw on X' has
a reqular singular point at a € S.

Theorem 5.5 ([4], Th. 31.5) Let X be a non-compact Riemann surface and
S C X a closed discrete subset. Then for each homomorphism T : m;(X \ S) —
GL(n, C), there exists a linear differential equation on X \S with reqular singular
points at each point of S, which has T as monodromy.

Proof. Let us write S = {a;|i € I}. Then for each i € I we may find a
coordinate neighbourhood (Uj, z;) of a; containing no other point of S and
which is a punctured disk ([4], Lemma 31.4). Let J consist of I plus one special
symbol not in I added, say 0, and set Uy := X \ S. Now we got an open covering
(Uj)jes of X. Let p: Y — X \ S the universal covering of X \ S and let, for
i€l,Y;:=p Y(U;\{a;}). Then ply, : Y; — U; is the universal covering of U;
for each j € J.

By applying Theorem 5.1 to Uy = X\ S, we are able to find ¥y € GL(n, O(Y)))
such that o¥y = UT, for each o € 1 (X \ 9).

Also, Theorem 4.1 gives us the existence of ¥U; € GL(n, O(Y;)) having a
regular singular point at a; € U; and which has the same automorphic behavior
as UoonY; (i €1). Fori,jel,set

Hyj =W, ¥ € GL(n, O(Y; NYj)).
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Since H;j is invariant under covering transformations, it determines an element
Fij S GL(n, O(Ul n UJ))

such that Hij = p*F”

As in the previous proof, we may view the Fj;’s as transition functions for
a vector bundle on X, and since every vector bundle on X is trivial, there exist
F; € GL(n, O(U;)) such that F;; = Fl-Ff1 on U; NUj. Now, we set

P, := F;'¥; € GL(n, O(Y7)).

Just as in the previous proof, we may verify that each ®; has the required
automorphic behavior, and that they piece together to yield ® € GL(n, O(Y))
such that ¢® = ®T, for all o € 71 (X \ S).

Since on Y; = p~1(U; \ {a;}) we have ® = F; 'W,, then ® has only regular
singular points because this is the case for ¥; and that F; is homolorphic on U;.
Now we set A 1= (d®)®~! € Q(Y)"*" which defines an element of Q(X \ §)"*"

since it is invariant under covering transformations. |

6 Flat Connections

In this section, we will look at the generalization of linear differential equations
on complex analytic manifolds. Let X be a complex analytic manifold, and let
V' — X be a holomorphic vector bundle of rank n on X, and F the locally free
sheaf of rank n of holomorphic sections of V.

Moreover, let Q' := A" Q be the sheaf of i-forms on X. Set Q/(F) := Q'®@oF
the sheaf of i-forms with coefficients in F.

Definition 6.1 A connection on F is a C-linear sheaf homomorphism
V:F—QF)=QF

such that for all f € F, p € O we have
Vipf) =dp@ f+¢V].

Definition 6.2 A morphism ¢ : (F, V) — (G, V') between two flat connec-
tions over X is a morphism of O-modules ¢ : F — G such that the following
diagram commutes

It is easy to see that locally free sheaves over X endowed with flat connection
with connection morphisms form a category.
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Example 6.3 If we take the trivial bundle V := X x C", i.e. the free sheaf
F = O", then Q(F) = Q®0 O" = Q%" and the usual coordinate-wise exterior
derivative

d: 0" — Q¥ wi— dw

is a connection on F, called the canonical connection on O™,

Some constructions are available in the category of locally free sheaves with
connections.

Example 6.4 If (i, V1) and (F2, V3) are two locally free sheaves endowed
with connections, then we may define in a natural way a connection on F; & Fo:

VidVy: FidFy — Q(fl ©® .7:2) = Q(]:1) &) Q(]:Q)

Example 6.5 There is also a natural connection on F; ® F3 :

Vi®el+1eVsy: F1®F — QFL @ F).
Example 6.6 We may also define a connection V on Hom(F7, F2) by

(V) :== Vaf(v) = f(V1v).

By the universal property of the tensor product, it is easy to check that a
connection on F induces for each p a unique linear map

V QP (F) — QPFTYF)
satisfying a graded version of Leibniz’s rule:

Viw® f)=dw® f+ (-1)PwAVf forweQP, feF.
Definition 6.7 A connection V on F is called integrable or flat if the compo-
sition

V2=VoV:F — QF),

called the curvature of V, vanishes.

Example 6.8 If X is a Riemann surface, then any connection on a locally free
sheaf F on X is flat since Q?(F) = Q?®@ F = 0.

Example 6.9 It is easy to show that if V; and V, are flat, so are V; @& V5 and
Vi®kl+1® Vs.

If V is a flat connection on F, it is easy to verify that we get a cochain

complex
v v

F 1 Q(F) 5 2(F) 5 03(F) % .,
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called the de Rham complex associated to (F, V), because for w € QF, f € F,
we have

VV(wef) = V(idwe f+(-1)PwAVf)
= V(dw® f)+ (-1’ V(wA V)
= dPwef+(~DPTHdwAVS+ (-1)PdwAVf—wAVAf
= 0.

Example 6.10 The usual exterior derivative d : O™ — Q%" is a flat connection
on O™, and the de Rham complex associated to it is just the usual de Rham
complex of X.

7 The Riemann-Hilbert correspondence

Now we will see how the notion of connection on a locally free sheaf generalizes
to analytic manifolds the notion of linear differential equation on a Riemann
surface.

Let F be a locally free sheaf of rank n on a Riemann surface X and V :
F — Q(F) a (necessarily flat) connection on F. Let (U, z) be a coordinate
neighbourhood of X on which F is free.

Then we get

Vg : 0U)" = QU)" =0U)"dz.

Let eq, ..., e be the canonical O(U)-basis of O(U)™, and write
Ve; = — Zajiejdz, a;; € O(U).
j=1

For an arbitrary w € O(U)", write w = >~ ; w;e;. Then we have

n

=1 =1

3

n n

= Z dwiei — W; Z ajiejdz = Z % — i Qi W; eidz
j=1

i=1 j=1 i=1

hence the equation Vw = 0 is equivalent to the system of equations
dw; - )
d;:Zaijwj, 221,...,’17,,

i=1

i.e. the linear differential equation w’ = Aw on U, where A = (a;;) € O(U)
(see [2], III, 2.2.1).

nxn
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Conversely, let dw = Aw be a linear differential equation on a Riemann
surface X, A € O(X)™*™. Then we may define a connection V : O" — Q%" by

the formula

n
Vw = E dwi— E AijW;j | €.
Jj=1

i=1

It defines a connection because for f € O, we have

V(fw)

|

d(fw;) — Zaijfwj e
j=1

i=1

(fdwz + dfwl) — Z aijfwj €;
= j=1

7

n n n
= f Z dw; — Z aj;w; | e; + Zwidfei
i=1 j=1 i=1

= fVw+dfw.

1

And we remark that Vw = 0 if and only if dw = Aw.

In the light of what has just been said, it is natural, given a locally free
sheaf (F, V) endowed with a connection, to define the sheaf FV of horizontal
sections of F

FV ={feF|Vf=0}
ie.
FY(U)={feFU)|Vf=0}

The fact that FV is indeed a sheaf follows from the commutativity of the
diagram

FU)——=F(V)

v lv
QUF)U) —= AF)V)

in which the horizontal arrows are restriction homomorphisms.
The remarks made earlier prove that FV is locally isomorphic to C™. Such
a sheaf is called a local system on X.

Theorem 7.1 ([2], IV, 1.1, [3], Th. 2.17) The functor (F, V) — FV is an
equivalence of categories between flat connections on X and local systems on X.

Indeed, if V is a local system on X, we may associate to it the locally free
sheaf F := O ®c V endowed with the flat connection V : F — Q(F) defined by

V(f®v):=df @v.
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On the other hand, the category of finite dimensional representations of
71(X) is equivalent to the category of local systems on X ([5], Rem. 3.9.2 and
[3], Cor. 1.4).

So flat connections corresponds to representations of the fundamental group;
this is what is called the Riemann-Hilbert correspondence.
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