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INTRODUCTION

Continued fractions are an old subject. In a sense, to be described below, the golden-ratio, for
example, is inherently a continued fraction. Also, as we shall see, the Euclidean algorithm for
calculating greatest common divisors is a continued fraction algorithm in disguise. Continued
fractions also appear in ancient Sanskrit manuscripts, and certain approximation to π suggest
that some of the theory must have been known in ancient China, Egypt, India and Persia. Thus,
in some sense, the origins of the subject are in antiquity. Mathematically, the subject perhaps
started taking off with the work of L. Euler in the 18th century.

In any case, our interest in the subject is not historic.1 Continued fractions are related to
several interesting areas in number theory and outside it. They play a role in diophantine ap-
proximation as providing the best method to find good rational approximations to irrational
numbers. Rational approximations to π and to square roots always played in important role,
motivation ranging from studying the heavens, to constructing the pyramids. Continued frac-
tions play a role in transcendence theory as providing many beautiful examples of transcenden-
tal numbers described by their continued fraction expansions. They provide solutions to what
may perhaps be considered as the simplest non-trivial diophantine equations, x2 − dy2 = 1, the
Pell equation. Instances of these equations appear in ancient time as well, for example, a prob-
lem known as the Archimedes cattle problem translates into a Pell equation with solutions so
large, no one in that era was able to find, or even write down.2

Much later, perhaps in the mid-20th century, a new aspect of studying continued fractions
developed; the study of their statistical properties: what is the measure of the set of continued
fractions enjoying a given property? How do continued fractions behave on average relative to
some property? And so on. At the same time, sets defined by continued fractions are examples
both of fractals and of attractors of dynamical systems and so they became interesting examples,
as well as a test-ground, for questions in ergodic theory and dynamical systems.

We will touch on all these subjects. Prove many results, cite some others, and hopefully create
enough interest so that the reader will choose to pursue the theory further.

1Those interested in learning more about the history of continued fractions can consult the book by C. Brezinski,
History of Continued Fractions and Padé Approximants, although his discussion ends at the beginning of WWII, and so
almost none of the modern, and exciting, developments in this area is presented. Nonetheless, even a quick browse
of the book will convince the reader of the immense scope and applications of continued fractions.
2If you are interested in learning more about this, nothing beats the article of H. Lenstra, “Solving the Pell Equation”,
Notices AMS, 49 (2): 182–192.
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CONTINUED FRACTIONS

References. The topic of continued fractions is covered in most books on number theory. Two
good references are:

(1) A. Ya. Khinchin. Continued Fractions. Dover Publications; 1st edition (May 14 1997).
(2) Godfrey H. Hardy, Edward M. Wright. An Introduction to the Theory of Numbers. Oxford

University Press; Sixth edition (July 31 2008).

That said, there is material presented in these notes that is not taken from these text books and
the text books contain material not in these notes. In principle, the notes should suffice for the
course. There is no need to purchase these text books, but if you do want to consult additional
resources, you can start with those. For the part concerning Hausdorff dimension I am following
mainly the book

(3) Kenneth Falconer: Fractal Geometry: Mathematical Foundations and Applications. Wiley; 3rd
edition (Dec 31 2013)

1. INTRODUCTION

The constant π is not a rational number; π 6= a
b for any a, b ∈ Q. In fact, π is not even an

algebraic number: for any non-zero polynomial f (x) ∈ Q[x], f (x) = anxn + · · ·+ a1x + a0, we
have f (π) 6= 0. Explicitly, for any rational numbers ai, not all zero, and a non-negative integer
n,

anπn + · · ·+ a1π + a0 6= 0.

On the other hand, we can find excellent rational approximations to π:

π = 3.1415926 . . . ,
22
7

= 3.1428 . . . ,
355
113

= 3.1415929 . . . .

It is notable that relative to the size of the denominator, these are excellent approximations.
Continued fractions provide a method to find all such optimal approximations.

We will see that the theory of continued fractions is rich and full of mathematical ideas and
applications. It also has applications to mechanics. For example, for designing watches. Sup-
pose we want to create a hand on a watch that completes a sweep of it every π-seconds. If we
take two cogs, one with 7 teeth and the other with 22. Then by rotating the 7-teeth cog at a rate
of one revolution per second, the other cog will complete a revolution in 22/7 seconds, which is
very nearly π.
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1.1. Notation. Given a0 ∈ Z and a1, . . . , aN ∈N+ := {1, 2, 3, . . . } we let

[a0, a1, a2, . . . , aN ] = a0 +
1

a1 +
1

a2 +
1

a3 +
. . . +

1

aN−1 +
1

aN

We call such an expression a finite continued fraction. The ai are called partial quotients. For
example,

[3] = 3, [3, 7] = 3 +
1
7
=

22
7

, [3, 7, 15] = 3 +
1

7 +
1

15

=
333
106

,

and

[3, 7, 15, 1] = 3 +
1

7 +
1

15 +
1
1

=
355
113

.

The notation for continuous fractions is “expensive”; it takes a lot of room on the page. We
therefore introduce a more compact notation. We will also use the notation

a0 +
1

a1+
c 1

a2+
c . . .

1
aN−1+

c 1
aN

= a0 +
1

a1 +
1

a2 +
1

a3 +
. . . +

1

aN−1 +
1

aN

1.2. Sample of results. Here is a sample of some of the theorems we will prove in this part of
the course.

Theorem 1.2.1. Let a0 ∈ Z, a1, a2, a3, · · · ∈N+. The series

[a0], [a0, a1], [a0, a1, a2], . . .

converges to an irrational real number θ, which we denote

[a0, a1, a2, . . . ].

We call such an expression an infinite continued fraction. The rational number [a0, a1, . . . , ak] is
called the k-th convergent.

Conversely, given θ ∈ R−Q, there are unique a0 ∈ Z, ai ∈N+, such that

θ = [a0, a1, a2, . . . ],

namely, such that the sequence [a0], [a0, a1], [a0, a1, a2], . . . converges to θ.

Remark 1.2.2. Continued fractions are a tool useful for very particular purposes (and we will
see some of them later). For many common purposes, such as recognizing whether a particu-
lar number θ is algebraic, they are not useful at all. In general, it is impossible to tell whether
θ, given by a continuous fraction satisfies, for example, a cubic polynomial with rational co-
efficients. That said, there are some notable exceptions: (1) θ is rational if and only if it has a
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finite continued fraction expansion. (2) θ is quadratic over Q if and only if its continued fraction
expression is eventually periodic. Namely, of the form

[a0, . . . , an, b1, . . . , bm, b1 . . . , bm, b1, . . . , bm, . . . ].

(3) Also, there are many theorems that guarantee that continued fractions of a particular sort
correspond to transcendental numbers; that is, to numbers that are not algebraic. This is a
subject of on-going research, but a sample result in this area is the following: Let m ≥ 1. Let b0
be an integer, bi, ci, di be positive integers such that at least one of d1, . . . , dm is not zero, then

α = [b0; b1, . . . , bs, (c1 + λd1, . . . , cm + λdm)
∞
λ=0]

is a transcendental number. Here the notation is for blocks of natural numbers c1, . . . , cm, c1 +
d1, . . . , cm + dm, c1 + 2d1, . . . , cm + 2dm, c1 + 3d1, . . . , cm + 3dm, . . . .

Example 1.2.3. What is θ = [1, 1, 1, . . . ]? We have

θ = 1 +
1

1+
c 1

1+
c . . .

1
1+
c 1
+ . . .

= 1 +
1
θ

.

Or, simpler, [1, 1, 1, . . . ] = [1, [1, 1, 1, . . . ]]. It follows that θ2 − θ − 1 = 0 and so

θ =
1 +
√

5
2

,

is the golden ratio. If you take a square of side of length 1 and extend it to a rectangle R whose
shorter side is 1 and its longer side is θ, such that the rectangle formed as a difference between
R and the square has the same proportion you find that θ : 1 = 1 : (θ − 1) and so θ satisfies
θ2 − θ − 1 = 0. This is the classic definition of the golden ratio. The golden ratio is found
throughout nature, architecture, art and music - from the structure of a sunflower to the ancient
Parthenon in Greece; it is a proportion that is suitable for repeated and balanced structures.

Example 1.2.4. Let θ = 3
√

5. Then, θ = [1, 1, 2, 2, 4, 3, 3, . . . ] and it seems that perhaps some sort
of pattern will emerge. However, if we continue the development we find that

3
√

5 = [1, 1, 2, 2, 4, 3, 3, 1, 5, 1, 1, 4, 10, 17, 1, 14, 1, 1, 3052, 1, 1, 1, 1, 1, 1, 2, 2, 1, 3, 2, . . . ],

and the “random” appearance of 3052 essentially squashes all hope.

Exercise 1.2.5. What is the continued fraction [1, 2, 3, 1, 2, 3, 1, 2, 3, . . . ]?

Exercise 1.2.6. Let a be a positive integer. What is the continued fraction expansion of the positive
root of x2 − ax− 1?

Exercise 1.2.7. Let a be a positive integer. What is the continued fraction expansion of the positive
root of x2 + ax− 1?

Especially with the last questions you may want to experiment a bit before forming a guess
that you should then proceed to prove. There are many on-line continued fractions calcula-
tors and almost any mathematical software, such as Mathematica, Maple, Matlab, has such a
package for continued fractions. You should be careful, especially with on-line calculators, that
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they are precise enough. A free software, that is very good for number theory, is the PARI-GP
software that is available for free from pari.math.u-bordeaux.fr

In PARI, the command
y = contfrac(Pi, 20)

will return the first 20 partial quotients [a0, . . . , a19] of the continued fraction expression for π.

[3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2]

On the other hand, y = contfrac(Pi, 100) will return

[3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, 15, 3, 13, 1, 4, 2, 6, 6]

which doesn’t have 100 partial quotients, because Pari knows that it loses precision. If you
increase the precision using

\p 200

and run y = contfrac(Pi, 100) again, you will get a continued fraction for π with 100 partial
quotients. Running then the command

contfracpnqn(y, 3)

will return the convergents p0/q0, . . . , p3/q3 (to be discussed below).

[3 22 333 355]

[1 7 106 113]

For a real number r introduce the integer part function

brc = max{n ∈ Z : n ≤ r}.

The fractional part {r} is then defined by the identity

r = brc+ {r}.

In particular, 0 ≤ {r} < 1.

Theorem 1.2.8. The continued fraction of θ ∈ R \Q is obtained as follows.

θ = bθc+ {θ} = a0 +
1

1/{θ} = a0 +
1
a′1

= a0 +
1

a1 + {a′1}
,

where a1 = ba′1c. Let a′2 = 1/{a′1} and a2 = ba′2c; we find that

θ = a0 +
1

a1 +
1
a′2

= a0 +
1

a1 +
1

a2 + {a′2}

= a0 +
1

a1 +
1

a2 +
1

1/{a′2}

== a0 +
1

a1 +
1

a2 +
1
a′3

That is, if
θ = [a0, a1, . . . , aN , a′N+1],

where a0 ∈ Z, a1, . . . , aN ∈N+, 1 < a′N+1 ∈ R, then write

aN+1 = ba′N+1c, a′N+2 = 1/{a′N+1},

to find that
θ = [a0, a1, . . . , aN+1, a′N+2].

The convergents [a0], [a0, a1], [a0, a1, a2], . . . satisfy

lim
k→ ∞

[a0, a1, . . . , ak] = θ.
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Example 1.2.9. We have
√

8 = 2.828427 . . . and we find

√
8 = 2 + 0.828427 · · · = 2 +

1
1.207106 . . .

= 1 +
1

1 +
1

4.828422 . . .

= 1 +
1

1 +
1

4 +
1

1.207112 . . .

= · · · = [2, 1, 4, 1, . . . ].

Example 1.2.10. Even when θ is rational, its continued fraction expansion is useful. The con-
tinued fraction expansion is defined using the same method, only that this time it ends after
finitely many steps. Consider for example the reduced fraction

θ =
6808967
4767456

= 1.428218 . . . .

This number is rather small but its expression as a fraction requires many digits (if you are not
impressed, we could have easily provided a similar expression with 1000 digits in the denomi-
nator). We have

θ = [1, 2, 2, 1, 57, 21, 4, 1, 5, 19].

The convergent [1, 2, 2, 1, 57] = 577
404 is an excellent approximation:

577
404

= 1.4282178 . . .

Of course, the point that we keep implicitly making is that continued fractions provide excel-
lent approximations. This is a topic we will study quite closely. For example, we will prove

Theorem 1.2.11. Let θ = [a0, a1, a2, . . . ]. Denote that n-th convergent as a fraction

pn

qn
= [a0, a1, a2, . . . , an],

with (pn, qn) = 1, qn > 0. Then ∣∣∣θ − pn

qn

∣∣∣ < 1
q2

n
.

The series q0, q1, q2, q3, . . . is strictly monotone increasing for n ≥ 1. For every n, either∣∣∣θ − pn

qn

∣∣∣ < 1
2q2

n
, or

∣∣∣θ − pn+1

qn+1

∣∣∣ < 1
2q2

n+1
.

We will call these optimal approximations. Furthermore, any optimal approximation to θ is a convergent
of its continued fraction.

Exercise 1.2.12. Fill in the following table for e = exp(1). You may use a calculator, or a computer
software. (For 1/q2

n write an approximate decimal expansion.)
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n [a0, a1, . . . , an] pn/qn e− pn/qn 1/q2
n optimal?

0 [2] 2/1 0.7182818 . . . 1.0 no

1 [2, 1] 3/1 -0.2817181. . . 1.0 yes

2

3

4

5

Exercise 1.2.13. Using GP-PARI, or any other mathematical software, or even an online calculator
(but make sure it’s precise enough otherwise you may be lead to a wrong conjecture), find the
continued fractions expansions of

e− 1
2

,
e1/2 − 1

2
,

e1/3 − 1
2

,
e1/4 − 1

2
, . . .

Formulate a conjecture. (The pattern is hard to miss, and is a known theorem, in fact.)

2. SYSTEMATIC DEVELOPMENT OF THE THEORY OF CONTINUED FRACTIONS

2.1. Convergence of continued fractions. Recall our notation

[a0, . . . , aN ] = a0 +
1

a1+
c 1

a2+
c . . .

1
aN−1+

c 1
aN

= a0 +
1

a1 +
1

a2 +
1

a3 +
. . . +

1

aN−1 +
1

aN

We now allow such expressions for any

a0 ∈ R, ai ∈ R≥1.

This is allowed just for the purpose of the proofs and once we have proven some of the basic
theorems we will always assume that a0 ∈ Z, ai ∈N+ for i ≥ 1.

Define real numbers pn, qn for n ≥ 0 by the formulas

(1)
p0 = a0 p1 = a1a0 + 1 p2 = a2a1a0 + a2 + a0 . . . pn = an pn−1 + pn−2 . . .

q0 = 1 q1 = a1 q2 = a2a1 + 1 . . . qn = anqn−1 + qn−2 . . .

The recursive formula for pn, qn already holds for n = 2, in fact. The number pn/qn is called the
n-th convergent.

Lemma 2.1.1. For every n,

[a0, . . . , an] =
pn

qn
.
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Proof. We prove that by induction on n. For n = 0, we have

[a0] = a0 =
p0

q0
.

For n = 1, we have

[a0, a1] = a0 +
1
a1

=
a1a0 + 1

a1
=

p1

q1
.

For n = 2, we have

[a0, a1, a2] = a0 +
1

a1+
c 1

a2
= a0 +

a2

a1a2 + 1
=

a0a1a2 + a2 + a0

a1a2 + 1
=

p2

q2
.

Let us assume the result now for all n ≤ m for some m ≥ 2 and prove it for m + 1. We have,

[a0, . . . , am, am+1] = [a0, . . . , am +
1

am+1
].

Let us denote the k-th convergent of [a0, . . . , am + 1
am+1

] by p̃k
q̃k

. Note that p̃k
q̃k

depends only on the

k + 1 first partial quotients (i.e. only on [a0, . . . , ak] if k < m), and so, p̃k
q̃k

= pk
qk

for k < m. At any
rate, by induction,

[a0, . . . , am +
1

am+1
] =

p̃m

q̃m

=
(am + 1

am+1
) p̃m−1 + p̃m−2

(am + 1
am+1

)q̃m−1 + q̃m−2

=
(am + 1

am+1
)pm−1 + pm−2

(am + 1
am+1

)qm−1 + qm−2

=
am+1(am pm−1 + pm−2) + pm−1

am+1(amqm−1 + qm−2) + qm−1

=
am+1 pm + pm−1

am+1qm + qm−1

=
pm+1

qm+1
.

�

Example 2.1.2. Recall the Fibonacci numbers,

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

defined recursively by a0 = a1 = 1 and an+2 = an+1 + an.
Consider

θ = [1, 1, 1, 1, . . . ].

By the lemma, taking n + 1 times 1, we have

[1, 1, . . . , 1] =
pn

qn
.

By definition, we have

p0 = 1 p1 = 2 p2 = 3 p3 = 5 . . . pn = (n + 1)st–Fibonacci number

q0 = 1 q1 = 1 q2 = 2 q3 = 3 . . . qn = nth–Fibonacci number
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We will prove that pn/qn → θ = [1, 1, 1, . . . ] and, as we have seen, θ = 1+
√

5
2 is the golden ratio.

It follows that the ratio between consecutive Fibonacci numbers converges to the golden ratio
and, in fact, quite rapidly. Already,∣∣∣1 +√5

2
− 34

21

∣∣∣ < 1
212 ≈ 0.002.

In fact,
∣∣∣ 1+
√

5
2 − 34

21

∣∣∣ = 0.00101 . . . (34/21 is an optimal approximation).

Lemma 2.1.3. We have
pnqn−1 − pn−1qn = (−1)n−1, n ≥ 1.

Proof. We prove this by induction. For n = 1, we have

p1q0 − p0q1 = (a1a0 + 1)− a0a1 = 1 = (−1)1−1.

For n > 1, we have

pnqn−1 − pn−1qn = (an pn−1 + pn−2)qn−1 − pn−1(anqn−1 + qn−2)

= −(pn−1qn−2 − qn−1 pn−2) = −(−1)n−2 = (−1)n−1.

�

Corollary 2.1.4. Assume that all the ai are integers, then so are pn, qn for all n, and

gcd(pn, qn) = 1.

Proof. The fact that pn and qn are integers is clear from the recursive formulas in (1). It follows
from Lemma 2.1.3 that any common divisor of pn and qn divides 1, hence (pn, qn) = 1. �

By dividing by qnqn−1 in Lemma 2.1.3, we conclude the following.

Corollary 2.1.5. We have for all n ≥ 1,∣∣∣ pn

qn
− pn−1

qn−1

∣∣∣ = 1
qnqn−1

.

The importance of this corollary is that it allows us to show that continued fractions converge.
More precisely:

Corollary 2.1.6. Suppose that a0 ∈ Z, ai ∈ N+. The series {qn}∞
n=0 is a series of positive integers that

is strictly monotone increasing for n ≥ 1; the series of convergents
p0

q0
,

p1

q1
,

p2

q2
, . . .

is a Cauchy series, hence converges to some θ ∈ R that we denote

[a0, a1, a2, . . . ].

Proof. We have q0 = 1, q1 = a1 ≥ 1 and qn = an−1qn−1 + qn−2. It follows that qn is a strictly
increasing sequence of integers for n ≥ 1 and hence qn ≥ n for n ≥ 1. (A better estimate is
provided by exercise 2.1.7 below.)

For N ≥ n ≥ 1, we have∣∣∣ pN

qN
− pn

qn

∣∣∣ ≤ N−1

∑
k=n

∣∣∣ pk+1

qk+1
− pk

qk

∣∣∣ = N−1

∑
k=n

1
qk+1qk

≤
N−1

∑
k=n

1
q2

k
≤

N−1

∑
k=n

1
k2 .

Since ∑∞
k=1

1
k2 converges (to π2

6 , in fact), it follows that the series {pn/qn} is Cauchy. �
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Exercise 2.1.7. Let [a0, a1, a2, . . . ] be a continued fraction, where a0 ∈ Z, ai ∈ N+, i = 1, 2, 3, . . . .
Prove that

qn ≥ 2
n−1

2 .

The following lemma will allow us a very good understanding as to how does the series
{pn/qn} converge.

Lemma 2.1.8. For all n ≥ 2 we have

pnqn−2 − pn−2qn = (−1)nan.

Proof. We have

pn

qn
− pn−2

qn−2
= (

pn

qn
− pn−1

qn−1
) + (

pn−1

qn−1
− pn−2

qn−2
) =

(−1)n−1

qnqn−1
+

(−1)n−2

qn−1qn−2
= (−1)n · qn − qn−2

qnqn−1qn−2
.

From the recursive formulas, we have qn − qn−2 = anqn−1. Substituting in the equation above
we find

pn

qn
− pn−2

qn−2
=

(−1)nan

qnqn−2
.

�

Corollary 2.1.9. Suppose that ai ∈N+ for all i ≥ 1 and let θ = [a0, a1, a2, . . . ] then we have

p0

q0
<

p2

q2
< · · · < θ < · · · < p3

q3
<

p1

q1
.

Proof. Given that we know:

• pn/qn → θ,
• pn/qn − pn−2qn−2 has the same sign as (−1)n,

•
∣∣∣pn/qn − pn−2/qn−2

∣∣∣ > 0,

this is the only possibility. �

Corollary 2.1.10. For every n we have ∣∣∣θ − pn

qn

∣∣∣ < 1
qnqn+1

.

Proof. By Corollary 2.1.5, ∣∣∣ pn+1

qn+1
− pn

qn

∣∣∣ = 1
qnqn+1

.

But note that by Corollary 2.1.9, θ is strictly between pn
qn

and pn+1
qn+1

. �
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2.2. Uniqueness of continued fractions. For a0 ∈ Z and ai ∈N+ we know that the expression

θ = [a0, a1, a2, . . . ]

makes sense – it is the limit of the convergents pk
qk

= [a0, a1, a2, . . . , ak] as k→ ∞. We will later
prove that every irrational number has such an expression as an infinite continued fraction. Let
us now prove the uniqueness of this expression.

Theorem 2.2.1. Suppose that a0, b0 ∈ Z, ai, bi ∈N+ for i ≥ 1 and

θ = [a0, a1, a2, . . . ] = [b0, b1, b2, . . . ].

Then,
ai = bi, ∀i ≥ 0.

Proof. Note that for any n ≥ 0, [an+1, an+2, . . . ] is a well-defined number in R≥1 and

θ = [a0, a1, a2, . . . ] = [a0, a1, a2, . . . , an, [an+1, an+2, . . . ]].

We have then
[a0, [a1, a2, . . . ]] = [b0, [b1, b2, . . . ]],

and it is enough to show this implies a0 = b0. Indeed, as we have

a0 +
1

[a1, a2, . . . ]
= b0 +

1
[b1, b2, . . . ]

,

we will be able to conclude that

[a1, a2, . . . ] = [b1, b2, . . . ],

and an induction argument gives ai = bi for all i.
What we will actually prove is that if θ = [a0, [a1, a2, . . . ]] then a0 is necessarily bθc. This

implies a0 = b0 and we are done. Now, because

θ = a0 +
1

[a1, a2, . . . ]
,

the statement a0 = bθc is equivalent to the statement

1 < [a1, a2, . . . ].

This is clear: if we use the notation [c0, c1, c2, . . . ] = [a1, a2, . . . ] then the 0-convergent of this
continued fraction is a1, which is greater or equal to 1, and Corollary 2.1.9 shows that c0 <
[c0, c1, c2, . . . ]. �

Exercise 2.2.2. Prove that if a0, b0 ∈ Z, ai, bi ∈N+ for i ≥ 1, we cannot have

[a0, . . . , an] = [b0, b1, b2, . . . ].

Exercise 2.2.3. Prove that every rational number θ has a finite continued fraction expansion

θ = [a0, a1, . . . , aN ] (a0 ∈ Z, ai ∈N+, i = 1, . . . , N).

Moreover, prove that this expansion is unique, up to

[a0, a1, . . . , aN ] = [a0, a1, . . . , aN − 1, 1],

if aN > 1.

The development into a continued fraction you are asked to prove in the last exercise is a
consequence of the Euclidean algorithm. We provide an example, leaving it to you to write the
general argument.

Consider θ = 355
133 . Then you may check that

θ = [3, 7, 16] = [3, 7, 15, 1].
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On the other hand, the Euclidean algorithm for finding 1 = gcd(355, 133) is the following:

355 = 3 · 113 + 16
113 = 7 · 16 + 1
16 = 16 · 1 + 0

Notice the integers 3, 7, 16 appearing in the process as well as in the expression θ = [3, 7, 16].

2.3. Every real number has a continued fraction expansion. Let us summarize what we al-
ready know (we consider here, as usual, continued fractions with a0 ∈ Z, ai ∈N+ for i ≥ 1):

• Every rational number has a finite continued expansion, unique up to [a0, a1, . . . , aN ] =
[a0, a1, . . . , aN − 1, 1], if aN > 1.
• A rational number cannot have an infinite continued fraction expansion.
• Every infinite continued fraction defines an irrational number.
• An irrational number has at most one continued fraction expansion.

The missing piece is thus provided by our next theorem.

Theorem 2.3.1. Every irrational number θ has an infinite continued fraction expansion.

Proof. First, we claim that for any n ≥ 0, every irrational number θ can be written as

θ = [a0, a1, . . . , an, a′n+1],

where a0 ∈ Z, ai ∈N+ for i ≥ 1 and a′n+1 ∈ R>1.
Indeed, define inductively,

a0 = bθc a′1 = 1/{θ}

a1 = ba′1c a′2 = 1/{a′1}
...

...

an = ba′nc a′n+1 = 1/{a′n}

Then, θ = [a0, a′1] = [a0, a1, a′2] and, in general,

θ = [a0, a1, . . . , an−1, a′n] = [a0, a1, . . . , an−1, an +
1

a′n+1
] = [a0, a1, . . . , an−1, an, a′n+1].

Now, given such a presentation

θ = [a0, a1, . . . , an, a′n+1],

define pi, qi as before for i ≤ n, using the recursive formulas (those only involve a0, . . . , an), and
define

p′n+1 = a′n+1 pn + pn−1, q′n+1 = a′n+1qn + qn−1.

We claim that for n ≥ 1,

θ =
p′n+1

q′n+1
.

This is easy to check directly for n = 1. Assume the result for any finite continued fraction like
that of length n. Then

θ = [a0, a1, . . . , an, a′n+1] = [a0, a1, . . . , an +
1

a′n+1
] =

p̃′n
q̃′n

,
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where p̃′n, q̃′n are the quantities constructed for the continued fraction [a0, a1, . . . , an +
1

a′n+1
]. Then,

using that the convergents pk/qk for [a0, a1, . . . , an, a′n+1] are the same as the convergents p̃k/q̃k

for [a0, a1, . . . , an +
1

a′n+1
] for k < n, we find

θ =
p̃′n
q̃′n

=
(an +

1
a′n+1

) p̃n−1 + p̃n−2

(an +
1

a′n+1
)q̃n−1 + q̃n−2

=
(an +

1
a′n+1

)pn−1 + pn−2

(an +
1

a′n+1
)qn−1 + qn−2

=
a′n+1(an pn−1 + pn−2) + pn−1

a′n+1(anqn−1 + qn−2) + qn−1

=
a′n+1 pn + pn−1

a′n+1qn + qn−1

=
p′n+1

q′n+1
.

Next, we prove that for all n, ∣∣∣θ − pn

qn

∣∣∣ = 1
qnq′n+1

.

Indeed,

θ − pn

qn
=

p′n+1qn − pnq′n+1

qnq′n+1

=
(a′n+1 pn + pn−1)qn − pn(a′n+1qn + qn−1)

qnq′n+1

=
pn−1qn − pnqn−1

qnq′n+1

=
(−1)n

qnq′n+1
.

We remark that from the definition of q′n+1 we have q′n+1 ≥ qn+1. Therefore,
∣∣∣θ− pn

qn

∣∣∣ < 1
qnqn+1

(as
expected, given Corollary 2.1.10). Therefore, as for n ≥ 1 we have the estimate qn ≥ n, we may

conclude that
∣∣∣θ − pn

qn

∣∣∣ < 1
n2 . This implies that

lim
n→ ∞

pn

qn
= θ,

and completes the proof. �

Exercise 2.3.2. F Use the arguments appearing in Theorem 2.3.1 to prove the following.

Theorem 2.3.3. Let θ be an irrational real number. Then, for all n ≥ 0 we have∣∣∣θ − pn

qn

∣∣∣ > 1
qn(qn+1 + qn)

.
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3. RATIONAL, ALGEBRAIC AND TRANSCENDENTAL NUMBERS

3.1. Enumerating. A set S is called countable, or enumerable, if there is a bijection f : N→ S.
The function f allows us to “count”, or “enumerate”, the elements of S, since we have S =
{ f (0), f (1), f (2), . . . }.3 The rational numbers Q are infinite, but are countable. There is a (non-
obvious) bijection

N→ Q,

which is the proof that Q is countable.
We denote the cardinality of N by ℵ0 (ℵ being the first letter in the word “infinite” (ein - sof)

in Hebrew). On the other hand, the cardinality of R is 2ℵ0 . Where 2ℵ0 is defined as the cardinality
of the set of all subsets of N. As a subset S of N can be specified by its characteristic function,
the function that receives the value 1 on x if x ∈ S and 0 if x 6∈ S, the set of all subsets of N is
the set 2N; namely, the set of all functions from N to a set of 2 elements, {0, 1} if you will. Thus,
cardinality of 2N is 2ℵ0 , per definition. It is not obvious that the cardinality of R is 2ℵ0 – one
would have to find some method to connect subsets of N to real numbers to prove that – but it
is a theorem and we sketch the proof below.

A very important tool in showing that two sets have the same cardinality is the following:

Cantor-Bernstein Theorem: If there exist injective maps A→ B and B→ A then A and B have the
same cardinality

∣∣∣A∣∣∣ = ∣∣∣B∣∣∣; that is, there exists a bijection between A and B.

It is not hard to prove that (0, 1) and R have the same cardinality, either by using the Cantor-
Bernstein Theorem, or simply by using the bijection x 7→ tan(π(x− 1/2)). Therefore, to see that
the cardinality of R is 2ℵ0 it is enough to show that the cardinality of (0, 1) is 2ℵ0 .

Every real number in (0, 1) has a unique binary expansion

0.a0a1a2 . . . ,

where ai ∈ {0, 1} and where we choose expansions ending with 1000000 · · · instead of expan-
sions ending in 0111111 · · · to have unicity. Thus, the function i→ ai defines a subset of N,
which is {n ∈N : an = 1}. Sending a real number in (0, 1) to the subset of N determined by its
binary expansion is an injection

(0, 1) ↪→ 2N.

Not all subsets of N arise this way. For example N does not arise this way since we excluded
the number 1 and also the subsets of the form {k, k + 1, k + 2, . . . } do not arise this way, because
we excluded all binary developments ending in 11111 · · · . But, with a little bit of extra work one

overcomes these blemishes and concludes that
∣∣∣R∣∣∣ = ∣∣∣(0, 1)

∣∣∣ = 2ℵ0 .
Cantor’s diagonal argument proves that

ℵ0 <
∣∣∣R∣∣∣,

which is equivalent to saying that there is no bijection N→ R. This is usually proven in MATH

235 (in fact without using the rather subtle fact that
∣∣∣R∣∣∣ = 2ℵ0), so we will not repeat it here.

However, if one accepts that
∣∣∣R∣∣∣ = 2ℵ0 then we can give a short proof.

Theorem 3.1.1. For any set A we have
∣∣∣A∣∣∣ < ∣∣∣2A

∣∣∣, where 2A is the set of subsets of A.

3Some authors are more fastidious and say S is infinitely countable/enumerable and allow also finite sets to be called
countable, but we will not have a use for that as our excursion into cardinalities of sets will be brief.
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Proof. Clearly A ↪→ 2A by sending a ∈ A to {a}, whence
∣∣∣A∣∣∣ ≤ ∣∣∣2A

∣∣∣. We need to show then that∣∣∣A∣∣∣ 6= ∣∣∣2A
∣∣∣; namely, that there is no bijection between A and 2A. Suppose that we had a bijection

f : A→ 2A.

Construct a subset B of A as follows:

B = {a ∈ A : a 6∈ f (a)}.
Since f is surjective, B = f (b) for some b ∈ A. If b ∈ B then b ∈ f (b) and so b 6∈ B; if b 6∈ B then
b 6∈ f (b) and so b ∈ B. Either way, we derive a contradiction. �

Thus, in a certain sense, most real numbers are irrational.

A complex number α is called algebraic if α solves some non-zero rational polynomial f (x) ∈
Q[x]. By multiplying f by a suitable rational number we may assume that f is monic:

f (x) = xn + an−1xn−1 + · · ·+ a0, ai ∈ Q.

It is not hard to prove that the set of such polynomials in countable. Fixing n, it is in bijection
with Qn, which is countable. A general lemma states that a countable union of countable sets
is countable, and that completes the proof. Furthermore, as every polynomial has finitely many
roots, a similar argument proves that the cardinality of all algebraic numbers is countable. We
denote the set of algebraic numbers Q. It is in fact a subfield of C.

Thus, in a sense, most real numbers are transcendental, meaning, they are not algebraic.

Exercise 3.1.2. F Prove that Q̄ is a field as follows:
(1) In general, if F ⊆ L are fields and α ∈ L let

F[α] = {
n

∑
i=0

aiα
i : ai ∈ F}.

Namely, the set of all finite polynomial expression in α with coefficients from F. Prove
that F[α] is a ring, and that it is also a vector space over F.

(2) Prove that α ∈ C is algebraic over Q if and only if dimQ(Q[α]) < ∞. If this is the case,
prove that Q[α] is a field and, in fact, Q[α] ∼= Q[x]/( f (x)), where f (x) is the minimal
polynomial of α (see §3.3 for this notion.)

(3) Let α, β ∈ C be algebraic over Q. Prove that dimQ(Q[α, β]) < ∞, where Q[α, β] =
(Q[α])[β].

(4) Let α, β ∈ C be algebraic over Q. Prove that −α, 1
α (for α 6= 0), α + β and αβ all belong to

Q[α, β]. Conclude that they are algebraic too.

3.2. Measuring. We can try and study the measure of subsets of R to get a sense of their size.
One can define a measure µ on R that has the following properties. Let B be the smallest
collection of subsets of R that contains all open intervals and is closed under countable unions,
complements and countable intersections. It is called the Borel σ-algebra of R. Every open set
in R, as well as any closed set in R belong to B. B also contains the set of all rational numbers,
and the set of all irrational numbers.

The measure on R we have in mind is a function

µ : B → R≥0 ∪ {∞},
such that:
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(1) µ((a, b)) = µ([a, b]) = b− a, for all a ≤ b.
(2) µ(ä∞

i=1 Ai) = ∑∞
i=1 µ(Ai).

(3) for any set A ∈ B we have

µ(A) = sup{µ(K) : K ⊆ A, K compact} = inf{µ(U) : A ⊆ U, U open}.
This measure is called the Lebesgue measure.

It follows that if A ⊂ R is countable then µ(A) = 0. Indeed, by definition there is a bijection
f : N→ A and so A = ä∞

n=0{ f (n)} = ä∞
n=0[ f (n), f (n)]. Therefore, µ(A) = ∑∞

n=0 µ([ f (n), f (n)])
= 0. Thus,

µ(Q) = µ(Q∩R) = 0.

Exercise 3.2.1. Prove that the measure of [0, 1] \Q is equal to 1. Note that this set contains no
interval of positive length.

Exercise 3.2.2. Let 0 ≤ α ≤ 1. Find a set S contained in [0, 1] that has measure α, contains no
interval of positive length, and is dense in [0, 1].

Thus, whether we are counting sets, or measuring them, almost all real numbers are irrational, and in
fact transcendental. But can we explicitly find such numbers?

It is easy to give examples of irrational numbers:

√
2,

1 +
√

5
2

, 3
√

19,

are all irrational. The following is a criterion that will easily prove these statements:

Let f (x) = anxn + · · ·+ a0 ∈ Z[x] be a polynomial with integer coefficients. Assume that n > 0 and
an 6= 0. If f (p/q) = 0 then p|a0, q|an.

Using this, it is easy to check that the polynomials x2 − 2, x2 − x − 1 and x3 − 19 don’t have
any rational roots. Of course, one may try and prove stronger statements. Namely, to prove that
a complex number α satisfies a f (x) ∈ Z[x] of degree greater than 1 which is irreducible over
Q, and hence in particular α cannot be rational. There aren’t too many methods to prove such
statements. One of the most fundamental ones is Eisenstein’s criterion:

Suppose that f (x) = xn + an−1xn−1 + · · ·+ a0 ∈ Z[x] is a non-constant polynomial. Suppose that
there is a prime p such that p

∣∣∣ai for all i, but p2 - a0. Then f is irreducible over Q.

3.3. Algebraic numbers. Let α ∈ C be a non-zero algebraic number. Thus, there is a non-zero
polynomial

f (x) = xn + an−1xn−1 + · · ·+ a0 ∈ Q[x],
such that f (α) = 0. The minimal such n is called the degree of α.

Example 3.3.1. Every non-zero rational number a/b has degree 1; it solves the polynomial x−
a/b. Conversely, every algebraic number of degree 1 is rational.

Every quadratic number a + b
√

d, where d is a square-free integer and a, b rational numbers,
has degree 2. It solves the polynomial x2 − 2ax + (a2 − b2d). The degree cannot be 1 because
that would imply that a + b

√
d is rational and hence that

√
d is rational, which is not the case.

So, for example,
√

2 and 1+
√

5
2 have degree 2.

The degree of α = 3
√

19 is 3; α solves x3 − 19, which is irreducible by Eisenstein’s criterion.
This implies that α has degree 3 by the following lemma.
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Proposition 3.3.2. Let α be an algebraic number of degree n and let

f (x) = xn + an−1xn−1 + · · ·+ a0

be a non-zero polynomial with rational coefficients such that f (α) = 0. Then:
(1) f is irreducible.
(2) If g(x) ∈ Q[x] is a polynomial such that g(α) = 0 then f

∣∣∣g.
(3) f is the unique monic polynomial with rational coefficients of degree n that α satisfies; it is called

the minimal polynomial of α.

Proof. The second statement implies the first and third. Indeed, if f1(x) is also monic of degree

n having α as a root then, by (2), f
∣∣∣ f1 and so f = f1 and (3) follows. Suppose f is reducible:

f = gh, where g, h are rational polynomials. Then, f (α) = g(α)h(α) = 0 and so, without loss

of generality, g(α) = 0. But then, by (2), f
∣∣∣g and this implies that h is a constant polynomial.

Hence (1).
Let us prove (2) then. Let d(x) = gcd( f , g); for suitable rational polynomials u(x), v(x) we

have
d(x) = u(x)g(x) + v(x) f (x).

Substituting α for x we find that d(α) = 0 and so d is not a constant polynomial. As d
∣∣∣ f and

f has the minimal degree possible for all polynomials that α satisfies, we must have that d has

degree n as well, and so d = f as both are monic. That means that f
∣∣∣g. �

Corollary 3.3.3. If g(x) is a non-zero monic irreducible polynomial with rational coefficients such that
g(α) = 0 then g is the minimal polynomial of α and, in particular, deg(α) = deg(g).

A fundamental result is that
Q̄ := {α ∈ C : α is algebraic},

is a field; it is closed under addition, multiplication and taking inverses. The proof was given as
Exercise 3.1.2.

3.4. Transcendental numbers. Either in the sense of cardinality, or of measure, the non-algebraic
real numbers, the real transcendental numbers, are the overwhelming majority. However, the
problem of exhibiting transcendental numbers, or proving that familiar constants are transcen-
dental is very hard in general. Many of the results we provide below are for information. That
said, we will be able to explicitly exhibit transcendental numbers based on Liouville’s theorem.

3.4.1. Seminal results concerning transcendence. We have the following seminal results.

Theorem 3.4.1 (Hermite, 1873). e is transcendental.

Theorem 3.4.2 (Lindemann, 1882). π is transcendental.

Theorem 3.4.3 (Gelfond-Schneider, 1934). Let α, β be algebraic numbers such that α 6= 0, 1 and
β 6∈ Q. Then any value of αβ is transcendental.

Some explanation is required concerning the phrase “any value” in the Theorem. The point
is that αβ is really defined as eβ·log(α). The theorem allows α and β to be complex numbers (in
particular, α could be a negative real number); the function

ex =
∞

∑
n=0

xn

n!
,
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is a well-defined analytic function and, in particular, converges for every α ∈ C. So, ez is well-
defined for every complex number z. On the other hand, there is no global definition for log(x)
that gives a well-defined answer for all x ∈ C. The best one can do is provide a value for log(x)
that is well defined up to integer multiples of 2πi. Thus, αβ could mean any one of a countable
set of complex numbers, differing from each other by integer powers of eβ·2πi.

Example 3.4.4. It follows from the Gelfond-Schneider Theorem that 2
√

2 is transcendental.

Theorem 3.4.5 (Baker, 1960’s). Let α1, . . . , αn be non-zero algebraic numbers such that log(α1), . . . ,
log(αn) are linearly independent over Q. Then 1, log(α1), . . . , log(αn) are linearly independent over Q̄.

In Baker’s theorem, when we talk about log(αi) we mean by that any choice of a complex
number γi such that eγi = αi. This theorem is extremely powerful and Alan Baker got the Fields
Medal for it, and related work, in 1970. For example, Baker’s Theorem implies the Gelfond-
Schneider theorem:

Suppose that αβ is algebraic. Note that log(α) and β log(α) are independent over Q, because
a log(α) + bβ log(α) = 0 implies that β = −a/b ∈ Q, which is a contradiction. Baker’s theorem
then states that log(α) and β log(α) are independent over Q̄, which is clearly false as

β · log(α) + (−1) · β log(α) = 0.

Exercise 3.4.6. Prove that log(2), log(3), log(2) + log(3), log(2)/ log(3) are transcendental num-
bers.

Exercise 3.4.7. F Use the expansion

e = 1 +
1
1!

+
1
2!

+
1
3!

+ . . .

to give an elementary proof that e is not a rational number (which is much easier than proving
it’s transcendental!).

3.4.2. Sets defined by continued fractions. Continued fractions allow us to define interesting sets
of real numbers. For example, consider the set A of all irrational real numbers in the interval
[0, 1] whose 100-th partial quotient is equal to 961. This set is easily proven to be uncountable;
the same is true for its complement. What is the measure of A, µ(A)? Does it depend on
the arbitrary value 961? Namely, would the measure be different if we asked that the 100-th
partial quotient is 17? What if we asked instead that the 99-th partial quotient is 961? These are
questions that we will analyze later.

Continued fractions also allows us to define interesting numbers. For example, consider the
number

[0, 1, 2, 3, 4, . . . ]

One can prove that this number is transcendental. In fact, as we stated before, a very general
theorem says the following:

Theorem 3.4.8. Let m ≥ 1. Let b0 be an integer, bi, ci, di be positive integers such that at least one of
d1, . . . , dm is not zero, then

α = [b0; b1, . . . , bs, (c1 + λd1, . . . , cm + λdm)
∞
λ=0]

is a transcendental number. Here the notation is for blocks of natural numbers c1, . . . , cm, c1 + d1, . . . , cm +
dm, c1 + 2d1, . . . , cm + 2dm, c1 + 3d1, . . . , cm + 3dm, . . . .
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Combined with the next theorem, it implies that all numbers of the form

e2/y + 1
e2/y − 1

, y ∈N+,

are transcendental.

Theorem 3.4.9. We have
e2/y + 1
e2/y − 1

= [y, 3y, 5y, 7y, . . . ].

To conform with our previous discussion of continued fractions, we take y ∈ N+ in the
theorem, but in fact it holds for any positive real number y. This is a rather hard theorem; we will
not prove it in this course. Note that Theorem 3.4.8 combined with Theorem 3.4.9 implies that e
is transcendental: if e is algebraic, you can prove that e2/y is algebraic for any positive integer y
and conclude that e2/y+1

e2/y−1 is algebraic too, and that contradicts Theorem 3.4.8. Alternately, if one
is willing to assume that the continued fraction of e is

[2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, 1, 1, 16, 1, 1, 18. . . . ],

one can of course use Theorem 3.4.8 directly.

4. APPROXIMATION BY RATIONAL NUMBERS

4.1. Types of approximations. Let θ be a real number. The problem we consider in this chapter
is to find good rational approximations to θ. Observe the following:

• If θ = p/q is rational,
∣∣∣θ − p/q

∣∣∣ = 0.

• If θ 6∈ Q, ∀q ≥ 1, ∃p such that
∣∣∣θ − p/q

∣∣∣ < 1
q .

From now on we assume
θ 6∈ Q

(although, as we have illustrated before, there is some interest in getting good rational approxi-
mations for rational numbers p/q too – approximations that use a smaller denominator than q).
We consider rational approximations p/q to θ that outperform these obvious ones. Below p, q
denote integers such that q ≥ 1.

BAF Best approximations of the first kind.
These are p, q, such that ∀1 ≤ q′ ≤ q, ∀p′, if p

q 6=
p′
q′ then∣∣∣θ − p′

q′
∣∣∣ > ∣∣∣θ − p

q

∣∣∣.
BAS Best approximations of the second kind.
These are p, q, such that ∀1 ≤ q′ ≤ q, ∀p′, if p

q 6=
p′
q′ then∣∣∣q′θ − p′

∣∣∣ > ∣∣∣qθ − p
∣∣∣.

OA Optimal approximations.
These are p, q, such that ∣∣∣θ − p

q

∣∣∣ < 1
2q2 .
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Note that if p/q is a BAF then
∣∣∣θ− p

q

∣∣∣ < 1
q , but otherwise it is hard to quantify how close it is to θ

besides saying that out of all fractions with denominators at most q it is the best approximation
to θ; namely, just the definition said out loud.

Lemma 4.1.1. We have the following relations between approximations.
(1) p/q OA =⇒ p/q BAS.
(2) p/q BAS =⇒ p/q BAF.

Proof. Assume that p/q is an OA and suppose that for some q ≥ d ≥ 1 and c/d 6= p/q we have∣∣∣dθ − c
∣∣∣ ≤ ∣∣∣qθ − p

∣∣∣.
As |qθ − p| < 1/2q, we have ∣∣∣θ − c

d

∣∣∣ < 1
2dq

.

Then, ∣∣∣ c
d
− p

q

∣∣∣ ≤ ∣∣∣θ − c
d

∣∣∣+ ∣∣∣θ − p
q

∣∣∣ < 1
2dq

+
1

2q2 =
d + q
2dq2 .

On the other hand, as c
d 6=

p
q , |cq− pd| ≥ 1. So,

1
dq
≤
∣∣∣ c
d
− p

q

∣∣∣ < d + q
2dq2 .

This implies that q < d, which is a contradiction.

Assume now that p/q is a BAS. Given p′/q′ 6= p/q such that 1 ≤ q′ ≤ q, we have

|q′θ − p′| > |qθ − p|,
and so ∣∣∣θ − p′

q′
∣∣∣ > q

q′
∣∣∣θ − p

q

∣∣∣ ≥ ∣∣∣θ − p
q

∣∣∣.
�

Exercise 4.1.2. Show that there are no inverse implications in Lemma 4.1.1.

It is interesting then to try and find such approximations. We will show that all OA and BAS
arise from convergents of the continued fraction expression of θ.

Example 4.1.3. Here is an example of the approximations to x =
√

2
2 = 0.70710 . . . . Using

denominators up to 3 (the blue lines), the best approximation of the first kind is provided by
2/3 = 0.66666 . . . . We need to consider fractions with denominator 7 to find a better one (red
and yellow lines for denominators 4 and 5). This one is 5/7 = 0.71428 . . . (in grey; the diagram
doesn’t show fractions with denominator 6 because it is easy to see that those do not provide
better approximations – the only one really in question is 5/6 – and adding them would have
made reading the diagram harder).

It follows from the theory we will develop that 2/3 and 5/7 are, in fact, even BAS, because
they arise as convergents in the continued fraction expression of x. We have

x =

√
2

2
= [0, 1, 2, 2, 2, 2, 2, . . . ]

that has convergents

0, 1,
2
3

,
5
7

,
12
17

,
29
41

,
70
99

. . . .
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The same theory would also tell us that the next BAS is 12/17 and the one after it is 29/41, and
so on.

4.2. Dirichlet’s theorem.

Theorem 4.2.1 (Dirichlet). Let θ ∈ R. For every Q ∈ N, Q ≥ 2, there exists integers p, q such that
0 < q < Q and

|qθ − p| ≤ 1
Q

.

Proof. Consider the following Q + 1 numbers in the interval [0, 1] (“pigeons”)

0, 1, {θ}, {2θ}, . . . , {(Q− 1)θ}.
And consider the Q intervals (“pigeonholes”)[

0,
1
Q

]
,
(

1
Q

,
2
Q

]
, . . . ,

(
Q− 1

Q
, 1
]

.

Since there are more pigeons than pigeonholes, either

• there exist 0 ≤ i < j ≤ Q− 1 such that |{iθ} − {jθ}| ≤ 1
Q , which implies that∣∣(i− j)θ − (biθc − bjθc)

∣∣∣ ≤ 1
Q

,

or,
• there exists 0 < i ≤ Q− 1 such that

∣∣∣{iθ} − 1
∣∣∣ ≤ 1

Q and that implies that∣∣∣iθ − (biθc+ 1)
∣∣∣ ≤ 1

Q
.

�

Exercise 4.2.2. Prove that every real irrational number θ has infinitely many BAF without using
Dirichlet’s theorem.

Exercise 4.2.3. Prove that every real irrational number θ has infinitely many BAS (and hence also
BAF) by using Dirichlet’s theorem.
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Corollary 4.2.4. Assume θ is an irrational real number. There exist infinitely many q such that (p, q) =
1 and ∣∣∣θ − p

q

∣∣∣ < 1
q2 .

Proof. For any Q ∈ N, Q ≥ 2, let pQ, qQ be as in Dirichlet’s theorem. So, 0 < qQ < Q and
|qQ · θ − pQ| ≤ 1

Q . Therefore, ∣∣∣θ − pQ

qQ

∣∣∣ ≤ 1
qQQ

<
1

q2
Q

.

We may assume without loss of generality that (pQ, qQ) = 1 because, if n = gcd(pQ, qQ), we
also have ∣∣∣(qQ/n)θ − (pQ/n)

∣∣∣ ≤ 1
nQ
≤ 1

Q
,

and so we may just replace pQ, qQ with pQ/n, qQ/n. Therefore, the following Claim will con-
clude the proof.

Claim. sup
Q

qQ = ∞.

Indeed, if not, then there exists an N such that qQ ≤ N for all Q. But

ε := min{|qθ − p| : q ≤ N} > 0,

as this minimum is essentially over a finite set (for each q there are at most 2 relevant p’s for cal-
culating the minimum; namely, bqθc, bqθc+ 1) and equality will imply that θ is rational. Choose
then Q such that 1

Q < ε. Then |qQθ − pQ| ≤ 1
Q < ε. Contradiction. �

Remark 4.2.5. As you are asked to prove in Exercise 4.2.3, if θ is irrational, Dirichlet’s theorem
implies the existence of infinitely many BAS to θ. But even the Corollary doesn’t imply that
there are infinitely many optimal approximations to θ. This is indeed true, and will follow from
the theory of continued fractions.

Example 4.2.6. It is certainly possible that sometimes∣∣∣θ − p
q

∣∣∣ < 1
q3 ,

(or even a higher power of q). Just take θ = p
q +

√
2

10N for sufficiently large N. But this is just a
trick producing one excellent approximation for a particular θ. In general, there are powerful
theorems saying that one cannot improve much on 1

q2 . The most celebrated and definite result
is Roth’s theorem for which he was awarded the Fields Medal in 1958.

Theorem 4.2.7 (Roth 1955). Let θ be an irrational number. For every ε > 0 there are only finitely many
rational approximations p

q , (p, q) = 1, such that∣∣∣θ − p
q

∣∣∣ < 1
q2+ε

.

Roth’s theorem is a very difficult theorem; in the next section we will prove a much weaker
version, Liouville’s theorem that much pre-dates Roth’s theorem. Liouville’s theorem is very
interesting nonetheless, since it is effective, unlike Roth’s theorem.
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4.3. Liouville’s Theorem. .

Theorem 4.3.1 (Liouville). Let θ be a real algebraic number of degree n > 1.4 There exists a positive
constant C = C(θ) such that for all integers p, q, with q > 0, we have∣∣∣θ − p

q

∣∣∣ ≥ C
qn .

Proof. Let f (x) be the minimal polynomial of θ, which we rescale so that

f (x) = anxn + · · ·+ a0, ai ∈ Z, an 6= 0.

We further assume that the ai have no proper common divisor, although this is not necessary to
the proof; it just improve the constant C.

As f (x) is irreducible, we have f (p/q) 6= 0 for all p/q ∈ Q. By the mean-value theorem, for
any p/q with q > 0 we have

− f (p/q) = f (θ)− f (p/q) = (θ − p/q) · f ′(ξ),

for a suitable ξ such that ξ ∈ [θ, p/q], or [p/q, θ], depending on the case.

Case 1. Suppose that |θ − p/q| ≤ 1. In this case, find a constant C1 such that

| f ′(ξ)| ≤ C1, ∀ξ ∈ [θ − 1, θ + 1].

Then, |θ − p/q| ≥ 1
f ′(ξ) · | f (p/q)| ≥ 1

C1
· | f (p/q)|. But,

f (p/q) = (an pn + · · ·+ a1 pqn−1 + a0qn)/qn = (non-zero integer)/qn.

Therefore,

|θ − p/q| ≥ 1
C1
· 1

qn .

Case 2. |θ − p/q| ≥ 1. Then |θ − p/q| ≥ 1
qn .

Let then

C = min{ 1
C1

, 1}.

�

Exercise 4.3.2. Analyze the proof of Liouville’s theorem and find a constant C as in the theorem
for
√

2, 1+
√

5
2 , 3
√

5 ∈ R.

Exercise 4.3.3. Let θ = ∑∞
n=1

1
10n! . Prove that θ is transcendental. This application of Liouville’s

theorem was given by him in 1844 and produced the first explicitly given number that was
provenly transcendental.

Exercise 4.3.4. F Construct a set T of real transcendental numbers with
∣∣∣T∣∣∣ > ℵ0, and µ(T) = 0.

4That is, θ is algebraic, but not rational.
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5. CONTINUED FRACTIONS AND APPROXIMATIONS

We will assume throughout this section that θ is an irrational real number. Some of the state-
ments can be extended, or generalized to rational numbers, but we will not do so here.

Recall that we have already proved that for θ a real irrational number we have∣∣∣θ − pn

qn

∣∣∣ < 1
q2

n
,

where {pn/qn} are the convergents to θ. Let us improve on that.

Theorem 5.0.1. For any n ≥ 0, either pn
qn

or pn+1
qn+1

is an optimal approximation.

Proof. If not, then for some n we have both∣∣∣θ − pn

qn

∣∣∣ ≥ 1
2q2

n
,
∣∣∣θ − pn+1

qn+1

∣∣∣ ≥ 1
2q2

n+1
.

As θ lies between pn/qn and pn+1/qn+1 (Corollary 2.1.9), we conclude that∣∣∣ pn+1

qn+1
− pn

qn

∣∣∣ ≥ 1
2

(
1
q2

n
+

1
q2

n+1

)
.

On the other hand, ∣∣∣ pn+1

qn+1
− pn

qn

∣∣∣ = 1
qnqn+1

.

It follows that
1

qnqn+1
≥ 1

2

(
1
q2

n
+

1
q2

n+1

)
.

Multiply both sides by 2q2
nq2

n+1 and rearrange to conclude that 0 ≥ (qn+1 − qn)2. This implies
that qn+1 = qn. However, we proved in Corollary 2.1.6 that qn is strictly monotone increasing
for n ≥ 1. So the only case we still need to consider is when n = 0, and q0 = 1, q1 = 1 = a1.
In this case, if p0

q0
= bθc = a0 is not an optimal approximation then {θ} ≥ 1

2 , in fact {θ} > 1
2

because θ is irrational. But then

0 <
p1

q1
− θ =

a0 + 1
1
− (bθc+ {θ}) = 1− {θ} < 1

2
.

That means that p1
q1

is an optimal approximation. �

As every OA is a BAS, we conclude the following.

Corollary 5.0.2. For all n, either pn
qn

or pn+1
qn+1

is a BAS for θ.

In fact, we will soon prove that all pn
qn

are BAS (with essentially one exception). But first, let’s
prove that all BAS arise as convergents.

Theorem 5.0.3. Let θ is an irrational real number. Any BAS for θ is a convergent pn
qn

to θ.

Proof. Recall the picture of convergence from Corollary 2.1.9:
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Let a/b be a BAS for θ. We will first show that it lies between p0/q0 and p1/q1.

If a
b < a0 = p0

q0
then |1 · θ − a0| < |θ − a

b | ≤ |bθ − a|. So, a0/1 “beats” a/b. Namely, a/b cannot

be a BAS. Similarly, if a
b > p1

q1
then |θ − a

b | > |
p1
q1
− a

b | = |
bp1−aq1

bq1
| ≥ 1

bq1
. Multiplying by b we

conclude that
|bθ − a| > 1

q1
=

1
a1
≥ |θ − a0|.

The last inequality follows from the fact that θ − a0 = 1
a1+
c 1

a2+
c . . . 1

aN−1+
c . . . Thus, again we

find that a0/1 beats a/b and so a/b cannot be a BAS. Contradiction.

Let assume that a/b is not a convergent to θ. Then a/b is strictly between pk−1
qk−1

and pk+1
qk+1

for
some k ≥ 0. We will derive a contradiction by showing that pk/qk beats a/b. For that we should
first establish that qk ≤ b. Note that, on the one hand, we have∣∣∣ a

b
− pk−1

qk−1

∣∣∣ = ∣∣∣ aqk1 − bpk−1

bqk−1

∣∣∣ ≥ 1
bqk−1

.

On the other hand, by Corollary 2.1.5, we have∣∣∣ a
b
− pk−1

qk−1

∣∣∣ < ∣∣∣ pk

qk
− pk−1

qk−1

∣∣∣ = 1
qkqk−1

.

It follows that qk < b.
Now, because a/b is between pk−1

qk−1
and pk+1

qk+1
,∣∣∣θ − a

b

∣∣∣ ≥ ∣∣∣ pk+1

qk+1
− a

b

∣∣∣ ≥ 1
bqk+1

.

Therefore, ∣∣∣bθ − a
∣∣∣ ≥ 1

qk+1
.

But, by Corollary 2.1.10, ∣∣∣qkθ − pk

∣∣∣ < 1
qk+1

.

And we got a contradiction: “pk/qk beats a/b”. �

Theorem 5.0.4. Let θ be an irrational real number. Any convergent pk
qk

to θ is a BAS for θ with the only

possible exception being p0
q0

.5

Proof. Let k ≥ 1. For x ∈ Z, y ∈ {1, 2, . . . , qk}, consider

min
x,y
|yθ − x|.

Choose a minimal y0 for which this minimum is achieved. For that y0 there is a unique x0 such
that |y0θ − x0| is the minimum, else θ is rational. Therefore, by definition, x0

y0
is a BAS and by

Theorem 5.0.3 there exists an s such that
x0

y0
=

ps

qs
.

Now, as y0 ≤ qk and the qk are monotone increasing, we must have s ≤ k. If s = k, we are done
(make sure you understand why!). So, assume s < k. Using Theorem 2.3.3, we have∣∣∣qsθ − ps

∣∣∣ > 1
qs+1 + qs

≥ 1
qk + qk−1

.

5There is a mistake in Khinchin in that the exception is not stated. Clearly, whenever {θ} > 1/2, p0/q0 = bθc is not
a BAS; in this case q1 = 1 and p1/q1 = bθc+ 1 is better.
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On the other hand, by Corollary 2.1.10,∣∣∣qkθ − pk

∣∣∣ < 1
qk+1

.

As, by the definition of ps, qs, |qsθ − ps| ≤ |pkθ − qk|, we can combine the two inequalities and
find that

1
qk+1

>
1

qk + qk−1
.

This implies qk+1 < qk + qk−1 and that is a contradiction as qk+1 = ak+1qk + qk−1 and all quanti-
ties appearing in this recursion formula are positive integers.

�

Let us summarize all we have learned about the relation between approximations for an irra-
tional real number θ and its convergents pn

qn
.

• For every n, either pn
qn

or pn+1
qn+1

is an OA.

• Every convergent pn
qn

, n ≥ 1 is a BAS.

• Every BAS for θ is a convergent to θ.
• In general, θ will have many BAF that aren’t BAS and so do not arise from the conver-

gents to θ.

Remark 5.0.5. One can show that all BAFs for θ can be derived from the continued fraction
expansion as well by “suitably combining” the partial quotients. We don’t discuss that here, but
this result can be found, for example, in Khinchin’s book.

6. QUADRATIC IRRATIONALS, PELL’S EQUATION AND CONTINUED FRACTIONS

In this section we investigate periodic continued fractions. Where by “periodic” we really
mean ultimately periodic. That is, a periodic continued fraction is a continued fraction of the
form

[a0, . . . , ak0−1, b1, . . . , bh, b1, . . . , bh, b1, . . . , bh, . . . ],

where a0 ∈ Z, ai, bi ∈N+, for i > 0. A common notation is

[a0, . . . , ak0−1, b1, . . . , bh]

We will study such continued fractions and connect them to solutions to Pell’s equation. Pell’s
equation is an equation of the form

(2) x2 − dy2 = 1,

where d is a positive integer that is not a square. We will not prove every theorem we present in
this section. The proofs can be found in many other textbooks in number theory. In general, we
tend to omit proofs that are either way too difficult (like for Roth’s, or Baker’s, theorem) or that
are very technical and long, involving analysis of multiple cases.
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6.1. Periodic continued fractions.

Proposition 6.1.1. Let θ be a periodic continued fraction,

[a0, . . . , ak0−1, b1, . . . , bh].

Then θ is quadratic over Q. Namely, it is an algebraic number of degree 2.

Proof. As θ is irrational, we only need to show that θ satisfies a quadratic equation with rational
coefficients. Let r be the (irrational) number,

r = [b1, . . . , bh].

Then,
θ = [a0, . . . , ak0−1, r] = [a0, . . . , ak0−1, b1, . . . , bh, r].

Letting pa, qa denote the convergents to θ, we find that

θ =
rpk0−1 + pk0−2

rqk0−1 + qk0−2
=

rpk0+h−1 + pk0+h−2

rqk0+h−1 + qk0+h−2
.

Clearing denominators and rearranging, it follows that r satisfies a quadratic equation over Q

and so θ satisfies one too. �

Theorem 6.1.2. If θ satisfies a quadratic equation ax2 + bx + c, a 6= 0, over Q then θ has an ultimately
periodic continued fraction expansion [a0, . . . , ak0−1, b1, . . . , bh].

The proof is not very difficult, but we will omit it for the reasons mentioned above. It can be
found in Khinchin’s book pp. 48 - 50.

Here are some examples of quadratic irrational numbers and their expansions.

(1 +
√

5)/2 = [1], 1 +
√

2 = [2], 3 + 2
√

2 = [5, 1, 4].

In general, things can behave rather unexpectedly. For example,

5 +
√

2
11

= [0, 1, 1, 2, 1, 1, 30, 1, 1, 3, 1, 14, 1, 3 ].

The length of the period of
√

d varies erratically,
√

39 [6, 4, 12]
√

40 [6, 3, 12]
√

41 [6, 2, 2, 12]
√

42 [6, 2, 12]
√

43 [6, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12]
√

44 [6, 1, 1, 1, 2, 1, 1, 1, 12]
√

45 [6, 1, 2, 2, 2, 1, 12]
√

46 [6, 1, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1, 12]
√

47 [6, 1, 5, 1, 12]
√

48 [6, 1, 12]

Using the command in PARI

for(n=8,60, print(n"∧(1/2)", "=", contfrac(sqrt(n), 30)))

you will get as output the continued fraction expansion of
√

n for all integers n between 8 and
60.
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Remark 6.1.3. The length of a period is a rather intriguing quantity on which there is a lot to
say; for example, under the generalized Riemann hypothesis, one can prove that the length
is O(

√
n log log n). That is, there is a constant C such that for x � 0, the length is at most

C
√

n log log n. This result is not so easy to prove. In contrast, it is easy to prove that
√

n has
an expression as a continued fraction of the form [a, b ] if and only if b = 2a, in which case
n = a2 + 1. If we use also Theorem 6.2.4 below that gives us some information of the general
form of the development of

√
n, for n not a square, we find that the only square roots

√
n with

period of length 1 are those of the form
√

a2 + 1 and their continued fraction expansion is√
a2 + 1 = [a, 2a ].

In particular, we deduce that there are arbitrarily large n such that
√

n has a period of length 1.

6.2. Pell’s equation. Let d be a positive integer that is not a square. Consider Pell’s equation.

(3) x2 − dy2 = 1.

One is interested in solutions in integers for such an equation. Pell equations may be considered
as among the simplest of diophantine equations, and this is one reason to seek a thorough un-
derstanding of them; at the same time, the solutions are numbers of the form a+ b

√
d, where a, b

are integers. As a result a + b
√

d ∈ Q(
√

d) is a unit of the ring of algebraic integers of Q(
√

d).6

The behaviour of the fundamental solution, namely, of the smallest pair of positive integers
(x, y) solving the equation - smallest in the sense that any other such pair (x′, y′) satisfies y′ > y
- is mysterious for the same reason the length of the period of the continued fraction of

√
d is

mysterious. To illustrate the point, the fundamental solution to the equation

x2 − 1140y2 = 1

is
x = 2431, y = 72,

and the period of
√

1140 is 6. In contrast, the fundamental solution of

x2 − 1141y2 = 1

is
x = 1036782394157223963237125215, , y = 30693385322765657197397208,

and the length of the period of
√

1141 is 58.

The following theorem connects between integer solutions for Pell’s equations and continued
fractions. In fact, it applies to somewhat more general equations.

Theorem 6.2.1. Let 0 < N <
√

d be an integer, where d is not a square. Let s, t be positive integer
solutions to the equation

x2 − dy2 = N,

with gcd(s, t) = 1. Then, for some n, we have
s
t
=

pn

qn
,

where pn/qn is a convergent to
√

d.

6An algebraic number α is called an algebraic integer if α solves a monic polynomial with integer coefficients. The
algebraic numbers form a subring of Q̄.
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Proof. The idea is to show that s/t is an OA for
√

d, hence a BAS. The theorem follows then from
Theorem 5.0.3.

As s2 − dt2 = N we have ( s
t +
√

d)( s
t −
√

d) = N
t2 and so

s
t
−
√

d =
N

t2( s
t +
√

d)
<

1
t2( s

t
√

d
+ 1)

(as N <
√

d). On the other hand, as s
t −
√

d > 0, it follows that s
t
√

d
> 1 and so∣∣∣√d− s

t

∣∣∣ < 1
2t2 .

This proves that s/t is an OA for
√

d. �

We record a particular case:

Corollary 6.2.2. Any positive solution to Pell’s equation

x2 − dy2 = 1

arises as a convergent to
√

d.

Note that the Corollary does not claim that every convergent is a solution to Pell’s equation,
and, in fact, it’s not true. Let us look at an example.

Example 6.2.3.
√

7 = [2, 1, 1, 1, 4 ]. We have the following convergents

p0

q0
=

2
1

,
p1

q1
=

3
1

,
p2

q2
=

5
2

,
p3

q3
=

8
3

,
p4

q4
=

37
14

,
p5

q5
=

45
17

, . . .

Then, correspondingly, pi/qi is a solution for the following equations:

x2− 7y2 = −3, x2− 7y2 = 2, x2− 7y2 = −3, x2− 7y2 = 1, x2− 7y2 = −3, x2− 7y2 = 2.

As is clear from this example, the complete story as to what Pell equation-like the convergents
solve is rather intricate. We don’t give here the full story but only one theorem, without proof.

Theorem 6.2.4. Suppose that d > 0 and is not a square. Then
√

d = [a0, b1, . . . , bn ].

• If n is even, the positive solutions to x2 − dy2 = 1 are

(pjn−1, qjn−1), j = 1, 2, 3, . . .

• If n is odd, the positive solutions to x2 − dy2 = 1 are

(p2jn−1, q2jn−1), j = 1, 2, 3, . . .

Exercise 6.2.5. Find positive solutions for the following equations:
(1) x2 − 39y2 = 1.
(2) x2 − 41y2 = 1.

Exercise 6.2.6. Prove that there are infinitely many positive solutions to the equation

x2 − 39y2 = −3.

(Hint: given a solution (a, b) to x2 − 39y2 = −3 and a solution (c, d) to x2 − 39y2 = 1, show that
one can generate a new solution to x2− 39y2 = −3 by using the product (a+ b

√
39)(c+ d

√
39).)

Exercise 6.2.7. Find a positive solution to the equation x2 − 41y2 = 5.
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Exercise 6.2.8. F Triangular numbers are the integers 1, 3, 6, . . . , n(n+1)
2 , . . . .

• •
• •

•
• •

• • •

. . .

Show that there are infinitely many triangular numbers that are squares and find 3 of them
besides 0, 1.7

Exercise 6.2.9. F Find five pairs of integers (n, N), 1 ≤ n ≤ N, such that

1 + 2 + · · ·+ (n− 1) = (n + 1) + (n + 2) + · · ·+ N.

Exercise 6.2.10. Let (a, b) be a solution to Pell’s equation x2− dy2 = 1. Show that for any n, if we
define An, Bn as follows

An + Bn
√

d = (a + b
√

d)n,
then An, Bn are also solutions to the same equation. Use this to show that if a Pell equation
x2 − dy2 = N has a solution then it has infinitely many solutions.

Exercise 6.2.11. F Show that there are infinitely many solutions (a, b) to x2 − 10y2 = 1 such that
7|a.

Exercise 6.2.12. The equation x2− dy2 = −1 doesn’t always have integral solutions: prove that if
d ≡ 0,−1 (mod 4) there are no integral solutions. However, prove that if a solution exists then
it is a convergent to

√
d.

Exercise 6.2.13. Prove that [a, b, c ] =
√

n for some positive integer n, if and only if a > 0, c = 2a
and b|c, in which case n = a2 + c/b. Deduce that there are arbitrarily large n such that

√
n has a

period of length 2. Compare with Remark 6.1.3.

Remark 6.2.14. One can prove that if a solution to x2 − dy2 = −1 exists, then the length of the
period of

√
d must be odd. And in fact a theorem similar to Theorem 6.2.4 holds. There is no

known criterion to determine when this happens. This is known as the question of “the sign of
the fundamental unit”, because it has to do with the question whether there is a unit in the ring
of integers of Q(

√
d) that has norm −1 to Q.

7. THE MEASURE OF SOME SETS DEFINED BY CONTINUED FRACTIONS

We change gears in this section. Our purpose is to look at sets of real numbers defined by
properties of continued fractions and ask how “big” they are. More precisely, we will look at
sets contained in [0, 1] – just for convenience, the generalization is easy – that are defined in terms

7There is the more general notion of figurative numbers, or k-gonal numbers. The 3-gonal numbers are the triangular
numbers {n(n + 1)/2 : n ∈ N+}. The 4-gonal numbers are the squares {n2 : n ∈ N+}. Similarly, the pentagonal
numbers are given by {n(3n− 1)/2 : n ∈N+}. The k-gonal numbers are { k

2 (n
2 − n)− n2 + 2n : n ∈N+}.

It was discovered by Fermat in 1636, and proved first by Cauchy in 1813, that every positive integer is a sum of k
k-gonal numbers. For example, a sum of 3 triangular numbers, a sum of 4 squares and so on.
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of properties of their continued fractions and ask for their Lebesgue measure. As an example,
we may consider the set

S = {[0, a1, a2, . . . ] : a1 = 2, a2 = 3},
and ask for µ(S). This is quite easy to calculate (try!), but already finding the measure of the set

T = {[0, a1, a2, . . . ] : a1 = a2},

requires more thought (try this one too!). So one wants to develop some general methodology.
One of the main ideas is to think of a1, a2, . . . as functions of x. For every x ∈ [0, 1] we can

write
x = [0, a1, a2, . . . ],

for uniquely determined positive integers ai that depend on x (unless x is rational, but those
have measure 0, so we disregard them). So,

x = [0, a1(x), a2(x), . . . ],

and for every k ≥ 1 we have the functions

ak : [0, 1]→N+, x 7→ ak(x),

which we want to understand.

7.1. The functions ai(x). Before proving the lemma we need, let us look at the functions a1(x)
and a2(x) to get some feeling as to the general behaviour. We wish to understand, for x ∈ [0, 1]
when does a1(x) = k1, where k1 is some positive integer. As ultimately we want to analyze all
functions ai(x), this really makes sense only for x 6∈ Q. And so we will usually assume that.

So, the question is what is the location of all x ∈ [0, 1], or x ∈ [0, 1] \Q to be pedantic, such
that a1(x) = k1. Such an x is then written as

x = [0, k1, r],

where 1 < r < ∞ (the strict inequality because x is irrational). Thus,

x =
1

k1 +
1
r

.

As r ranges over (1, ∞), 1
r ranges over (0, 1). So x ∈ ( 1

k1+1 , 1
k1
). Note that p0

q0
= 0

1 , p1
q1

= 1
k1

and so
we can write(

1
k1 + 1

,
1
k1

)
=

(
p1 + p0

q1 + q0
,

p1

q1

)
= {x : x = [0, k1, a2, a3, . . . ] : ai ∈N+},

where p0
q0

, p1
q1

are those of any x in {x : x = [0, k1, a2, a3 . . . ]}.
The function a1(x) therefore has the graph appearing in Figure 1 (where, again, rationality

allows us not to bother with interval ends).
What about a2(x) then? Suppose that a2(x) = k2. It is easier to analyze the situation after giving
some definite value to a1(x). So, suppose that a1(x) = k1. Then, we want to know the location
of all x of the form

x = [0, k1, k2, r], r ∈ (1, ∞).

Recall that using modified pn/qn we can write x as

x =
rp2 + p1

rq2 + q1
=

p2 + p1/r
q2 + q1/r

.
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FIGURE 1. The function a1(x)

When r = 1 we get p2+p1
q2+q1

and when r = ∞ we get p2
q2

. Thus, and we will be more rigorous when
we prove the general statement, we have(

p2

q2
,

p2 + p1

q2 + q1

)
= {x : x = [0, k1, k2, a3, a4, ...], ai ∈N+},

where p1
q1

, p2
q2

are those of any x in {x : x = [0, k1, k2, a3, a4, . . . ]}.
Moreover, p1 = 1, p2 = k2, q1 = k1, q2 = k1k2 + 1, so(

k2

k1k2 + 1
,

k2 + 1
k1k2 + 1 + k1

)
= {x : x = [0, k1, k2, a3, a4, ...]}.

Note that when k2 = 1 we get the end point k2
k1k2+1 = 1

k1+1 and as k2 goes to infinity, k2+1
k1k2+1+k1

→ 1
k1

.
That is, every interval (

1
k1 + 1

,
1
k1

)
on which a1(x) = k1, is divided into a disjoint union of intervals(

k2

k1k2 + 1
,

k2 + 1
k1(k2 + 1) + 1

)
,

where on such an interval a2(x) = k2. Otherwise said:

Over every step of a1(x), a2(x) is a step function. See Figure 2.

Exercise 7.1.1. Find µ(S) and µ(T) where

S = {[0, a1, a2, . . . ] : a1 = 2, a2 = 3}, T = {[0, a1, a2, . . . ] : a1 = a2}.
For T, the answer should be expressed as an infinite sum to which you should provide non-
trivial lower and upper bounds (say, different than 0 or 1).

Let us introduce the following notation. For integers 1 ≤ n1 < n2 < · · · < ns and any positive
integers k1, . . . , ks, let

E
( n1 n2 ... ns

k1 k2 ... ks

)
= {x ∈ (0, 1) : ani(x) = ki, i = 1, 2, . . . , s}.

For example,
E
( 1 2 ... s

k1 k2 ... ks

)
= {x = [0, k1, k2, . . . , ks, as+1, . . . ]}.
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FIGURE 2. The function a2(x)

In these terms, we see that what we have analyzed above were E
( 1

k1

)
and E

( 1 2
k1 k2

)
.

To understand the following Lemma, it is useful to note that given two rational numbers
a
b < c

d with positive denominators, we have

a
b
<

a + c
b + d

<
c
d

.

Lemma 7.1.2. E
( 1 2 ... n

k1 k2 ... kn

)
is an interval with end points pn+pn−1

qn+qn−1
and pn

qn
(which is bigger than which

depends on the parity of n), where pi/qi, for i ≤ n, are the partial quotients of any x ∈ E
( 1 2 ... n

k1 k2 ... kn

)
.

Proof. The proof is by induction, where we have already checked the cases n = 1, 2. So, assume
that E

( 1 2 ... n
k1 k2 ... kn

)
is an interval with end points pn+pn−1

qn+qn−1
and pn

qn
.

We have

E
(

1 2 ... n n+1
k1 k2 ... kn kn+1

)
= {x = [0, k1, k2, . . . , kn, kn+1, rn+2] : 1 < rn+2 < ∞}

(where, as usual, we ignore the case rn+2 = 1 as it corresponds to a rational number). Thus,
much as we have done for a2, we find that

x =
rn+2 pn+1 + pn

rn+2qn+1 + qn
=

pn+1 + pn/rn+2

qn+1 + qn/rn+2
.

In this expression, pn+1, pn, qn+1 and qn are fixed by the data k1, k2, . . . , kn+1 and we view the
expression for x as a function of r. The limit as r goes to 1 is pn+1+pn

qn+1+qn
and when r goes to infinity,

pn+1
qn+1

. Moreover, the derivative as a function of r is

pn+1(rn+2qn+1 + qn)− qn+1(rn+2 pn+1 + pn)

(rn+2qn+1 + qn)2 =
(−1)n

(rn+2qn+1 + qn)2 .

So rn+2 pn+1+pn
rn+2qn+1+qn

is a monotone function we conclude that as r varies from 1 to ∞, the x that we get

cover an interval with end points pn+1+pn
qn+1+qn

and pn+1
qn+1

. (If n is even this is the interval ( pn+1+pn
qn+1+qn

, pn+1
qn+1

)

and if n is odd this is the interval ( pn+1
qn+1

, pn+1+pn
qn+1+qn

).) �

Lemma 7.1.3. We have

ρ :=
µ
(

E
(

1 2 ... n n+1
k1 k2 ... kn s

))
µ
(
E
( 1 2 ... n

k1 k2 ... kn

)) =
1
s2 ·

1 + qn−1
qn

(1 + qn−1
sqn

)(1 + 1
s +

qn−1
sqn

)
;
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It satisfies,
1

3s2 < ρ <
2
s2 ,

independently of k1, . . . , kn (!)

Exercise 7.1.4. Prove Lemma 7.1.3. (The expressions look daunting at first, but remember that
we know to describe these sets using intervals. That, after algebraic manipulations, provides
the first claim. For one of the inequalities, simply replace 1+ qn−1

qn
by 1+ qn−1

sqn
). Can you improve

the constants 2 and 1
3 ?

Corollary 7.1.5. We have
1

3s2 < µ(E ( n+1
s )) <

2
s2 .

Proof. We have
µ((0, 1)) = ∑

(k1,...,kn)

µ
(
E
( 1 2 ... n

k1 k2 ... kn

))
,

while
µ(E ( n+1

s )) = ∑
(k1,...,kn)

µ
(

E
(

1 2 ... n n+1
k1 k2 ... kn s

))
.

Comparing like terms, and using Lemma 7.1.3, the Corollary follows. �

So, while it is not true that µ(E ( n+1
s )) is independent of n, it is closed to being so. For exam-

ple, try the following.

Exercise 7.1.6. Prove that µ(E
(

1
2

)
) = 1

6 = 0.166..., while

µ(E ( 2
s )) =

∞

∑
k=1

1
(2k + 1)(3k + 1)

.

The value of this series is numerically close to 0.1685. How well can you approximate this sum?

7.2. Numbers with bounded partial quotients. In this section we consider a set S of real num-
bers S contained in [0, 1] that exhibits a number of different characteristics. On the one hand,
it’s a “small” set, since it the set of all real numbers in (0, 1) whose continued fraction expansion
involves only finitely many integers. It is also the set of real numbers that cannot be approx-
imated too well by rational numbers, in a sense defined below (see Theorem 7.2.4). From a
different angle, it is a “huge set” since it has the same cardinality, 2ℵ0 , as R. And, still from a
different perspective, we will prove later that it has Hausdorff dimension 1. Each of these facts
brings to light another aspect of this set.

Theorem 7.2.1. Let

S = {x = [0, a1, a2, . . . ] : ∃M = M(x) such that ai ≤ M, ∀i}.

This is the set of all numbers in (0, 1) in whose continued fraction expansion only finitely many integers
appear as partial quotients. Then

µ(S) = 0.

Remark 7.2.2. The S has cardinality 2ℵ0 . Indeed, just letting ai take the values 1 or 2 gives us a
subset of S with cardinality 2ℵ0 , so |S| ≥ 2ℵ0 . On the other hand, S ⊂ R so |S| ≤ 2ℵ0 .



COURSE NOTES - MATH 346 & 377 35

Proof. For M ∈N≥2, let
SM = {x = [0, a1, a2, . . . ] : ai < M, ∀i}.

Since S2 ⊂ S3 ⊂ S4 ⊂ . . . , we have µ(S) = limM→ ∞ µ(SM), and it is thus enough to prove that
for all M,

µ(SM) = 0.

For the calculations to follow, it will be convenient to define

γ = µ
(
E
( 1 2 ... n

k1 k2 ... kn

))
, τ = 1− 1

3M
.

Now, suppose that k1, . . . , kn are all less than M. For any k ≥ 1 we have by Lemma 7.1.3:

µ
(

E
(

1 2 ... n n+1
k1 k2 ... kn k

))
>

γ

3k2 .

This implies that

µ

(
∞

ä
k=M

E
(

1 2 ... n n+1
k1 k2 ... kn k

))
>

γ

3

∞

∑
k=M

1
k2 .

We have the estimate
∞

∑
k=M

1
k2 >

∫ ∞

M

dt
t2 =

1
M

.

We conclude that

µ

(
ä

k<M
E
(

1 2 ... n n+1
k1 k2 ... kn k

))
= µ

(
E
( 1 2 ... n

k1 k2 ... kn

))
− µ

(
∞

ä
k=M

E
(

1 2 ... n n+1
k1 k2 ... kn k

))

< γ(1− 1
3M

) = γτ.

In this estimate k1, . . . , kn are still fixed, and γ depends on them. But now, summing this in-
equality over all (k1, k2, . . . , kn+1) such that ki < M for all i, we find

µ

(
ä

(k1,...,kn+1)<M
E
(

1 2 ... n n+1
k1 k2 ... kn kn+1

))

< τ · µ
(

ä
(k1,...,kn)<M

E
( 1 2 ... n

k1 k2 ... kn

))

< · · · < τn · µ
(

ä
k1<M

E
( 1

k1

))
< τn.

As SM is the limit of the sets ä(k1,...,kn)<M E
( 1 2 ... n

k1 k2 ... kn

)
as n→ ∞, we find that

µ(SM) ≤ lim
n→ ∞

τn = 0.

�

Corollary 7.2.3. With probability 1, a number x chosen at random from the interval (0, 1) will have the
property

lim ai(x) = +∞.
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We call a real number θ badly approximable if there is a positive constant C such that

|θ − p
q
| ≥ C

q2 ,

for all p, q integers. One can prove the following theorem.

Theorem 7.2.4. The set of badly approximable numbers is precisely the set
⋃

n∈Z n + S, where S is as in
Theorem 7.2.1.

7.3. Some ideas from Ergodic theory. In his book, Khinchin proves many beautiful theorems of
measure-theoretic flavour. The most striking one is due to Khinchin himself and is the following.

Theorem 7.3.1 (Khinchin). With probability 18

n
√

a1(x)a2(x) · · · an(x) −→
∞

∏
r=1

(
1 +

1
r(r + 2)

)log2(r)

≈ 2.685 . . .

The infinite product appearing in the theorem is called Khinchin’s constant. Khinchin’s proof
is complicated. There is a much better proof that uses ideas from Ergodic theory. We will only
sketch it, citing some difficult theorems and leaving some details as exercises.

Consider the operator

T : (0, 1)→ (0, 1), T([0, a1, a2, . . . ]) = [0, a2, a3, . . . ].

Otherwise said

T(x) =
1
x
− b1

x
c.

Define a measure ν on subsets in the Borel σ-algebra B([0, 1]) of [0, 1]:

ν(E) =
1

log(2)

∫
E

dx
1 + x

.

Like the Lebesgue measure, ν is a regular measure, giving measure 1 to [0, 1], and the same
argument we sketched for the Lebesgue measure implies that it is determined by its values on
open intervals (α, β) that we can easily calculate:

ν((α, β)) =
1

log(2)

∫ β

α

dx
1 + x

=
1

log(2)
(log(1 + β)− log(1 + α)) =

1
log(2)

log
(

1 + β

1 + α

)
.

The key point is that T is measure-preserving, meaning for every set E ∈ B([0, 1]),

ν(T−1(E)) = ν(E).

This is not very hard to prove. One first proves that µ1(E) := ν(T−1(E)) is likewise a regular
measure on (0, 1), hence determined by its values on open intervals. A bit of thought shows
then that it is enough to prove the following claim.

Exercise 7.3.2. F For any 0 ≤ β ≤ 1,

ν(T−1(0, β)) = ν((0, β)).

8Namely the set of x ∈ (0, 1) for which the following statement fails has measure 0.
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A deeper fact, yet at the level of the first few classes in a course in ergodic theory, is that the
transformation T is ergodic. This means that

T−1(E) = E =⇒ ν(E) ∈ {0, 1}.
For example, real world transformations, such as kneading dough, stirring a coffee cup, are
ergodic transformations. Rotating a disc around its centre is not.

We want to use the Ergodic Theorem, which we will not prove here, although, once more, the
proof is usually given in any introductory course in ergodic theory.9 The theorem is much more
general than the very special case we consider here.

Theorem 7.3.3 (Birkhoff’s Ergodic Theorem). 10 For any “reasonable” function f 11 on [0, 1], for
almost all x ∈ [0, 1],

lim
N → ∞

1
N

N−1

∑
n=0

f (Tnx) =
∫ 1

0
f dν :=

1
log(2)

∫ 1

0

f (x)
1 + x

dx.

The sum on the left hand side in the theorem is called the time average, since one thinks about T
as a transformation of [0, 1] where the trajectory of a point x in time is Tx, T2x, T3x, . . . (Tn is the
composition of T with itself n-times) and the sum is the average along the trajectory as more
and more time passes. The integral appearing in the theorem is called the space average as it
gives the average value of the function on the space.

We apply the Ergodic Theorem in a variety of situations:
(1) Let

f (x) = log(a1(x)).
This is a function that is piece-wise continuous, even piece-wise constant since a1(x) is
like that. It follows that

(4) lim
N → ∞

1
N

N−1

∑
n=0

log(a1(Tnx)) = lim
N → ∞

1
N

N−1

∑
n=0

log(an(x)) =
1

log(2)

∫ 1

0

log(a1(x))
1 + x

dx.

It remains to analyze the right hand side and derive Khinchin’s theorem. Recall that

a1(x) = k, for x ∈ (
1

k + 1
,

1
k
).

Thus,

1
log(2)

∫ 1

0

log(a1(x))
1 + x

dx =
1

log(2)

∞

∑
k=1

log(k) ·
∫ 1

k

1
k+1

1
1 + x

dx

=
1

log(2)

∞

∑
k=1

log(k) · (log(1 + 1/k)− log(1 +
1

k + 1
))

=
∞

∑
k=1

log((1 +
1

k(k + 2)
)log(k)/ log(2))

=
∞

∑
k=1

log((1 +
1

k(k + 2)
)log2(k))

9The proof can be found, for example, in P. Halmos, Lectures on Ergodic Theory.
10There is a subtle point here. A priori the Theorem says that the set of exceptions has measure 0 relative to the
measure ν, but it is easy to check that this implies it has measure 0 in the usual (Lebesgue) measure too.
11The exact condition is that for all B ∈ B([0, 1]) also f−1(B) ∈ B([0, 1]). This include all functions that are piece-
wise continuous, for example.
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Substituting in Equation (4), and exponentiating, we find Khinchin’s theorem!

(2) Let

f (x) =

{
1, a1(x) = k;
0, else.

Using the ergodic theorem we can deduce that for almost all x ∈ (0, 1) the frequency of k
in the partial quotients of x, namely in the sequence {ai(x)}∞

i=1, is

1
log(2)

log
(
(k + 1)2

k(k + 2)

)
.

For example, the frequency of 1 among the ai(x) is about 41.5% for almost every x. On
the other hand, the frequency of 9 is only about 1.4%. The proof is left as an exercise.

(3) Let f (x) = a1(x) and deduce that with probability 1,

lim
n→ ∞

a1(x) + · · ·+ an(x)
n

= ∞.

The proof is left as an exercise.

Exercise 7.3.4. FWhat can we deduce by using the function f (x) =

{
1, a1(x) is prime;
0, else.

Exercise 7.3.5. F Give a proof based on the Ergodic Theorem for Theorem 7.2.1.

8. THE HAUSDORFF DIMENSION OF SOME SETS DEFINED BY CONTINUED FRACTIONS

We have seen that the set of all real numbers x ∈ (0, 1) whose continued fraction expressions
has bounded partial quotients, namely the set

S = {x = [0, a1, a2, . . . ] : ∃M such that ai ≤ M, ∀i},

has measure zero and cardinality 2ℵ0 . It follows that the set

E({1, 2}) := {[0, a1, a2, a3, . . . ] : ai ∈ {1, 2}}

also has measure zero and cardinality 2ℵ0 . It is a natural question to ask whether there are other
points of view on subsets of R that will show that in some sense these sets are big.

We will introduce the notion of Hausdorff dimension of a set A, dimH(A), as another perspec-
tive on complexity of sets. It will satisfy dimH({x}) = 0 for any point x and even dimH(Q) = 0;
it will also satisfy dimH([0, 1]) = dimH([0, 1] \Q) = 1. These results just tell us that the defini-
tions are sensible. It starts to get interesting when we find that

0 < dimH(E({1, 2})) < 1, dimH(S) = 1,

thus providing a new perspective in which the “presence” of these measure 0-sets is nonetheless
non-trivial.

In developing the theory we will be forced to be brief – supplying full details would be a
course in itself; we will give careful definitions and prove certain simple properties in order
to have some sort of intuition as to what’s happening and then specialize to sets defined by
continued fractions. For a full treatment see Falconer’s book, which we follow here.
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8.1. δ-covers and the Hausdorff dimension. Let U ⊂ Rn. We denote by |U| its diameter.

|U| = sup{‖x− y‖ : x, y ∈ U}.

The notation is not ideal, because |U|was also used to denote the cardinality of U; hopefully, no
confusion will occur, and when there is danger of such, we will clarify what the notation means
in that particular place.

Let δ ∈ R≥0. A δ-cover of a set F in Rn is a finite, or countable, collection of sets {Ui}i∈I such
that

• F ⊆ ⋃i∈I Ui
• |Ui| ≤ δ, ∀i.

For s > 0 define
Hs

δ(F) = inf{∑
i∈I

|Ui|s : {Ui}i∈I a δ-cover of F}.

Namely, we are trying to cover F most efficiently using δ-covers and measure this efficiency by
the quantity ∑i∈I |Ui|s. It is not entirely clear what this does... Let us make some observations:

• When δ′ < δ any δ′-cover of F is also a δ-cover of F. So when calculating Hs
δ(F) we

are taking the infimum over a larger set of coverings than the set of covering used to
calculateHs

δ′(F). Hence,

δ′ ≤ δ =⇒ Hs
δ′(F) ≥ Hs

δ(F).

Consequently, the following limit, which might well be +∞, always exists:

Hs(F) := lim
δ→ 0
Hs

δ.

• Note that for any δ < 1 (and those suffice to calculate Hs(F)), the function Hs
δ(F) is

non-increasing in s. This is because for any U of diameter at most δ (so smaller than 1)
|U|s ≥ |U|t if s ≤ t. Thus, comparing cover-by-cover, we deduce that

s ≤ t =⇒ Hs(F) ≥ Ht(F).

We can be more precise: for every δ < 1 cover {Ui} and s ≤ t, we have

∑
i
|Ui|t = ∑

i
|Ui|t−s|Ui|s ≤ δt−s ∑

i
|Ui|s.

Thus,
s ≤ t =⇒ Ht(F) ≤ δt−sHs(F), ∀0 < δ < 1.

The last point allows us to conclude the following proposition.

Proposition 8.1.1. Let F ⊂ Rn. If there exists an s such thatHs(F) < ∞ then for all t > s,Ht(F) = 0.
Thus, the function s 7→ Hs(F) must look as in Figure 3, where

s0 = sup{s : Hs(F) = ∞} = inf{s : Hs(F) = 0}.
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FIGURE 3. The function s 7→ Hs(F)

The Hausdorff dimension12 of F is, by definition, the value s0. We denote the Hausdorff dimen-
sion dimH(F). Thus,

dimH(F) = sup{s : Hs(F) = ∞} = inf{s : Hs(F) = 0}.
We remark that the value Hs0(F) may be finite (including 0), or infinite. However, we can
conclude the following.

Corollary 8.1.2. If there is some s such that 0 < Hs(F) < ∞, then s = dimH(F).

Example 8.1.3. To get convinced that this might be a good definition, let us look at the interval
[0, 1] and take s = 1. For any δ-cover {Ui} let ai = |Ui|. The estimate

∑
i

ai ≥ 1

holds, because ai ≥ µ(Ui) (Lebesgue measure) and

1 ≤ µ(∪iUi) ≤∑
i

µ(Ui) ≤∑
i

ai.

This holds for any cover and any δ. Further, we can certainly find such covers with ∑ ai = 1 ;
indeed, dividing [0, 1] into disjoint intervals will do the trick. It follows that H1([0, 1]) = 1 and,
by Corollary 8.1.2, dimH([0, 1]) = 1. Thus, for “ordinary” sets the Hausdorff dimension returns
the expected value. The interesting feature, though, is that for “non-ordinary” sets it may return
a fractional value, as we shall see.

The following theorem lists some basic properties of the Hausdorff dimension. We leave the
first four claims as an exercise in unravelling the definitions. We highly recommend doing them.

Theorem 8.1.4. The Hausdorff dimension has the following properties for subsets of Rn:
(1) If E ⊂ F then dimH(E) ≤ dimH(F).
(2) dimH(∪∞

i=1Fi) = supi{dimH(Fi)}.
(3) If F is countable, F = {x1, x2, . . . }, then dimH(F) = 0.
(4) If f : Rn → Rn is bi-Lipschitz (namely, there exist positive real constants c1, c2 such that

c1‖x− y‖ ≤ ‖ f (x)− f (y)‖ ≤ c2‖x− y‖, ∀x, y ∈ Rn)

then,
dimH(F) = dimH( f (F)).

(5) If F ⊆ Rn contains a non-empty open set then dimH(F) = n.
(6) If F ⊆ Rn is an m-dimensional smooth manifold, dimH(F) = m.

12The Hausdorff dimension is sometimes called the Hausdorff-Besicovitch dimension.
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Exercise 8.1.5. Prove that for every s,Hs(∪∞
i=1Fi) ≤ ∑∞

i=1Hs(Fi).

Exercise 8.1.6. Prove parts (1) - (4) of Theorem 8.1.4.

Property (4) is very useful in boot-strapping results. Consider for example, a bi-Lipschitz
function f : R→ R and the function φ : R2 → R2, φ(x, y) = (x, f (x) + y), taking the unit inter-
val A = [0, 1] = {(x, 0) : 0 ≤ x ≤ 1} to the set φ(A) = {(x, f (x))}, which is just the graph of f
over the interval [0, 1].

FIGURE 4. The function φ

This function φ is also bi-Lipschitz and so dimH(φ(A)) = dimH(A). We proved before that
dimH(A) = 1 when A is viewed as a subset of R. It requires some thought, but one can show
that dimH(A) = 1 also when A is viewed as a subset of R2. So we may conclude that the graph
of φ is also of dimension 1.

Property (6) requires some work to prove, but the idea is very similar to the example we have
just considered. Suppose we already know that dim([a, b]m) = m for a < b (which follows
from (5)), whether this cube is considered in Rm or in Rn. Then, the idea is that by the implicit
function theorem, any smooth manifold can be exhibited locally as the graph of a C∞-function
over such cubes (that appear in the diagram as ovals; mea culpa).

Such functions are bi-Lipschitz so, at least locally, a smooth m-dimensional manifold has
Hausdorff dimension m. Using property (2) we can get the full statement in (6).

Let’s look at claim (5) and try and be a little bit “more honest” about its proof.

• First, all closed cubes ∏n
i=1[ai, bi] with non-empty interior, i.e. with ai < bi, ∀i, have

the same dimension as they are all related by bi-Lipschitz maps. We remark that this
dimension is also equal to the dimension of any closed ball B[a, r] of positive radius,
because, again they are related by bi-Lipschitz maps, and we also use property (1).
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• As F contains a closed ball with a non-empty interior, and is contained in a count-
able union of such balls (e.g. ∪∞

N=1B[0, N]), using (2) we conclude that dimH(F) =
dimH(B[0, 1]) = dimH([0, 1]n).
• Show dimH(([0, 1]n) ≤ n. It is enough to show that

∀n1 > n,Hn1([0, 1]n) = 0.

For this, it is enough to show that for every ε > 0, for all δ > 0, there is a δ-cover {Ui}
such that

∑
i
|Ui|n1 < ε.

Indeed, this implies thatHn1
δ (([0, 1]n) < ε for all δ > 0, which implies thatHn1(([0, 1]n) <

ε for all ε > 0. This implies thatHn1(([0, 1]n) = 0.
In fact, it is enough to show that for every ε > 0 for all N � 0 there is a 1

N -cover {Ui}
such that ∑i |Ui|n1 < ε.

Divide the cube [0, 1]n into Nn cubes that are shifts of the cube [0, 1
N ]n. The radius of a

cube [0, r]n is ‖(r, r, . . . , r)‖ = r
√

n.

FIGURE 5. Partitioning the cube (The graphics is taken from Deke McClelland’s blog)

For this cover,

∑i |Ui|n1 = Nn(
√

n
N )n1 = C · Nn−n1 N→∞ // 0

• Show thatHn([0, 1]n) > 0. We use a similar argument as we have used for the interval
[0, 1]. Namely, the existence of a Lebesgue measure µ on Rn. We didn’t discuss this
before, but this is similar to the Lebesgue measure on R as in §3.2. Namely, µ is a again a
function on the Borel σ-algebra B(Rn) of Rn, which is the minimal collection of subsets
of Rn that contains every open set and is closed under complements, countable unions
and countable intersections:

µ : B(Rn)→ R≥0 ∪ {∞}.
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It is again a regular measure such that (1) µ(ä∞
i=1 Ai) = ∑∞

i=1 µ(Ai), and (2) µ(∏n
i=1[ai, bi]) =

∏n
i=1(bi − ai).
For every δ-cover13 {Ui} we have

1 = µ([0, 1]n) ≤∑
i

µ(Ui) ≤ C ∑
i
|Ui|n,

where C is a constant depending only on n and the last inequality comes from the fact
that every set Ui of diameter δ is contained in a ball of radius δ, say.

We conclude that

Hn([0, 1]n) ≥ 1
C

> 0.

Remark 8.1.7. In fact, one can prove that Hn([0, 1]n) = 2n

ωn
, where ωn is the volume of the unit

ball in Rn. More generally, one can prove that if F ∈ B(Rn) is a Borel set, then

Hn(F) =
µ(F)
ωn

.

We have

(5) ωn =


πk

k! , n = 2k even;

22k+1k!πk

(2k+1)! n = 2k + 1 odd.

8.2. The dimension of the Cantor set. So far we haven’t really seen that the Hausdorff dimen-
sion provides us with anything new. We will now calculate the dimension of the Cantor set C
in [0, 1] and see that it is strictly between 0 and 1.

Base 10 expansion, i.e., decimal expansions, are the description of any real number r as

r = an · · · a1a0.a−1a−2 · · · = an · 10n + · · ·+ a1 · 10 + a0 + a−1 · 10−1 + a−2 · 10−2 + . . . .

Or, more succinctly,

r =
∞

∑
s=−n

a−s10−s,

where the ai ∈ {0, . . . , 9}. The expansion is essentially unique; the only ambiguity comes from
tails of the form · · · ai−1ai99999 · · · = · · · ai−1(ai + 1)00000 . . . , if ai 6= 9. Let us agree to prefer
the latter.

13There is a delicate point we are sweeping under the rug. Namely, that when we define the notion of Hausdorff
dimension we can consider only δ-covers by sets Ui that are in B(Rn). This is true, and not hard to prove. Indeed,
we can replace any Ui that appears with its closure.
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The same can be done to any natural basis. Let N ≥ 2 be an integer. Then any real number
has a base N expansion

r = an · · · a1a0.a−1a−2 · · · = anNn + · · ·+ a1N + a0 + a−1N−1 + a−2N−2 + · · · =
∞

∑
s=−n

a−sN−s,

where the ai ∈ {0, . . . , N− 1}. Again, the expansion is essentially unique and the only ambiguity
comes from tails of the form · · · ai−1aixxxxxx · · · = · · · ai−1(ai + 1)00000 . . . , if ai 6= N − 1 and
x = N − 1. (For example, for N = 2, 0.111111111 · · · = 1

2 +
1
4 +

1
8 + · · · = 1, and for N = 3 we

have 0.22222222 · · · = 2
3 +

2
9 +

2
27 + · · · = 1.) Let us agree to prefer the former just for describing

the Cantor set.

With these conventions the Cantor set is defined as

C = {x = 0.x1x2x3 . . . (base 3 expansion)|xi ∈ {0, 2}, ∀i} =
{

∞

∑
i=1

xi

3i : xi ∈ {0, 2}, ∀i

}
.

It is a closed set in [0, 1] which is what remains after repeatedly removing the middle open thirds
(in green) of intervals.

By calculating the measure of the complement of the Cantor set we find that C has measure 0,
but cardinality equal to that of the real numbers:

µ(C ) = 0, |C | = 2ℵ0 .

Let assume for now that for d = dimH(C ) we actually have 0 < Hd(C) < ∞ (which is true).
The idea of the following calculation is that of an iterated function system, which we will soon
develop in detail; it makes use of the self-similarity features of the Cantor set.

Let

s1(x) =
x
3

, s2(x) =
x
3
+

2
3

.

In terms of base 3-expansion, we can express these transformation by

s1(0.x1x2x3 . . . ) = 0.0x1x2x3 . . . , s2(0.x1x2x3 . . . ) = 0.2x1x2x3 . . . .

It is now clear that
C = s1(C )ä s2(C ).

Exercise 8.2.1. Let f : Rn → Rn be a function such that for some α > 0

‖ f (x)− f (y)‖ = α‖x− y‖.
Then,

Hs( f (F)) = αsHs(F).



COURSE NOTES - MATH 346 & 377 45

For the functions s1, s2 we have α = 1/3 and we apply the exercise to the Cantor set C with
s = d = dimH(C ). Note that for δ small enough we may assume in calculating Hs

δ(C ) that
we only consider δ-covers of s1(C )ä s2(C ) that are a disjoint union of a δ-cover of s1(C ) and
a δ-cover of s2(C ). And vice-versa, δ-covers of si(C ) that are disjoint with each other induce a
δ-cover of C . Hence,

Hd(C ) = Hd(s1(C )ä s2(C ))

= Hd(s1(C )) +Hd(s2(C ))

= 2 ·
(

1
3

)d

Hd(C ).

Thus, 3d = 2 and we conclude that

dimH(C ) =
log(2)
log(3)

≈ 0.6309 . . .

This result demonstrates that although µ(C ) = 0, the Cantor set C still has “a non-zero pres-
ence”.

Exercise 8.2.2. Let A be the set of all numbers in [0, 1] whose base 5 expansion only contains the
digits 0, 2 and 4. Let d = dimH(A) and assume again that 0 < Hd(A) < ∞. Calculate dimH(A).

Exercise 8.2.3. F Let N ≥ 3 be an odd integer. Let AN be the set of all numbers in [0, 1] whose
base N expansion only contains the digits 0, 2, . . . N − 1. Let d = dimH(AN) and assume again
that 0 < Hd(AN) < ∞. Calculate limN → ∞ dimH(AN).

The following result, which we give as a guided exercise, gives some information on sets of
dimension less than 1. Recall that if F ⊂ Rn is a subset, an open set of F is, by definition, the
intersection of some open subset of Rn with F. A set F in Rn is called totally disconnected if for
every x 6= y points of F, there exist open disjoint sets Ux, Uy of F, such that x ∈ Ux, y ∈ Uy and
F = Ux ∪Uy.

For example, Q is totally disconnected, because given two rational numbers x < y choose an
irrational ε such that x < ε < y then

Q = (Q∩ (−∞, ε)) ∪ (Q∩ (ε, ∞)),

and
x ∈ Ux := Q∩ (−∞, ε), y ∈ Uy := Q∩ (ε, ∞).

Exercise 8.2.4. Let F ⊆ Rn be a subset such that dimH(F) < 1. Prove that F is totally discon-
nected. Here is a suggestion. Suppose x 6= y are points in F:

• Define
f : Rn → R, f (s) = ‖x− s‖.

Prove that this function has the property

| f (s)− f (t)| ≤ ‖s− t‖.
• Prove that dimH( f (F)) ≤ dimH(F).
• Let Z = R \ f (F). Prove that Z is dense in R.
• Prove that there is a z ∈ Z lying between f (x) and f (y) and so the sets (−∞, z), (z, ∞)

separate f (x) and f (y).
• Complete the proof.

Note that the converse does not hold: R \Q is totally disconnected but has dimension 1.
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8.3. Iterated function systems. An iterated function system is a method to construct fractal sets
in Rn and, at the same time, to estimate their dimensions. Many familiar sets, such as the Cantor
set, the von Koch snowflake and the Sierpinski cube are examples. More importantly for us, sets
whose elements are described by their continued fraction expansions are often constructed this
way too.

Let D ⊆ Rn be a closed set (D = Rn is allowed). A function

s : D → D

is called a contraction if there is a constant c, 0 < c < 1, such that

‖s(x)− s(y)‖ ≤ c‖x− y‖, x, y ∈ D.

We note that a contraction is automatically a continuous function.
An iterated function system (IFS) is a finite set of maps {s1, . . . , sm}, m ≥ 2, where every si is

a contraction on D. A non-empty closed subset F ⊆ D is called an attractor for the IFS if

F =
m⋃

i=1

si(F).

Example 8.3.1. Let D = [0, 1] and let si : D → D be the functions

s1(x) =
x
3

, s2(x) =
x
3
+

2
3

.

Then {s1, s2} is an IFS and, as we have seen before, the Cantor set C is an attractor.

Example 8.3.2. Let
E = {[a0, a1, a2, . . . ] : ai ∈ {1, 2}},

be the subset of all real numbers in the interval [1, 3] whose continued fraction expansion has
partial quotients that are all either 1 or 2. Let D be the interval

D = [
1 +
√

3
2

, 1 +
√

3] ≈ [1.366 . . . , 2.732 . . . ].

Consider the two functions on R>0

s1(x) = 1 +
1
x

, s2(x) = 2 +
1
x

.

We claim that {s1, s2} are an IFS on D. For x ∈ D,

|s′i(x)| = 1
x2 ∈

[
1

(1 +
√

3)2
,

4
(1 +

√
3)2

]
⊆ [0.13, 0.54].

By the mean-value theorem ∣∣∣ si(x)− si(y)
x− y

∣∣∣ = ∣∣∣s′i(ξ)∣∣∣,
and so both si are contractions on D. Now, both si have a fixed point ζi in D:

s1(
1 +
√

5
2

) =
1 +
√

5
2

≈ 1.618 . . . , s2(1 +
√

2) = 1 +
√

2 ≈ 2.414 . . .

This should not surprise us. In terms of continued fractions we have

(6) s1([a0, a1, a2, . . . ]) = [1, a0, a1, a2, . . . ], s2([a0, a1, a2, . . . ]) = [2, a0, a1, a2, . . . ],

and we have seen the values 1+
√

5
2 = [1, 1, 1, . . . ], 1+

√
2 = [2, 2, 2, . . . ] before. Because the fixed

point ζi of si lies in D and si is contracting on D, for any y in D we have |si(y)− ζi| ≤ |y− ζi|, it
follows that si(D) ⊆ D.
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Finally, we claim that E is an attractor for this IFS. First, the minimal element of E is

[1, 2, 1, 2, . . . ] =
1 +
√

3
2

,

and the maximal element is
[2, 1, 2, 1, . . . ] = 1 +

√
3.

So E ⊂ D. And equation (6) proves that

E = s1(E) ∪ s2(E).

8.4. Attractors of IFS. We will show that every IFS on a compact set D ⊆ Rn has an attractor.
The assumption that D is compact is only made to simplify the proof; it holds for the applications
we have in mind.

Theorem 8.4.1. Let D be a non-empty compact subset of Rn and let I = {s1, . . . , sm}, m ≥ 2 be an
IFS on D. There is a unique attractor E for I . In fact, define for every k-tuple of integers (i1, . . . , ik),
such that 1 ≤ ij ≤ m,

S(i1,...,ik)(D) = (si1 ◦ · · · ◦ sik)(D),
and

Sk(D) =
⋃

(i1,...,ik)

S(i1,...,ik)(D).

Let S0(D) = D. Then,

E =
∞⋂

k=0

Sk(D).

Before the proof, we remark that with some abuse of notation, treating S1 as a “sum” of maps
without defining this formally, we have the following relation

Sk(D) = S1 ◦ · · · ◦ S1(D).

Proof. We first argue that
Sk(D) ⊇ Sk+1(D).

Indeed,
Sk+1(D) = S1 ◦ · · · ◦ S1

(k−times)
(S1(D)) = Sk(S1(D)).

So we only need to check that S1(D) ⊆ D, and, in fact, just that si(D) ⊂ D, which is true by
definition.

Now, as each si is a contraction, it is continuous and hence so is s(i1,...,ik). Therefore, s(i1,...,ik)(D)

is compact. Since Sk(D) is a finite union of non-empty compact sets, it is compact too and
non-empty. The intersection of a decreasing sequence of the non-empty compact sets, D ⊇
S1(D) ⊇ S2(D) ⊇ . . . is also non-empty. Furthermore, since S1(Sk(D)) = Sk+1(D) we have that
S1(E) = E, as we wanted.

We leave the unicity as an exercise. (See below.) �

Exercise 8.4.2. Let D be a compact set and let S be the collection of non-empty compact subsets
of D. We will make S into a metric space; the metric is known as the Hausdorff metric.

Let δ ≥ 0. Define the δ-neighbourhood of a set A ∈ S , denoted Aδ, to be the set

Aδ = {x ∈ D : ∃a ∈ A, ‖x− a‖ ≤ δ}.
Using that for a fixed x ∈ D, infa∈A{‖x− a‖} is achieved for some ax ∈ A, by compactness of A,
it is not hard to prove that Aδ is a closed subset of D, hence belongs to S itself.
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Now, given A, B ∈ S , define

d(A, B) = inf{δ : A ⊆ Bδ and B ⊆ Aδ}.
Prove that d is indeed a metric on S . Namely, that (i) d(A, B) ≥ 0 with equality iff A = B; (ii)

d(A, B) = d(B, A); (iii) d(A, C) ≤ d(A, B) + d(B, C).

Exercise 8.4.3. Prove that for Ai, Bi ∈ S ,

d(∪m
i=1Ai,∪m

i=1Bi) ≤ max
1≤i≤m

d(Ai, Bi).

Exercise 8.4.4. Prove that E is unique in the following sense. If F ⊆ D is a compact non-empty
subset of D such that S1(F) = F then F = E. (Consider d(E, F) and apply the previous exercises
for Ai = si(E), Bi = si(F).)

8.5. Hausdorff dimension of attractors. In this section we state the main theorem about the
dimension, or estimate for the dimension, of the attractor of an IFS. The proof is not very hard,14

but we have to keep our goal in sight, which is to focus on number theory and not on fractal
theory!

We say that an IFS {s1, . . . , sm}, m ≥ 2 on a non-empty compact set D in Rn satisfies the open
set condition, if there exists a non-empty open set V of Rn such that:

(1) V ⊆ D,
(2) s1(V), . . . , sm(V) are disjoint, and
(3) V ⊇ ⋃m

i=1 si(V).

Theorem 8.5.1. Let {s1, . . . , sm}, m ≥ 2, be an IFS on a compact set D in Rn satisfying the open set
condition. Let E be the unique compact attractor this system.

(1) Assume that for every i there exists ci, such that 0 < ci < 1 and

‖si(x)− si(y)‖ = ci‖x− y‖, ∀x, y ∈ D.

Then, dimH(E) = s, where s is the solution to the equation
m

∑
i=1

cs
i = 1.

Furthermore, we have 0 < HdimH(E)(E) < ∞.15

14The proof can be found in K. Falconer, Fractal Geometry, Mathematical Foundations and Applications.
15This justifies the computations we did, for example, for Cantor sets.
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(2) If we only have
‖si(x)− si(y)‖ ≤ ci‖x− y‖, ∀x, y ∈ D,

then dimH(E) ≤ s, where s is as above.
(3) Suppose that

‖si(x)− si(y)‖ ≥ bi‖x− y‖, ∀x, y ∈ D,

for some 0 < bi < 1 and that

E =
m

ä
i=1

si(E).

Then dimH(E) ≥ t, where t is the solution to the equation
m

∑
i=1

bt
i = 1.

As said, we will not prove the theorem here - the proof can be found in Falconer’s book - but
only remark that the main idea is rather similar to our calculation of the dimension of the Cantor
set C . And, in fact, we will redo this example soon.

Example 8.5.2. The dimension of the unit cube [0, 1]n. Let

D = [0, 1]n.

For every vertex v of the cube, define that function

sv : D → D, sv(x) =
1
2

x +
1
2

v.

Each sv is a contraction on D and, in fact,

‖sv(x)− sv(y)‖ =
1
2
‖x− y‖.

This IFS satisfies the open set condition with the open set V = (0, 1)n. We also have D = ∪vsv(D)

and so D = E is the attractor. We find that dimH([0, 1]n) = s, where s solves the equation
2n ·

( 1
2

)s
= 1. Namely, s = n, as expected.

Example 8.5.3. The dimension of the Cantor set C . Let

D = [0, 1], s1(x) =
x
3

, s2(x) =
x
3
+

2
3

.
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This is an iterated function system and ‖si(x)− si(y)‖ = 1
3‖x− y‖. The open set condition holds

with V = (0, 1). As we have seen, the attractor of this IFS is the Cantor set. Its dimension is the
real number s that solves the equation 2 ·

( 1
3

)s
= 1. Namely,

s = log(2)/ log(3) = 0.6309 . . . .

Example 8.5.4. The dimension of the Sierpinski triangle 4̃. Let D be an equilateral triangle
in the plane, say with vertices a1 = (0, 0), a2 = (1, 0), a3 = ( 1

2 ,
√

3
2 ). Let

si : D → D, si(x) =
1
2

x +
1
2

ai, i = 1, 2, 3.

The open set condition holds with the set V being the interior of D. The attractor E of this IFS
is, by definition, the Sierpinski triangle.

FIGURE 6. The Sierpinski triangle 4̃ = E.

A similar calculation gives us

dimH(4̃) = log(3)/ log(2) = 1.5849 . . . .

Example 8.5.5. The dimension of the von Koch snowflake K . We leave some details here to
the reader. The iterated function system S consists here of 4 transformations that are each of the
form

x 7→ ρi(
x
3
) + σi,

where ρi is a certain rotation and σi a certain translation that will hopefully be clear from figure.
In this case it is easier to construct the attractor as a union of sets, starting from F and applying
S repeatedly, we have

E = lim
k→ ∞

Sk(F).

One has to justify all these considerations, including the notion of the limit, but we will leave it
to the reader to ponder. The limit, for example, could be in the sense of the Hausdorff metric on
the compact sets of D, where D is a circle of radius 3, and in this case, F is drawn from the origin
to the point (3, 0).

The same type of calculations give us that

dimH(K ) = log(4)/ log(3) = 1.2618 . . . .
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FIGURE 7. The von Koch snowflake K = E.

B. Mandelbrot, who coined the term fractal, and popularized the notion not just in mathe-
matics, but in culture at large, also coined the phrase “how long is the coast of Britain?” 16 The
idea being that pictures such as the von Koch curve give a better sense of a coast line than the
usual piece-wise smooth lines we tend to use in maps and diagrams. In this context, it is easy to
prove that the length of the von Koch curve is infinite and a better measure of its complexity is
the fact that its dimension is strictly bigger than 1. To quote Mandelbrot (loc. cit.): “Quantities
other than length are thus needed to discriminate between various degrees of complication for
a geographical curve.”

Exercise 8.5.6. The dimension of the Sierpinski cube. Prove that the dimension of the Sierpinski
cube is log(20)/ log(3) = 2.7268 . . . . (Picture from Wikipedia commons.)

FIGURE 8. The Sierpinski cube.

16B. Mandelbrot, How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension, Science 156
(3775): 636–638.
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Exercise 8.5.7. Let 0 < α < 1. Consider a set Cα which is very similar to the Cantor set. At each
step we remove an interval of length 2α which is located symmetrically. Thus, the case of the
Cantor set itself is when α = 1/3.

FIGURE 9. Generalized Cantor set Cα.

Calculate the cardinality, the measure and the dimension of the set Cα.

8.6. Hausdorff dimension of sets defined by continued fractions. We return now to continued
fractions. Let m ≥ 2 be an integer and let

E({1, 2, . . . , m}) = {[a0, a1, a2, . . . ] : 1 ≤ ai ≤ m, ∀i}.

This set is very similar to the sets Sm we considered in Theorem 7.2.1. In fact, E({1, 2, . . . , m}) =
äm

i=1 i + Sm+1 and so it is clear that

µ(E) = 0, |E| = 2ℵ0 .

We would like to calculate dimH(E({1, 2, . . . , m})). It turns out to be difficult and so we will
only approximate this dimension based on theorems we have already mentioned.

To begin with, the minimal element of E is

min
x∈E({1,2,...,m})

(x) = [1, m, 1, m, . . . ] =: αm =
m +
√

m2 + 4m
2m

,

and the maximal element is

max
x∈E({1,2,...,m})

(x) = [m, 1, m, 1, . . . ] =: Am =
m +
√

m2 + 4m
2

.

Let
Dm = [αm, Am].

Let

si(x) = i +
1
x

, i = 1, 2, . . . , m,

or, in terms of continued fractions,

si([a0, a1, a2, . . . ]) = [i, a0, a1, a2, . . . ].

We show that the si are an IFS on Dm; E({1, 2, . . . , m}) is the attractor of this system. In fact, this
requires justification, but not to distract from the main point, we will address it once we have
completed the calculation.
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• We first show that sa has a fixed point on Dm. Consider the equation fa = a + 1/ fa. Such
an fa is a fixed point of sa. We calculate that

fa =
a +
√

a2 + 4
2

∈ Dm.

In terms of continued fractions, fa = [a, a, a, . . . ] ∈ E ⊂ Dm.
• Secondly, we show that each sa is contracting on Dm. Indeed, since

s′a(x) = −1/x2,

we have
0 < A−2

m = inf
x∈Dm
{|s′a(x)|}, α−2

m = sup
x∈Dm

{|s′a(x)|} < 1,

and so, by the mean-value theorem,

∀x, y ∈ Dm, A−2
m |x− y| ≤ |sa(x)− sa(y)| ≤ α−2

m |x− y|.
It follows that each si preserves Dm and so {s1, . . . , sm} is an IFS on Dm.

We may apply Theorem 8.5.1 and conclude

γm ≤ dimH(E({1, 2, . . . , m})) ≤ Γm,

where γm and Γm are the solutions to the equations

mA−2γm
m = 1, mα−2Γm

m = 1.

Namely,

(7)
log(m)

2 log(Am)
≤ dimH(E({1, 2, . . . , m})) ≤ log(m)

2 log(αm)
.

The upper bound is uninteresting, it is greater than 1 for all m. However, the method can be
improved to provide better lower bounds and non-trivial upper bounds.

The dimension of E({1, 2}) in particular gained a lot of attention. The world-record for cal-
culating its dimension seems to be

dimH(E({1, 2})) = 0.531280506277205141624468647368471785493059
1090183987798883978039275295356438313459181095701811852398...

and was obtained in 2018 by Jenkinson and Pollicot. The lower bound we were able to obtain is
a bit better than 0.344. Here is the table of the lower bounds coming from Equation (7) (values
truncated, not rounded).

n 2 3 4 5 6 7 8 9 10

γn 0.34483 0.4121 0.44025 0.4553 0.4647 0.4711 0.4756 0.4790 0.4816

Let

E(∞) =
∞⋃

m=1

E({1, 2, . . . , m}).

The set E(∞) is very close to the set S we considered in Theorem 7.2.1. To be precise, E(∞) =
äa0∈N+ a0 + S. It is thus clear that they have the same dimension and the same measure

µ(E(∞)) = 0.
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On the other hand, letting m→ ∞ in the lower estimate in (7), we find

dimH(E(∞)) = dimH(S) ≥
1
2

.

This is rather satisfying, because we always believed S is large and complicated ,
The truth is even more satisfying.

Theorem 8.6.1 (Jarnı́k). 17 dim(S) = 1.

We mention a very general and powerful theorem.

Theorem 8.6.2 (Ramharter). 18 Let A ⊆N+ be a subset, finite or infinite. Let

E(A) = {[a0, a1, a2, . . . ] : ai ∈ A, ∀i}.
Let µ and ν be the real numbers defined by

∑
m∈A

[m]−µ = 1, ∑
m∈A

m−ν = 1,

where [m] denotes the periodic continued fraction [m, m, m, . . . ] = m+
√

m2+4
2 . Then,

µ ≤ 2 dimH(R) ≤ ν.

Exercise 8.6.3. F Use Ramharter’s Theorem to prove that dimH(S) ≥ 0.9, say, where S is the set
of all real numbers for which the partial quotients of their continued fractions take only finitely
many values. The theorem is not powerful enough to imply that dimH(S) = 1, but it can be
used for a great many examples of sets defined by conditions on continued fractions.

We have seen that the Cantor set C and the sets Sm in Theorem 7.2.1 have real presence; in spite
of being of measure 0 they have positive Hausdorff dimension. Another such evidence are the
following theorems:

Theorem 8.6.4. Let C be the Cantor set then

C + C = {x + y : x, y ∈ C } = [0, 2].

Exercise 8.6.5. F Prove Theorem 8.6.4.

In contrast with the exercise, the next theorem is much harder.19

Theorem 8.6.6. Let M ≥ 4 be an integer and let SM = {[0, a1, a2, . . . ] : ai ≤ M, ∀i}. Then

SM + SM =

[
−M +

√
M2 + 4M

M
,−M +

√
M2 + 4M

]
.

In particular, as the length of the interval S4 + S4 is greater than 1, this theorem implies the
following:

Theorem 8.6.7 (M. Hall). Any real number r can be written in the form

r = n + [0, a1, a2, . . . ] + [0, b1, b2, . . . ], n ∈ Z, 1 ≤ ai, bi ≤ 4 ∀i.

17V. Jarnı́k, Zur metrischen Theorie der diophantischen Approximationen, Prace Matematyczno-Fizyczne 36 (1928-
1929), 91-106.
18See G. Ramharter, Some metrical properties of continued fractions. Mathematika, 30 (1983), 117–132. The statement
here follows from Theorem 1, equation (40) and comments following it. For a more accessible proof, see T. W. Cusick,
Continuants with bounded digits. III. Monatsh. Math. 99 (1985), no. 2, 105?109.
19The proof can be found in the book Rockett & Szüsz, Continued Fractions.
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8.6.1. The issue with E({1, 2, . . . , m}). Finally, we come back to a point we left vague in the cal-
culation above; namely, our claim that E({1, 2, . . . , m}) is the attractor for the IFS system con-
sidered above. The issue is that although E({1, 2, . . . , m}) = ∪m

i=1si(E({1, 2, . . . , m})), it is not
immediately clear that it is a closed set. If it is, then it is the unique compact attractor. There are
three options to resolve this issue.

The first is to show that indeed E({1, 2, . . . , m}) is closed, by showing that its complement
is open. This is not immediately clear, as Falconer claims. A point θ in the complement is, for
example, an irrational number one of whose partial quotients, say at, is bigger than m. It is then
indeed not hard to see that any real number close enough to θ will also have the same at. To see
that one uses that the sets we called E

( 1 2 ... t
k1 k2 ... kt

)
are intervals with rational end points and so θ

cannot not be one of these end points.
However, a point θ in the complement could also be a rational point, which can very well be

an end point of the aforementioned intervals, and the situation is then less clear. In this case one
has to show that any r close enough to θ would have to have arbitrary large partial quotients
and thus lie in the complement of E({1, 2, . . . , m}). That is true but requires an argument.

But, there is another option altogether. Let A = E({1, 2, . . . , m}) for ease of notation. First
one argues that in our situation if A = ∪isi(A) then also Ā = ∪isi(Ā), just because the si are
bi-Lipschitz. And clearly Ā = ∪isi(Ā) is the unique compact attractor.

Now if we show A ⊆ Ā ⊆ A ∪Q then, since dimH(A) = dimH(A ∪Q) (that follows easily
from Theorem 8.1.4), also dimH(A) = dimH(Ā) and we can just estimate dimH(Ā). Now,

(8) A = ∩∞
n=1{[a0, a1, . . . , an, . . . ] : 1 ≤ ai ≤ m, i = 1, 2, . . . , n}

and each set {[a0, a1, . . . , an, . . . ] : 1 ≤ ai ≤ m, i = 1, 2, . . . , n} is a finite union of sets of the form
E
( 1 2 ... t

k1 k2 ... kt

)
and so {[a0, a1, . . . , an, . . . ] : 1 ≤ ai ≤ m, i = 1, 2, . . . , n} is contained in a finite

union of closed intervals with rational end points. Thus, we can replace the intersection (8) by
an intersection of sets that are each a finite union of closed intervals with rational end points.
That larger intersection is closed. What we have added, in the end, is at most some rational
points (that arise as end points of intervals) to our set A.

The third option is to check that E = ∩∞
k=0Sk(D), directly from the definition of E and the

description of the si in terms of continued fractions. Since each Sk(D) is closed, it follows that E
is closed too.

9. IN CONCLUSION

The subject of continued fractions is rich and has many applications to different areas of math-
ematics. Developing functions into continued fractions is a subject that we did not really discuss,
but it is a subject that is both ancient and of current research in optimization and numerical anal-
ysis. There are many other generalizations of continued fractions, but even the simplest kind
of continued fractions, those that we have discussed in detail, offer many interesting problems
and continue to be a very active field of research. In particular, their applications to transcen-
dence theory and to dynamical systems are still actively researched. The MathSciNet search for
“continued fractions in title” returns 3650 hits on January 2020, out of which 391 are from 2016
or later.

In spite of all this progress there are some outstanding problems just waiting for a brilliant
solution. For example, recall the set S we studied in Theorem 7.2.1, the set of all real numbers
x in (0, 1) whose partial quotients are bounded by some bound, which may depend on x. It
is conjectured that any number in S that is not rational, or quadratic, is transcendental. If you
are interested in learning more about this aspect, a good place to start may be the article B.
Adamczewski, Y. Bugeaud and L. Davison, “Continued fractions and transcendental numbers.
Numération, pavages, substitutions.” Ann. Inst. Fourier (Grenoble) 56 (2006), no. 7, 2093–2113.
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EQUATIONS OVER FINITE FIELDS

10. INTRODUCTION

In this chapter we follow closely

Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory. Second
edition.

It is an excellent book, but the material required to prove the main results we are interested
in is spread over many of its chapters. The exposition we offer here is a more concise path
towards those goals than the book itself. For an introductory text about algebraic geometry, we
recommend

William Fulton, Algebraic curves. An introduction to algebraic geometry.

Our main topic in this chapter is the study of the number of solutions to a system of polyno-
mial equations over a finite field. Let F be a finite field, for example Fp, and suppose we are
given m polynomials with coefficients in F in n variables, f1(x1, . . . , xn), . . . , fm(x1, . . . , xn). We
are interested in counting the solutions to the system of equations:

V :


f1(x1, . . . , xn) = 0,
...

fm(x1, . . . , xn) = 0.

Namely, we want to find

]V(F) = ]{(a1, . . . , an) ∈ Fn : fi(a1, . . . , an) = 0, ∀i = 1, . . . , m}.

If L is a field containing F, then it likewise makes sense to ask about

]V(L) = ]{(a1, . . . , an) ∈ Ln : fi(a1, . . . , an) = 0, ∀i = 1, . . . , m}.

Let us make our discussion more systematic by carefully explaining which fields L we want
to consider. Recall that for two fields F ⊆ L one defines [L : F] = dimF(L), which is either a
positive integer or ∞. It is called the degree of L over F.

Let p be a prime and let Fp be the field of p elements; Fp ∼= Z/pZ. Let Fp be an algebraic
closure of Fp (see §11.1 for a more thorough discussion). Then: (1) for every integer n , there is a
unique subfield of Fp with pn elements that we denote Fpn . (2) We have an inclusion Fpm ⊆ Fpn

if and only if m|n, and then [Fpn : Fpm ] = n/m. (3) Fp = ∪∞
n=1Fpn .

It is a fact that every finite field of pn elements is isomorphic to Fpn . Thus, to study finite fields
of characteristic p, we might as well restrict our attention to subfields of Fp.

It follows from the above that if F is any finite field contained in Fp, then for every positive
integer s there is a unique field F[s] ⊂ Fp containing F, such that [F[s] : F] = s. Otherwise
said, the lattice of finite subfields of Fp is exactly like the lattice of positive integers N+ with the
divisibility relation.
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As above, let fi(x1, . . . , xn), i = 1, . . . , m, be polynomials in n variables with coefficients in a finite
field F ⊂ Fp. Let V(F[s]) denote the set of solutions in F[s]:

V(F[s]) = {(a1, . . . , an) :∈ Fn
[s] : f j(a1, . . . , an) = 0, j = 1, . . . , m.}

One is interested in ]V(F[s]). This quantity is obviously of interest to number theory and alge-
braic geometry, but also to cryptography, coding theory and combinatorics, to name a few other
areas. Pierre Deligne got his Fields Medal in 1978 for proving very precise information about
the behaviour of the numbers ]V(F[s]).

It turns out that it is better to work in a projective space and with homogeneous polynomial
equations defining smooth, i.e. non-singular, projective varieties V over F. We discuss all these
concepts below, but let us assume for time being that we know what they mean. We define the
zeta function of V, ζV(T), as the series

(10) ζV(T) = exp

(
∞

∑
s=1

]V(F[s])

s
· Ts

)
.

This looks a bit intimidating at first sight, but note that the zeta function is designed so that

d log ζV(T) =
∞

∑
s=1

]V(F[s]) · Ts−1.

So, ζV(T) is a jazzed-up version of a generating series for the sequence of integers

]V(F[s]), s = 1, 2, 3, . . .

As usual in math, the definitions are justified by the theorems we can prove about them.

10.1. Weil’s conjectures. In 1949, André Weil made his conjectures about ζV(T) in a short but
seminal article20; an article that influenced greatly the development of algebraic geometry and
number theory. Some parts of his conjectures were proven by A. Grothendieck (“Functional
equation”) and B. Dwork (“Rationality”), but the hardest part (“Riemann hypothesis”) was
proven by Deligne.

20 A. Weil, “Numbers of solutions of equations in finite fields”, Bulletin of the American Mathematical Society, 55 (5):
497–508.
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Weil’s conjectures. Assume that V is a non-singular irreducible projective variety of dimen-
sion d over a finite field Fq with q elements.

(1) (Rationality) The function ζV(T) is a ratio of polynomials with rational coefficients.

ζV(T) =
P1(T)P3(T) · · · P2d−1(T)
P0(T)P2(T) · · · P2d(T)

∈ Q(T).

In fact, for every i, Pi(T) ∈ Z[T] and Pi(0) = 1. We always have,

P0(T) = 1− T, P2d(T) = 1− qdT.

(2) (Functional equation) For a suitable integer E21, and a suitable sign ε ∈ {±1}, we have

ζV(q−dT−1) = εqdE/2TEζV(T).

(3) (Riemann hypothesis) Write

Pi(T) = ∏
j
(1− αijT), αij ∈ C.

For all i, j
|αij| = qi/2.

(4) (Cohomological interpretation) This part provides information about the degrees of Pi in
terms of the cohomology of V. We will make an effort in §16 to give some idea, even if
rather vague, regarding what this is all about.

An important consequence of the Weil conjectures is that they provide precise information about
the numbers ]V(F[s]). Indeed,

∞

∑
s=1

]V(F[s]) · Ts−1 = d log ζV(T)

=
2d

∑
i=0

(−1)i+1 d log Pi(T)

=
2d

∑
i=0

(−1)i+1 ∑
j

d log (1− αij(T))

=
2d

∑
i=0

(−1)i ∑
j

αij

1− αijT

=
2d

∑
i=0

(−1)i ∑
j

αij(1 + αijT + α2
ijT

2 + . . . ).

(11)

Thus, the knowledge of the αij gives us formulas for ]V(F[s]) for every s. In particular,

]V(F) = ∑
i,j
(−1)iαij.

21E is the Euler characteristic of V, a certain cohomological invariant of V that we do not describe here.
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11. SOME PREREQUISITES

We provide some background here concerning finite fields, projective space, affine and pro-
jective varieties.

11.1. Finite fields - a short summary. Let p be a prime and let Fp be a field with p elements.
For example, Fp = Z/pZ. In fact, any such Fp is (uniquely) isomorphic to Z/pZ.

(1) Every finite field F contains some Fp; p is unique and is called the characteristic of F.
In F, we have

p := 1 + · · ·+ 1︸ ︷︷ ︸
p−times

= 0,

and consequently, for every z ∈ F, pz := z + · · ·+ z = (1 + · · ·+ 1)z = 0 (the sums are
p-times). Since for 1 ≤ i ≤ p− 1 one has p|(p

i ), we deduce from the binomial formula
that we have (x + y)p = xp + yp, and, by iterating, for any power q = ps of p we have

(x + y)q = xq + yq, q = ps.

(2) Let [F : Fp] = s then ]F = ps =: q. If L ⊇ F is a finite field and t = [L : F] then ]L = qt.
(3) The set F× = F \ {0} is a cyclic group of order q− 1 under multiplication. Every element

in F is a solution of xq − x = 0. Thus, if Fp is the algebraic closure of Fp then, for every s,
there is a unique subfield of Fp with q = ps elements. Namely, the set of solutions of the
polynomial xq − x = 0 in Fp. Moreover, any two fields with q elements are isomorphic.

(4) The lattice of subfields of Fp is the same as the lattice of positive integers with division.
Fps ↔ s, Fps ⊆ Fps1 ⇔ s|s1; cf. the diagram in (9).

(5) The Frobenius map
ϕ : Fp → Fp, ϕ(x) = xp,

is an automorphism of fields. That is, it is bijective and ϕ(x + y) = ϕ(x) + ϕ(y) (by the
binomial formula in F), ϕ(xy) = ϕ(x)ϕ(y), and ϕ(1) = 1. We have

Fps = {x ∈ Fp : ϕs(x) := (ϕ ◦ · · · ◦ ϕ︸ ︷︷ ︸
s−times

)(x) = xps
= x.}

(6) Let F = Fps = Fq and L = F[t] = Fqt . Define the trace map

TrL/F(x) = x + xq + . . . xqt−1
,

and the norm map
NmL/F(x) = x · xq · · · xqt−1

.
Then,
• TrL/F(x) is an F-linear surjective map

TrL/F : L→ F.

• NmL/F(x) is a surjective homomorphism of groups

NmL/F : L× → F×.

Indeed, it is not hard to prove that the trace is additive and the norm is multiplica-
tive. To prove that the image lies in F in both cases, it is enough to prove that

ϕs(x + xq + . . . xqt−1
) = x + xq + . . . xqt−1

, ϕs(x · xq · · · xqt−1
) = x · xq · · · xqt−1

.

Note that ϕs(x) = xq, and xqt
= x, for x ∈ L, so the statements about the images are

true. Since, for f ∈ F we have f q = f , it follows that the trace is linear over F. The
only remaining point is the surjectivity or the trace and norm, which we leave as an
exercise.
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Exercise 11.1.1. Prove that the trace TrL/F and norm NmL/F are surjective maps onto F and F×,
respectively.

11.2. Projective space. Let F be any field. We denote elements of Fn+1 by vectors (x0, . . . , xn).
We define an equivalence relation on Fn+1 \ {0} by decreeing that for any α ∈ F×,

(x0, . . . , xn) ∼ (αx0, . . . , αxn).

We denote by
[x0 : · · · : xn]

the equivalence class of (x0, . . . , xn).
As (x0, . . . , xn) is not the zero vector, it defines a line through the origin in Fn+1; to wit,

{α · (x0, . . . , xn) : α ∈ F}.
Any (y0, . . . , yn) equivalent to (x0, . . . , xn) defines the same line, and vice-versa. Thus, the equiv-
alence classes are in bijection with lines through the origin in Fn+1. For example, for P1(R) we
have the following diagram, showing that P1(R) is the quotient of the circle by the automor-
phism x 7→ −x.

FIGURE 10. The projective line over R.

The collection of equivalence classes is called the n-dimensional projective space over F:

Pn(F) = {[x0 : · · · : xn] : xi ∈ F not all zero}.

Lemma 11.2.1. There is a natural partition

Pn(F) = Fn ä Fn−1 ä · · ·ä F0.

Proof. We prove that by induction on n. For n = 0, P0(F) consists of just one point so P0(F) =
F0, where F0 is the 0-dimensional vector space over F, but we just think about it as a set with 1
point. For n = 1 we have

P1(F) = {[x0 : x1] : x1 6= 0}ä{[x0 : 0] : x0 6= 0}
= {[y0 : 1] : y0 ∈ F} ä{[1 : 0]}
= F ä F0.
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The point of this calculation is that [1 : 0] = [x0 : 0] for all x0 6= 0 and [y0 : 1] = [αy0 : α] for all
α 6= 0. Now, inductively,

Pn(F) = {[x0 : x1 : · · · : xn] : xn 6= 0} ä{[x0 : · · · : xn−1 : 0] ∈ Pn(F)}
= {[y0 : y1 : · · · : yn−1 : 1] : yi ∈ F}ä{[x0 : · · · : xn−1] ∈ Pn−1(F)}
= Fn ä Pn−1(F)

= Fn ä Fn−1 ä · · ·ä F0.

�

On the affine space Fn, which we often denote An(F), we can define functions using polynomial
functions f (x1, . . . , xn) ∈ F[x1, . . . , xn]. On the other hand, if we consider any polynomial in
f (x0, x1, . . . , xn) ∈ F[x0, x1, . . . , xn] and try to assign it a value at an element [a0 : · · · : an] ∈
Pn(F) by saying that the value is f (a0, a1, . . . , an), this is not well defined - the value depends
on the representative (a0, a1, . . . , an) for [a0 : a1 : · · · : an]. For example, take f (x0, x1) = x0 + 1.
Then, f (1, 1) = 2. But the point [1 : 1] = [2 : 2] in P1(F) and f (2, 2) = 3. So, evaluating
polynomials on Pn(F) is not a well defined operation.

Let us then restrict our attention to homogeneous polynomials. Namely, polynomials that
are the sum of monomials of the same degree, For example x0x2

1 + 3x0x1x2 is homogeneous
polynomial of degree 3. Let d be a non-negative integer and consider I = (i0, . . . , in), a vector of
non-negative integers such that |I| := i0 + i1 + · · ·+ in = d. Denote xI = xi0

0 xi1
1 · · · x

in
n , which is a

monomial of degree d. Then, the general form of a homogeneous polynomial over F of degree d
is

f (x0, x1, . . . , xn) = ∑
I=(i0,...,in),|I|=d

aI xI ,

where aI ∈ F and the summation is over all I with non-negative integer coordinates, such that
|I| = d. Now, although the value of such an f at a point [a0 : · · · : an] ∈ Pn(F) is still not
well-defined, the statement f (a0, . . . , an) = 0 is well-defined. That is, if f is homogeneous of
degree d then f (αa0, . . . , αan) = αd f (a0, . . . , an). And, as α 6= 0, whether f (a0, . . . , an) = 0, or
not, is a statement independent of the particular representative (a0, . . . , an) for the equivalence
class [a0 : · · · : an] chosen for the evaluation of f .

11.3. Affine and projective varieties. Polynomials and homogeneous polynomials can be used
to define algebraic varieties in affine space and projective space. We define these notions and
discuss the connection between them.

11.3.1. Affine varieties. Let F be a field. We change slightly our notation for An(F), writing

An(F) = Fn = {(a0, . . . , an−1) : ai ∈ F}.
Let fi(x0, . . . , xn−1), i = 1, . . . , m, be polynomials in the n-variables x0, . . . , xn−1. The affine
variety V = Z( f1, . . . , fm) is defined by the vanishing of all f1, . . . , fm. Namely, it has points

V(F) = {(a0, . . . , an−1) ∈ Fn : fi(a0, . . . , an−1) = 0, i = 1, . . . , m}.
Note that if L is any field containing F, it makes sense to talk about

V(L) = {(a0, . . . , an−1) ∈ Ln : fi(a0, . . . , an−1) = 0, i = 1, . . . , m}.
So, in a sense that we will not formalize here, the variety V is more than just its points V(F).

Such a variety V has a well-defined notion of dimension. Unfortunately, it is a bit tricky to
define, so we will not do that here. It is defined in Fulton’s book, and in any comprehensive
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text about algebraic geometry. Often the dimension is just n − m, where m is the number of
polynomial equations used to define V in An; this happens if the equations are “sufficiently
generic”, but this is not always the case.

The variety V is called non-singular, or smooth, if for every a = (a0, . . . , an−1) ∈ V(L), for
any L ⊃ F, the rank of the matrix (

∂ fi

∂xj
(a)
)

i,j

is n− d, where d is the dimension of V.

In fact, mostly we will interested in varieties V defined by a single non-constant polynomial
equation f (x0, . . . , xn−1) of degree d and V is just the solutions to this polynomial. Such a variety
is called a hypersurface of degree d. Many of the concepts mentioned above simplify in this case:
the dimension of V is always n− 1 and it is non-singular if and only if the vector(

∂ f
∂x0

(a), . . . ,
∂ f

∂xn−1
(a)
)
6= 0

for any a ∈ V. Hopefully, you have seen the exact same criterion in the context of manifolds in
a course in calculus or differential geometry.

For every field L, V(L) is the solutions to this polynomial in L. Consider for example the
equation x2

1 = x3
0 + ax0 + b, where a, b ∈ F are some constants. The variety V it defines, if

non-singular, is called an elliptic curve.

11.3.2. Projective varieties. Let F be a field. Let fi(x0, . . . , xn), i = 1, 2, . . . , m, be homogeneous
polynomials, possibly of different degrees. They define a projective variety V such that for
every field L ⊇ F,

V(L) = {a = [a0 : a1 : · · · : an] ∈ Pn(L) : fi(a) = 0, i = 1, 2, . . . , m}.

We are using the same notation V as in the affine case. If we need to distinguish between the
two we will use Vaff and Vproj. Note that

Vproj = (Vaff − {0})/ ∼ .

That is, the projective variety defined by f1, . . . , fm in Pn(F) is the equivalence classes of the
non-zero points of the affine variety defined by f1, . . . , fm in An+1(F).

Let f (x0, . . . , xn−1) ∈ F[x0, . . . , xn−1]. We define the homogenization of f , denoted f [h], to be
the homogeneous polynomial in F[x0, . . . , xn−1, xn] given by the formula:

f [h](x0, x1, . . . , xn) = xdeg( f )
n f

(
x0

xn
, . . . ,

xn−1

xn

)
.

In practice, this is a simple operation: just add a suitable power of xn to each monomial of f
so as to get a homogeneous polynomial of degree equal deg( f ). For example, if f (x0, x1) =

x2
0 − x3

1 − ax1 − b then f [h](x0, x1, x2) = x2
0x2 − x3

1 − ax1x2
2 − bx3

2. Note that

f [h](x0, . . . , xn−1, 1) = f (x0, . . . , xn−1).

From this we get the following:

Vaff( f1, . . . , fm) ={(a0, . . . , an−1) ∈ An : f j(a0, . . . , an−1) = 0, ∀j}

Vproj( f [h]1 , . . . , f [h]m ) ={[a0 : · · · : an−1 : an] ∈ Pn : f [h]j (a0, . . . , an−1, an) = 0, ∀j}.
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And, under the decomposition Pn = An ä Pn−1 of Lemma 11.2.1, we have

Vproj( f [h]1 , . . . , f [h]m ) ∩An = Vaff( f1, . . . , fm).

Therefore, Vproj( f [h]1 , . . . , f [h]m ) is a projective variety extending Vaff( f1, . . . , fm). 22

For example, consider the elliptic curve f (x0, x1) = x2
0 − x3

1 − ax1 − b and f [h](x0, x1, x2) =
x2

0x2 − x3
1 − ax1x2

2 − bx3
2.

• If x2 6= 0, we may assume x2 = 1 and the solutions for f [h] are [x0 : x1 : 1] where (x0, x1)
are solutions to f .
• If x2 = 0, we get one additional solution, one not lying in A2, which is the point [1 : 0 : 0].

FIGURE 11. An elliptic curve in P2.

Finally, a projective variety V of dimension d in Pn (coming from the affine variety of dimension
d + 1 in An+1 defined by the same polynomials) is non-singular, or smooth, if the rank of the
following matrix is n− d at every point a = (a0, . . . , an) 6= (0, 0, . . . , 0) lying on V:(

∂ fi

∂xj
(a)
)

i,j
.

Thus, Vproj( f1, . . . , fm) ⊆ Pn is smooth if and only if Vaff( f1, . . . , fm) ⊆ An+1 is smooth, except
possibly at (0, 0, . . . , 0).

In fact, in most of this chapter we will be concerned with the following key example. Let F be a
field of characteristic p. Suppose that p - m and α0, . . . , αn ∈ F are all non-zero. Let

f (x0, . . . , xn) = α0xm
0 + · · ·+ αnxm

n .

The projective variety V that it defines is a hypersurface of degree m and dimension n− 1. It is
non-singular, because

(
∂ f
∂x0

,
∂ f
∂x1

, . . . ,
∂ f
∂xn

) = (mα0xm−1
0 , mα1xm−1

1 , . . . , mαnxm−1
n )

is zero at a point (a0, . . . , am) implies that ai = 0 for all i. But, the point [0 : 0 : · · · : 0] is not a
point in the projective space.

Our goal is to understand the zeta function of V.

22A word of caution: Vproj( f [h]1 , . . . , f [h]m ) need not be the minimal projective variety containing Vaff( f1, . . . , fm).
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12. SOME EXAMPLES OF ZETA FUNCTIONS

Before continuing to develop tools to study the number of points on hypersurfaces, let us look
at some very particular examples. One of those examples, the Grassmannian, was in fact among
the examples Weil originally provided for his general conjectures.

12.1. The zeta function of Pn. The projective space Pn considered over Fp is the simplest pro-
jective variety. It is defined by the empty set of polynomials, or, if you wish, by the zero polyno-
mial, and it is smooth. The decomposition of Lemma 11.2.1 gives us

]Pn(Fps) = 1 + ps + · · ·+ pns =
1− p(n+1)s

1− ps .

Before calculating ζPn we note the following identities:

exp

(
∞

∑
s=1

xs Ts

s

)
= exp

(
∞

∑
s=1

(xT)s

s

)
= exp (− log(1− xT)) =

1
1− xT

,

where we used log(1 + t) = t− t2

2 + t3

3 −
t4

4 + . . . .
Now,

ζPn(T) = exp

(
∞

∑
s=1

(1 + ps + · · ·+ psn)
Ts

s

)

=
n

∏
j=0

exp

(
∞

∑
s=1

(pj)s Ts

s

)

=
1

(1− T)(1− pT) · · · (1− pnT)
.

12.2. The zeta function of the Grassmann variety Gm,n. Recall that the projective space Pn−1

has the interpretation as parametrizing lines through the origin in An. Let 0 < m < n be an
integer. For a given field L we may want to parameterize all the m-dimensional subspaces of
An. The case m = 1 is solved by the projective space - an algebraic variety such that for every L,
Pn−1(L) is in natural bijection with the 1-dimensional subspaces (lines through the origin) in
An(L). It turns out, and this is one of the most basic constructions in algebraic geometry, that
for every m there is a projective variety Gm,n, called a Grassmannian, that parameterizes m-
dimensional subspaces of An; that is, for every field L, Gm,n(L) is in natural bijection with m-
dimensional subspaces of An(L) = Ln. Moreover, Gm,n is non-singular of dimension m(n−m).
The case G1,n is just Pn−1.

Let P = Pm,n be the subgroup of GLn such that P(L) consists of matrices M of the form

M =

A B

0 D

 , A ∈ GLm(L), B ∈ Mm,n−m(L), D ∈ GLn−m(L).

Exercise 12.2.1. Show that for a field L there is a natural bijection

GLn(L)/Pm,n(L)↔ Gm,n(L).

This bijection is associating to a right coset M · Pm,n(L) the m-dimensional subspace of An

spanned by the first m-columns of M.

Using the bijection of the previous exercise, if L is a finite field we can count the number of
points in Gm,n(L).
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Exercise 12.2.2. Let L be a finite field with q elements. Prove that

]GLn(L) =
n

∏
i=1

(qn − qn−i) =: c(n),

]Gm,n(L) =
c(n)

c(m)c(n−m)qm(n−m)
.

Verify the formula for the case of the projective space.

In general, writing the zeta function of Gm,n based on this formula requires some more combi-
natorics, in particular the introduction of the Gaussian binomial coefficients. Let us then only
state one more example before moving on.

Exercise 12.2.3. Prove that G2,4, considered as a variety over Fp, has the following zeta function:

ζ(T) =
1

(1− T)(1− pT)(1− p2T)2(1− p3T)(1− p4T)
.

As another example, unrelated to Grassmannians, you may try and solve the following.

Exercise 12.2.4. Calculate the zeta function of the projective surface x0x1 − x2x3 = 0 over Fp, in
P3.

12.3. Elliptic curves. Let p > 2 be a prime and let q a power of p. Consider an elliptic curve,
say y2 = x3 + ax + b, a, b ∈ F := Fq, or, rather, its projective model in P2 with coordinates x, y, z:

E : y2z− (x3 + axz2 + bz3) = 0.

If we think about x as chosen randomly from Fq, there are q such choices and we don’t see any
compelling reason for x3 + ax + b to be a square, or not be a square, in Fq. Thus, let us accept
that with probability about 1/2 the quantity x3 + ax + b is a square in Fq and then, unless it is
zero, there will be two y ∈ Fq such that y2 = x3 + ax + b. This heuristic suggests that

]E(Fq) ∼ q.

Let us see what the Weil conjectures predict. We have

ζE(T) =
P1(T)

(1− T)(1− qT)
.

The cohomological interpretation tells us in this case that deg(P1) = 2. Write then

P1(T) = (1− αT)(1− βT), α, β ∈ C, |α| = |β| = √q.

Referring to our calculations in Equation (11), we have
∞

∑
s=1

]E(F[s]) · Ts−1 =
∞

∑
n=0

tn +
∞

∑
n=0

qn+1tn −
∞

∑
n=0

αn+1tn −
∞

∑
n=0

βn+1tn.

We conclude thus that

(12) ]E(Fq) = 1 + q− (α + β), ]E(Fq2) = 1 + q2 − (α2 + β2).

There are two interesting conclusions from this:

Hasse bound: |]E(Fq)− (q + 1)| ≤ 2
√

q
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suggesting that our heuristic was spot on. The Hasse bound was known much before the resolu-
tion of the Weil conjectures and predates Weil’s conjectures. In fact, already when Weil proposed
his conjectures, he was able to support them by proving them for all smooth curves, not just el-
liptic curves.

Another interesting observation is that ]E(Fq) and ]E(Fq2) determine ζE, because this data
allows for solving for the pair α, β.

Example 12.3.1. Let p = 3 and consider the elliptic curve y2 = x3 − x over F3. Let’s calculate its
zeta function. We should remember that we are counting projective solutions and so we always
have the point at infinity 0E = [0 : 1 : 0]. The squares over F3 are 0, 1. Checking one x at the
time, we find:

E(F3) = {0E, (0, 0), (1, 0), (2, 0)}.
As 2 is not a square, we can take for the field of 9 elements the following model:

F9 = F3[t]/(t2 − 2).

The squares in F3 are (a + b
√

2)2 = a2 + 2b2 + 2ab
√

2. Every element in F3 is a square in F9.
Taking a = 1 and b = 1 or b = 2, we see that also

√
2 and 2

√
2 are squares too. Altogether, there

are 4 = (9− 1)/2 squares in F×9 and so the squares in F9 are {0, 1, 2,
√

2, 2
√

2}.
If x = a + b

√
2 then x3 = a3 + 2b3

√
2 = a + 2b

√
2 and so x3 − x = b

√
2, which is always a

square and is zero precisely when b = 0. Therefore, ]E(F9) is equal to 1 (the point at infinity) +
6× 2 (coming from all the points x = a + b

√
2 with b 6= 0) + 3 (coming from the points x = a).

Altogether,
]E(F9) = 16.

This still satisfies the Hasse bound for q = 9, but just barely.
From the two calculations we conclude that

α + β = 0, α2 + β2 = −6.

Thus, without loss of generality, α =
√
−3, β = −

√
−3. Therefore,

ζE =
1 + 3T2

(1− T)(1− 3T)
.

We can now easily find the number of points of E over any finite field or characteristic 3. For
example,

]E(F27) = 1 + 27− (α3 + β3) = 28, ]E(F34) = 1 + 81− (α4 + β4) = 64.

Remark 12.3.2. Here is an important remark. It turns out that for elliptic curves one has more
information about the roots of ζE. Namely, for elliptic curves over Fq we also have that

αβ = q

This allows us then to find ζE just by calculating ]E(Fq)! For the example above, we find α+ β = 0
and αβ = 3, and from this we find that α =

√
−3, β = −

√
−3.

Exercise 12.3.3. Find the number of projective points of the elliptic curve y2 = x3 − 1 over F5.
Use it to calculate the cardinalities of E(F52), E(F53), E(F54); write the zeta function of E as a
ratio of explicit polynomials.
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12.3.1. The group law on an elliptic curve. Let y2 = x3 + ax + b, a, b ∈ F be an elliptic curve over a
field F, finite or infinite. We assume, thus, that this is a non-singular curve. This is the case if and
only if the characteristic of F is not 2 and the polynomial f (x) = x3 + ax + b is separable (has
3 distinct roots in an algebraic closure F). This is not the most general form of an elliptic curve,
as one can also consider equations of the form y2 + a1xy + a3y = x3 + a2x2 + a4x + a6, ai ∈ F

(which is necessary for fields of characteristic 2), but it will suffice for our purposes. It is better
to consider the projective version

E : y2z = x3 + axz2 + bz3,

in which just a single point is added: [x : y : z] = [0 : 1 : 0]. Denote this point 0E.
One reason elliptic curves form such an important part of number theory is that there is a

group law on elliptic curves, making the solutions E(L), for any field L ⊇ F into an abelian
group. Of course, if L is a finite field E(L) is a finite abelian group, but in general E(L) is often
infinite. A celebrated theorem states the following:

Theorem 12.3.4 (Mordell-Weil). Let F be a finite field extension of the rational numbers Q. Then E(F)
is a finitely generated abelian group.

There is a huge volume of literature concerning the possible structure and rank of the groups
E(F), especially for F ⊇ Q and for F a finite field, and many open problems, one of which is the
question whether for every integer N there is an elliptic curve E over Q such that E(Q) has rank
at least N. The largest known N is currently (February 2021) N = 28, a result due to N. Elkies.

The structure of abelian group on E can be explained as follows (the proof that it is a group
law is not easy, especially the associative property, and we will not discuss it here23): Since E
is a cubic curve in P2, by Bezout’s theorem, any line in P2 intersects E in 3 points. The group
law is defined in such a way that 3 points P, Q, R with coordinates in F, lying on the same line,
sum up to 0E in E(F). The point 0E is the zero point for this group law, and if P = (x, y) then
−P = (x,−y). (The formula for the inverse is more complicated if we work with the more
general equation for an elliptic curve.) To calculate P + P use the tangent line at P; the third
point of intersection R = (x, y) is −(P + P) and (x,−y) = P + P.

23The book by Joseph H. Silverman, The arithmetic of elliptic curves. Graduate Texts in Mathematics, 106, is an excellent
and canonical reference.
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In Example 12.3.1, we see that E(F3) consists of 4 points that are each equal to their inverses.
Thus, as a group E(F3) ∼= (Z/2Z)2. It is more laborious, but one can prove by hand that
E(F9) ∼= (Z/4Z)2. To get more examples, it is better to use PARI. For example, one finds
E(F27) ∼= Z/14Z×Z/2Z, E(F81) ∼= (Z/8Z)2.

The group structure of E(F), when F is a finite field is important to elliptic curves cryptog-
raphy. In those applications one would like E(F) to be a cyclic group, or almost a cyclic group.
For example, one of the curves recommended by NIST in 2013, is a certain elliptic curve E over
the field Fp with

p = 2192 − 264 − 1 = 6277101735386680763835789423207666416083908700390324961279

such that E(Fp) is a cyclic group of prime order

6277101735386680763835789423176059013767194773182842284081.

12.4. A few words about the Sato-Tate conjecture. Let E be an elliptic curve over Q, say y2 =
x3 + Ax + B, and assume, for simplicity, that A, B ∈ Z. For a prime p, denote by Ap, Bp the
reduction of A, B modulo p. For all primes, but finitely many, we have that the reduction of E
modulo p

Ep : y2 = x3 + Apx + Bp,

is an elliptic curve. Namely, it stays a non-singular equation. Consider the quantity

err(p) :=
]E(F)− (p + 1)

2
√

p
.

This is the normalized error relative to the expected number of points, which is p + 1. Using the
Hasse bound we see that

err(p) ∈ [−1, 1].

We can therefore write
err(p) = cos(θp), 0 ≤ θp ≤ π.

It is natural to ask how this error behaves as the prime p varies. The Sato-Tate conjecture pro-
vides an answer to that. To simplify its statement we assume that E does not have “complex mul-
tiplication”, a property we will not define but remark that it exclude only a “handful” of curves.
The Sato-Tate conjecture was proven by Laurent Clozel, Michael Harris, Nicholas Shepherd-
Barron, and Richard Taylor in 2008. In fact, they proved a much more general result, but we will
not cite it here.

The Sato-Tate conjecture. The statistic of θp is given by the following distribution. Let
0 ≤ α ≤ β ≤ π. Then,

lim
N→∞

#{p ≤ N : α ≤ θp ≤ β}
#{p ≤ N} =

2
π

∫ β

α
sin2 θ dθ.

Exercise 12.4.1. What is the probability that |Ep(Fp)− (p + 1)| ≤ √p?

There is another statistics, “orthogonal” to the above, that one may consider. This is the question
known as “Sato-Tate on average” and it asks, for a fixed prime p, how does θp behave when we
vary Ap, Bp. Both the generalization of the Sato-Tate conjecture and its averaged version are
subjects of ongoing research.
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13. GAUSS SUMS

Gauss sums are examples of so-called trigonometric, or exponential, sums. They were intro-
duced by Gauss who made good use of them to prove the law of quadratic reciprocity, to be dis-
cussed later on, and to study cyclotomic fields, which are fields of the form Q(e2πi/n) obtained
from Q by adjoining an n-th complex root of unity. There are many more kinds of trigonometric
sums and they make an appearance in many branches of number theory, for example in count-
ing the number of points of varieties over finite fields, and so their study is important. In fact,
one of the applications given by A. Weil and P. Deligne of the Weil conjectures is to estimate
trigonometric sums. A simple example appears in Exercise 76.

Let F be a finite field, F = Fq, q = ps, p prime. Recall the trace map TrF/Fp that we will simply
denote Tr, unless confusion is possible. It is a surjective additive map,

Tr : F→ Fp.

Similarly, we let Nm denote the norm map NmF/Fp , which is a surjective homomorphism,

Nm: F× → F×p .

We remark that there is a unique isomorphism between Fp to Z/pZ, determined by 1F 7→ 1
(mod p) and thus, for all practical purposes, we may think of Fp as Z/pZ.

13.1. Characters. Let ζp = e2πi/p; it is a p-th complex root of unity. Define ψ as

ψ : F −→ C, ψ(x) = ζ
Tr(x)
p .

If F = Z/pZ, then ψ is just the function

a 7→ e2πia/p.

The function ψ will be used throughout this chapter. It is sometimes referred to as an additive
character and should not be confused with the multiplicative characters that we discuss below
(those we will mostly denote by χ). Note that ψ mixes “apples and oranges”: ζp is a complex
number and Tr(x) is an element of the finite field Fp. But, as said, we can identify Tr(x) un-

ambiguously with a residue class mod p, and since ζ p = 1, the value ζ
Tr(x)
p is well-defined. It

doesn’t matter which integer representative we took for the congruence class mod p.

Lemma 13.1.1. The function ψ has the following properties:
(1) ψ(α + β) = ψ(α)ψ(β). That is, ψ is a group homomorphism from F, viewed as a group under

addition, and C×, viewed as a group under multiplication. In fact, it has image in

µp := {z ∈ C : zp = 1},
which is a cyclic group of order p generated by ζp.

(2) ∃α ∈ F such that ψ(α) 6= 1 and so ψ is surjective onto µp.
(3) ∑α∈F ψ(α) = 0.

Proof. (1) follows immediately from the additivity of Tr, and (2) from the fact that Tr is surjective.
To prove (3), choose β such that ψ(β) 6= 1. Then,

ψ(β) ∑
α∈F

ψ(α) = ∑
α∈F

ψ(α + β) = ∑
α∈F

ψ(α),

because when α varies over F so does α + β. Thus, ∑α∈F ψ(α) = 0.24 �

24Variants of this trick for proving that a certain sum is equal to 0 will be used over and over below.
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Let δx,y denote the Kronecker δ-function. Namely, δx,y = 1 if x = y and δx,y = 0 if x 6= y.

Corollary 13.1.2. Let x, y ∈ F. We have
1
q ∑

α∈F

ψ(α(x− y)) = δx,y.

Proof. When x = y this follows from ψ(0) = 1. When x 6= y, α(x− y) ranges over all elements
of F as α ranges over F, and so ∑α∈F ψ(α(x− y)) = ∑α∈F ψ(α) = 0. �

By a character χ of F we mean a group homomorphism:

χ : F× → C×, χ(xy) = χ(x)χ(y).

The simplest example is provided by the trivial character,

ε : F× → C×, ε(x) = 1, ∀x ∈ F×.

We extend χ to F as follows:

χ(0) =

{
0, χ 6= ε;
1, χ = ε.

Note that although F is not a group under multiplication, the identity χ(xy) = χ(x)χ(y) still
holds for all x, y ∈ F.

Example 13.1.3. Assume that F = Fp. Define the Legendre symbol
(
·
p

)
: Let a be a congruence

class modulo p. (
a
p

)
=


1, a is a square, and a 6= 0;
−1, a is not a square, and a 6= 0;
0, a = 0.

Sometimes, to improve type setting, we will want a more compact notation. We will then use λ
to denote this character:

λ(a) :=
(

a
p

)
.

The behaviour of this function as a ranges from 1 to p is rather hard to predict. Here is a table of
the some values of

(
a
p

)
.

prime 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

3 1 -1

5 1 -1 -1 1

7 1 1 -1 1 -1 -1

11 1 -1 1 1 1 -1 -1 -1 1 -1

13 1 -1 1 1 -1 -1 -1 -1 1 1 -1 1

17 1 1 -1 1 -1 -1 -1 1 1 -1 -1 -1 1 -1 1 1

19 1 -1 -1 1 1 1 1 -1 1 -1 1 -1 -1 -1 -1 1 1 -1

23 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1

TABLE 1. The Legendre symbol
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Suppose now that p 6= 2. Then, the homomorphism F× → F×, x 7→ x2, has kernel {±1}, hence
the image, the squares in F× are a subgroup of F× with (p − 1)/2 elements. Let us denote it
F×,2. It follows that F×/F×,2 is a group with two elements, and the Legendre symbol is an
isomorphism

F×/F×,2 ∼ // {±1} , a 7→
(

a
p

)
.

In particular, the Legendre symbol is a character. This has interesting applications. For example,
it implies that the product of two non-zero non-squares is always a square, and the same for
their ratio.

Lemma 13.1.4. Let χ be a character of F×.
(1) If χ 6= ε then ∑t∈F χ(t) = 0.
(2) If χ = ε then ∑t∈F χ(t) = q.

Exercise 13.1.5. Prove Lemma 13.1.4. (Compare with the proof of Lemma 13.1.1.)

Suppose that χ1, χ2 are characters. Then χ1χ2 is a character too. Indeed, for x, y ∈ F× we
have, by definition of χ1χ2,

(χ1χ2)(xy) = χ1(xy)χ2(xy) = χ1(x)χ1(y)χ2(x)χ2(y) = (χ1χ2)(x) · (χ1χ2)(y).

However, when we view χ1, χ2 as extended to F, some care is needed. If χ1χ2 = ε and, say,
χ1 6= ε, then (χ1χ2)(0) = ε(0) = 1 6= χ1(0)χ2(0). That is, the extension of χ1χ2 to F is done
as the extension of the character χ1χ2 on F× to F, and its value at 0 may be different than
χ1(0)χ2(0).

We also note that if we let χ−1 be defined on F× by χ−1(a) = χ(a)−1 then we have χχ−1 = ε
and

χ−1(a) = χ(a)−1 = χ(a),
because any character on F× takes values in roots of unity. Because of this identity, we also use
the notation χ̄ for the inverse:

χ̄ = χ−1.

Proposition 13.1.6. The characters of F× form a group under multiplication. This group is naturally
isomorphic to the multiplicative group µq−1 of complex roots of unity of order q − 1. In addition, if
a ∈ F×, a 6= 1, then there a character χ such that χ(a) 6= 1.

Proof. We have just explained that the characters form a group. Let g be a generator for the
group F×. Any character χ is uniquely determined by χ(g). Indeed, any element of F× is of the
form gn for some integer n, and

χ(gn) = χ(g)n.

Furthermore, as gq−1 = 1, we must have χ(g) ∈ µq−1.
Conversely, given a (q− 1)-st root of unity ζ, define a character χ by

χ(gn) = ζn.

This shows that we have a bijection between characters and elements of µq−1:

χ 7→ χ(g).

By definition of the product of characters this bijection is an isomorphism of groups.
Given an element a 6= 1 of F, we can write a = gn for some 1 ≤ n < q− 1. Taking the character

corresponding to ζ = exp(2πi/(q− 1)), we have χ(a) = ζn = exp(2nπi/(q− 1)) 6= 1. �
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Let us denote the group of characters of F× = F×q by Xq. It is a group under multiplication,
where (χ1χ2)(a) := χ1(a)χ2(a) for a ∈ F×. The identity element is ε. Once we have chosen a
generator g for F×, we have an isomorphism

Xq ∼= µq−1.

It will also be useful to denote by χζ the character corresponding to ζ ∈ µq−1 under this isomor-
phism;

χζ(gn) = ζn.
For every integer n we denote by Xq[n] the elements of order dividing n in Xq:

Xq[n] = {χ ∈ Xq : χn = ε}.
This is a group whose order is gcd(n, q− 1); in particular it has order n if n|(q− 1). Indeed, in
this case

Xq[n] = {χζ : ζ ∈ µn}.

We now have the lemma dual to Lemma 13.1.4.

Lemma 13.1.7. Let a ∈ F×. Then:
(1) If a 6= 1 then ∑χ∈Xq

χ(a) = 0.
(2) If a = 1 then ∑χ∈Xq

χ(a) = q− 1.

Proof. The second statement is clear. For the first we use a trick we have seen before. Choose
some χ0 such that χ0(a) 6= 1; such χ0 exists by Proposition 13.1.6. Then,

χ0(a) ∑
χ∈Xq

χ(a) = ∑
χ∈Xq

(χ0χ)(a) = ∑
χ∈Xq

χ(a),

and this implies ∑χ∈Xq
χ(a) = 0. We have used the fact that if G is a group, and g is any element

of G, then {gx : x ∈ G} = G and applied it for G = Xq, g = χ0. �

13.2. The equation xn = a. Our purpose in this section is to show that there is a connection
between characters and counting the number of solutions to equations over F. Although the
case we consider here is very simple, the idea is absolutely fundamental to everything that
follows.

Proposition 13.2.1. Let n|(q− 1) be a positive integer and let a ∈ F = Fq. Denote by

N(xn = a)

the number of solutions to the equation xn = a in F. Then,

N(xn = a) = ∑χ∈Xq[n] χ(a) .

Proof. If a = 0, N(xn = a) = 1. On the other hand, for every χ 6= ε, χ(0) = 0. Therefore,

∑
χ∈Xq[n]

χ(0) = ε(0) = 1 = N(xn = a),

and we get the equality we want.
Suppose then that a 6= 0. Note that µn(F), the group of n-th root of unity in F,

µn(F) := {u ∈ F× : un = 1},
is a cyclic group of order n, because n|(q− 1) and F× is a cyclic group of order q− 1.
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If a is not an n-th power in F then N(xn = a) = 0. On the other hand, if a is an n-th power
in F then N(xn = a) = n, because if bn = a is one solution then all other solutions are of the
form (bu)n = a, where u ∈ µn(F) and there are precisely n of them. We need to show that
∑χ∈Xq[n] χ(a) has the same behaviour.

In the second case, a = bn, a 6= 0, we have

∑
χ∈Xq[n]

χ(a) = ∑
χ∈Xq[n]

χ(bn) = ∑
χ∈Xq[n]

χn(b) = ∑
χ∈Xq[n]

ε(b) = n.

Consider now the first case: a 6= bn for any b. Consider χζ , where ζ = exp(2πi/n). Suppose
that χζ(a) = 1. Let us write a = gr for some r. Then

χζ(a) = ζr = 1.

But this implies n|r and so that a is an n-th power, which is not the case. Therefore,

χζ(a) 6= 1.

Note that χn
ζ = χζn = χ1 = ε. That is, χζ ∈ Xq[n]. We can now perform what is by-now an old

trick:
χζ(a) ∑

χ∈Xq[n]
χ(a) = ∑

χ∈Xq[n]
(χζχ)(a) = ∑

χ∈Xq[n]
χ(a),

and we conclude that ∑χ∈Xq[n] χ(a) = 0. �

Example 13.2.2. Suppose that p is odd. Then Xq, being cyclic of even order q− 1 has only one
element of order 2. Since

a 7→
(

Nm(a)
p

)
,

cannot be the trivial character (as Nm is surjective and p is odd), it is a character of order 2 and
we find that

Xq[2] =
{

ε,
(

Nm(·)
p

)}
.

Consequently,

N(x2 = a) = 1 +
(

Nm(a)
p

)
.

Now, if F = Fp, this is clear from the definition of the Legendre symbol. But, in general some
thought is required to see directly why this is true.

Exercise 13.2.3. Assume that p is an odd prime, q = ps. Prove the formula N(x2 = a) = 1 +(
Nm(a)

p

)
for Fq by proving that a is a square in Fq if and only if Nm(a) is a square in Fp.

13.3. Definition and first properties of Gauss sums. Let F = Fq, q = ps, be a finite field with q
elements of characteristic p. Let ψ be as in §13.1. Let χ ∈ Xq be a character of F× and let a ∈ F.
The Gauss sum associated to χ and a is defined as

ga(χ) = ∑
t∈F

χ(t)ψ(at).

The special case of a = 1 is the most important. In this case we just use the notation g(χ). Thus,

g(χ) = ∑
t∈F

χ(t)ψ(t).

We remark that ga(χ) is a complex number, which is a sum of roots of unity, but not a root of
unity itself; in fact, we shall prove that if χ 6= ε its absolute value is

√
q.
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Example 13.3.1. A good case to keep in mind is when F = Fp. Then,

g(χ) =
p−1

∑
t=0

χ(t)e
2πi

p ·t, ga(χ) =
p−1

∑
t=0

χ(t)e
2πi

p ·at.

The next proposition explains why g(χ) is the central definition.

Proposition 13.3.2. The Gauss sums have the following properties:

ga(χ) =


χ(a−1) · g(χ) a 6= 0, χ 6= ε,
q a = 0, χ = ε,
0 a = 0, χ 6= ε,
0 a 6= 0, χ = ε.

Proof. If a 6= 0 we have

g(χ) = ∑
t∈F

χ(t)ψ(t) = ∑
t∈F

χ(at)ψ(at) = χ(a) ∑
t∈F

χ(t)ψ(at) = χ(a)ga(χ).

Thus, if a 6= 0, ga(χ) = χ(a−1)g(χ). This prove the first case. To prove the last case we need to
show that if a 6= 0 and χ = ε then

ga(ε) = ∑
t∈F

ψ(at) = ∑
t∈F

ψ(t) = 0,

but this is Lemma 13.1.1 (3). As ψ(0) = 1, the two remaining cases follow directly from
Lemma 13.1.4. �

Theorem 13.3.3. If χ 6= ε,
|ga(χ)| =

√
q.

Proof. As a 6= 0, χ(a) is a root of unity and so, using Proposition 13.3.2, it is enough to prove
|g(χ)| = √q. The proof is based on evaluating A := ∑a∈F ga(χ)ga(χ) in two different ways.

On the one hand, using that χ̄ = χ−1 and Proposition 13.3.2,

A = ∑
a∈F

ga(χ)ga(χ) = ∑
a∈F×

g(χ)g(χ)χ(a−1)χ̄(a−1) = (q− 1)|g(χ)|2.

Note that ψ(at) = ζ
−Tr(at)
p = ζ

Tr(−at)
p . Thus, on the other hand, from the definition of ga(χ), we

have
ga(χ) = ∑

t∈F

χ(t)ψ(at) = ∑
t∈F

χ(t)ψ(−at).

Thus, using Corollary 13.1.2,

A = ∑
x,y∈F

∑
a∈F

χ(x)χ̄(y)ψ(ax− ay) = ∑
x,y∈F×

χ(xy−1)qδxy = (q− 1)q.

Comparing the two expression for A, the proof is complete. �

Corollary 13.3.4. We have

g(χ) = χ(−1)g(χ̄), and g(χ) · g(χ̄) = χ(−1) · q.

Proof. We know that g(χ)g(χ) = q. But,

g(χ) = ∑
t∈F

χ(t)ψ(t) = χ̄(−1) ∑
t∈F

χ̄(−t)ψ(−t) = χ̄(−1)g(χ̄) = χ(−1)g(χ̄),

where we used that χ(−1) ∈ {±1} so χ̄(−1) = χ(−1). The Corollary follows. �



COURSE NOTES - MATH 346 & 377 75

Remark 13.3.5. View Q̄ as a subset of C. The formula g(χ) = χ(−1)g(χ̄) is a special case of an
action of an automorphism of Q̄, viz. complex conjugation, on Gauss sums. A reader familiar
with Galois theory should work out the general case.

Theorem 13.3.3 shows that the Gauss sum, which is a sum of q roots of unity, and so could a priori
have absolute value as large as q, actually has absolute value

√
q (unless χ = ε). There is a lot

of cancellation going on. Consider the case when q = p and χ is the Legendre symbol. Then the
theorem says that

∣∣∣ p−1

∑
a=0

(
a
p

)
e

2πia
p

∣∣∣ = √p.

On the one hand, this supports our statement that the Legendre symbol
(

a
p

)
behaves “errati-

cally” as a varies (and cf. Table 13.1.3). On the other hand, if the behaviour was truly random,
one would not expect the Gauss sum to have absolute value

√
p on the nose, but rather to have

absolute value about
√

p, with the exact value
√

p occurring very rarely.

Another remarkable evidence to the random behaviour of
(

a
p

)
is the Polya-Vinogradov in-

equality that we state here only for the Legendre symbol, although it holds in much greater
generality.

Theorem 13.3.6 (Polya-Vingoradov). For any integers m ≤ n,∣∣∣ n

∑
a=m

(
a
p

) ∣∣∣ < √p log p.

Proof. For the proof, it is more elegant to change notation and work with a sum from m to n− 1.
Let λ denote the Legendre symbol. Multiplying the left hand side by |g(λ)| = √p we need to
show that ∣∣∣ n−1

∑
a=m

λ(a)g(λ)
∣∣∣ < p log p.

Using that λ(a) = λ(a−1) for a 6= 0,25 we get λ(a)g(λ) = ga(λ), and this is also true for a = 0.
We thus need to study the sum ∑n−1

a=m ga(λ). Using the definition of the Gauss sum, we have

n−1

∑
a=m

ga(λ) = ∑
t∈Fp

λ(t)
n−1

∑
a=m

ψ(at) = ∑
t∈F×p

λ(t)
n−1

∑
a=m

βa
t = ∑

t∈F×p

λ(t) · βm
t

βn−m
t − 1
βt − 1

,

where we put βt = e2πit/p and summed the geometric series. We next use the following identi-
ties (for the second one use eiθ = cos(θ) + i sin(θ)):

e2iθ − 1 = eiθ(eiθ − e−iθ) = eiθ · 2i sin(θ).

As λ(t), βt are roots of unity, we obtain,∣∣∣ n−1

∑
a=m

ga(λ)
∣∣∣ = ∣∣∣ ∑

t∈F×p

λ(t)β
m+ (n−m−1)

2
t · sin(πt(n−m)/p)

sin(πt/p)

∣∣∣ ≤ p−1

∑
t=1

1
| sin(πt/p)| .

It remains to estimate the last sum.

25The reader will note that, except for here, never do we need to know what λ is, except that it is not trivial. Exam-
ining the proof, with λ replaced by a general character χ ∈ Xp, shows that if we multiply instead by g(χ̄), the proof
goes through. Thus, the proof applies to any χ ∈ X∗p.
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Let 〈x〉 denote that difference between x and the closest integer. Namely, it is the minimum
of |x− n| as n ranges over Z. Using the periodicity of | sin(x)| and that it is symmetric about 0,
we see that the last sum is equal to

p−1

∑
t=1

1
| sin(π〈t/p〉)| = 2

(p−1)/2

∑
t=1

1
| sin(π〈t/p〉)| .

However, for 0 ≤ x ≤ 1/2, we have sin(πx) ≥ 2x (we leave that as an exercise), and so we have
the estimate

p−1

∑
t=1

1
| sin(π〈t/p〉)| ≤ 2

(p−1)/2

∑
t=1

1
2t/p

= p
(p−1)/2

∑
t=1

1
t

.

The only remaining point is to show that

(p−1)/2

∑
t=1

1
t
< log(p).

We leave that as an exercise (compare 1/x with log((2x + 1)/(2x− 1))). �

Note that this theorem bounds the number of consecutive a’s such that a is quadratic residue
mod p (and similarly, for non-quadratic residue). A stronger bound and a stronger inequal-
ity were found by D. A. Burgess.26 Interestingly, Burgess’ proof uses the Weil conjectures for
curves over finite fields, more specifically the Riemann hypothesis part; see Exercise 76. As we
remarked before, Weil was able to prove his conjectures for curves at the time he stated them.

Exercise 13.3.7. Consider the case of Fp and let λ(a) =
(

a
p

)
be the Legendre symbol. Suppose

that p - a. By considering two ways to evaluate the sum ∑
p−1
n=0

(
1 +

(
n
p

))
e2πian/p, prove that

g(λ) =
p−1

∑
n=0

e
2πian2

p .

13.4. Quadratic reciprocity. The law of quadratic reciprocity was conjectured by L. Euler and
A.-M. Legendre, and proven by C. F. Gauss who supplied several proofs for it and referred to it
as Theorema Aureum (“golden theorem”). There are many proofs known for the law of quadratic
reciprocity. Here we will show how the theory of Gauss sums may be used to prove this law.
Let us first state it.

Recall that for a prime p we have the Legendre symbol
(

a
p

)
, which is equal to 1 if a is a

non-zero square in Fp, 0 if a = 0, and −1 otherwise. See Example 13.1.3

The law of quadratic reciprocity. Let p 6= q be odd primes. Then(
p
q

)(
q
p

)
= (−1)

p−1
2 ·

q−1
2 .

The law of quadratic reciprocity has two additional complementary statements: Let p be an odd
prime. Then,

•
(
−1
p

)
= (−1)

p−1
2 ;

•
(

2
p

)
= (−1)

p2−1
8 .

26D. A. Burgess, The distribution of quadratic residues and non-residues. Mathematika 4 (1957), 106–112.
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The statement concerning
(

2
p

)
is not that easy. But the first statement is not too hard to prove.

More generally, for a ∈ Fq, a 6= 0, prove that a is a square in F×q if and only if a
q−1

2 = 1.

The law of quadratic reciprocity is really quite astounding at first sight. For example, if p ≡ 1
(mod 4) then it states that p is a square mod q if and only if q is a square mod p. It is hard to see
how a statement about something happening mod q could be related to something happening
mod p.

Example 13.4.1. Let us answer the question whether the equation

x2 + 28 ≡ 0 (mod 113)

has a solution. Of course, a solution exists if and only if −28 is a square modulo 113. Namely,
since 113 is a prime, if and only if

(−28
113

)
= 1. We have,(

−28
113

)
=

(
−1
113

)(
4

113

)(
7

113

)
= (−1)(113−1)/2

(
7

113

)
=

(
113
7

)
=

(
1
7

)
= 1.

Thus, a solution exists; in fact, two.

Exercise 13.4.2. How many solutions do the following equations have?

(1) x2 + 120 ≡ 0 (mod 257).
(2) x2 − x− 1 ≡ 0 (mod p), where p > 5 is a prime.

Exercise 13.4.3. Find a prime p > 2 such that 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 are all squares modulo p.
You may use a computer for some of the computations.

13.4.1. Proof of the law of quadratic reciprocity. Let p 6= q be odd primes and let

λ(t) =
(

t
p

)
be the Legendre symbol.

Claim: λ(a) = a
p−1

2 (mod p).

This is true for a = 0. Note that for a 6= 0, (a(p−1)/2)2 = ap−1 = 1 (mod p) and so in any case
(a(p−1)/2) ∈ {±1}.

For a 6= 0, as F×p is cyclic, the subgroup of squares F×,2 in F× is a cyclic subgroup as well. It
is of order (p− 1)/2 and so it is equal to all the elements of F× whose order divides (p− 1)/2.
Thus, a is a square modulo p if and only if a(p−1)/2 = 1 (mod p). This proves the Claim.

Now to the proof of Quadratic Reciprocity. To simplify notation, put

γ = g(λ) =
p−1

∑
t=0

(
t
p

)
ζt

p, p∗ = (−1)(p−1)/2 p.

The main idea of the proof is to calculate γq in two ways. One using Corollary 13.3.4; the other,
calculating it mod q, using the definition of γ as a sum and the binomial formula modulo q.
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First, apply Corollary 13.3.4 to the character λ and note that since λ is of order 2, λ = λ−1;
that is, λ = λ̄. We thus find,

γ2 =

(
−1
p

)
p = (−1)(p−1)/2 p = p∗.

The following computations are done in the ring

Z[ζp] = Z⊕Zζp ⊕ · · · ⊕Zζ
p−1
p ⊂ Q(ζp) ⊂ C,

modulo the principal ideal (q) = qZ[ζp].
As γ2 = p∗, also γ2 = p∗ (mod q), and thus we have

γq−1 = (p∗)(q−1)/2 =

(
p∗

q

)
(mod q),

and this implies

γq =

(
p∗

q

)
γ (mod q).

On the other hand, still calculating mod q and using the binomial formula mod q, we find

γq =

(
∑
t∈F

(
t
p

)
ζt

p

)q

= ∑
t∈F

(
t
p

)
ζ

qt
p = gq(λ) =

(
q−1

p

)
g(λ) =

(
q
p

)
γ mod (q),

where we have used that λ is quadratic and so λ(q) = λ(q−1).
Now, note that γ is not a zero-divisor in Z[ζp]/(q). In fact, as γ2 = ±p is invertible mod (q),

so is γ. Comparing the two expressions for γq, we conclude that(
p∗

q

)
=

(
(−1)(p−1)/2 p

q

)
=

(
(−1)(p−1)/2

q

)(
p
q

)
= (−1)

(p−1)(q−1)
4

(
p
q

)
=

(
q
p

)
mod (q).

But this is a mod q congruence of integers in {±1} and q > 2. So we can deduce that as integers

(−1)
(p−1)(q−1)

4

(
p
q

)
=

(
q
p

)
,

which is the law of quadratic reciprocity.
�

13.4.2. An application of quadratic reciprocity. The Fermat numbers are integers of the form

Fn = 22n
+ 1, n ∈N.

If they are prime they are called Fermat primes. Fermat primes are interesting for example
because of the problem of constructing regular polygons in the plane using only a compass and
straightedge; a problem that dates back to ancient Greece. A theorem usually proved in a first
course about fields is that a regular n-gon can be thus constructed if and only if

n = 2k p1 p2 . . . pr,

where the pi are distinct Fermat primes and k any non-negative integer. The first Fermat num-
bers F0, . . . , F4 are

3, 5, 17, 257, 65537,
and are primes. However,

F5 = 641× 6700417.
At this point (February 2021), there are no more known examples of Fermat primes. P. de Fermat
thought that Fn are always primes, but it is known that F5, F6, . . . , F32 are composite. The largest
Fermat number known to be composite (October 2020) is F18233954; this was discovered by Ryan
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Propper.27 In fact, the experts suspect that there are no Fermat primes, besides those listed
above.

One might wonder why one takes the special exponent 22n
and not just 2n. The answer is

provided by the following Proposition.

Proposition 13.4.4. Assume that 2m + 1 is prime. Then m = 2n for some n.

Proof. Suppose that m = pM, with p an odd prime. Then, from the factorization xp + 1 =
(x + 1)(xp−1 − xp−2 + · · ·+ 1), we find

(2m + 1) = (2M)p + 1 = (2M + 1)(2(p−1)M − 2(p−2)M + · · ·+ 1),

and therefore 2m + 1 is composite. �

Our purpose now is to explain how one tests whether Fermat numbers are prime. With start
with the Lucas-Lehmer test for primality

Theorem 13.4.5 (Lucas-Lehmer). Let n be a positive integer. Suppose that there is a positive integer a
such that an−1 ≡ 1 (mod n), but for every prime divisor p of n− 1 we have a

n−1
p 6≡ 1 (mod n). Then,

n is prime.

Proof. We work in the group (Z/nZ)×, which is the group of units of the ring Z/nZ; it is a
group under multiplication and its order is, by definition, ϕ(n). Here ϕ is Euler’s function:

ϕ(n) = ]{1 ≤ i ≤ n : gcd(i, n) = 1}.
It is clear from the definition that ϕ(n) = n− 1 if and only if n is prime.

Let a be as in the statement of the theorem. If d|a then d|an−1 = 1 + kn, for some k. It follows
that if d > 1, d - n. That is, the condition on a implies that a ∈ (Z/nZ)×.

We claim that the order of a is precisely n− 1. If not, the order of a is some integer m where

m is a proper divisor of n − 1 and thus m| n−1
p for some prime p. It then follows that a

n−1
p =

(am)
n−1
mp = 1. Contradiction.

Since the order of an element divides the order of the group, and since the order of (Z/nZ)×

is ϕ(n), we conclude that (n− 1)|ϕ(n). This implies that n− 1 = ϕ(n) and so that n is prime. �

Theorem 13.4.6 (T. Pépin’s test). The Fermat number Fn is prime if and only if

3(Fn−1)/2 ≡ −1 (mod Fn).

Proof.

Exercise 13.4.7. (a) Prove that Fn ≡ 5 (mod 12) for n ≥ 1. (b) If Fn is prime, n ≥ 1,prove that(
3
Fn

)
= −1.

Since for Fn prime,
(

3
Fn

)
≡ 3(Fn−1)/2 (mod Fn), we have 3(Fn−1)/2 ≡ −1 (mod Fn) and we find

the “only if” direction.
Conversely, suppose that 3(Fn−1)/2 ≡ −1 (mod Fn).Then (1) 3Fn−1 ≡ 1 (mod Fn), and (2) for

any prime divisor p of Fn − 1, we have 3(Fn−1)/p 6= 1. (The only p is 2, of course.) We apply the
Lucas-Lehmer primality test and conclude that Fn is prime. �

27From http://www.prothsearch.com/fermat.html, compiled by Wilfrid Keller.
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The point of this theorem is that in practice one can calculate 3(Fn−1)/2 (mod Fn) very rapidly.
We have

3, 32, 322
= (32)2, . . . , 32k+1

= (32k
)2, . . .

Thus, we only need to do about 2n squaring operations, done mod Fn, to find 3(Fn−1)/2 (mod Fn).
On the other hand, brute force search for a divisor of 22n

+ 1 would require trying all integers
up to

√
22n = 22n−1

which is exponentially bigger than 2n.
For example, try running PARI on x = Mod(3, 65537);for(n=1, 15, x = x^2);print(x)

and on x = Mod(3, 4294967297);for(n=1, 31, x = x^2);print(x) to verify that F4 is
prime and F5 is composite. Even for F7 = 2128 + 1 = 340282366920938463463374607431768211457
the computation is essentially instantenuous.

Besides the nice connection to ancient problems in geometry, the Fermat numbers illustrate
an important point. Finding large primes is not easy, and for that numbers that are of a special
form are useful. This is a problem of much relevance to cryptography.

The problem of factoring an integer is a hard problem, believed to be not in the complexity
class P. In contrast, the problem of deciding whether a given integer n is a prime or not is in
the complexity class P, meaning there is a polynomial time algorithm to decide it. Clearly, this
algorithm only provides the answer yes/no to the question “is n prime?” and not the factoriza-
tion of n. This result, published in 2004, created quite a sensation and is due to Agrawal, Kayal
and Saxena.28 However, there is a big difference between an algorithm that is theoretically in P
and actual real-life verification. For integers of a special form, and Fermat numbers are a good
example, there are tailor-made fast methods to prove, or disprove, primality.

14. THE PROJECTIVE VARIETY a0xm
0 + a1xm

1 + · · ·+ anxm
n = 0

Our main objective in this section is to study the number of points on a very particular non-
singular projective hypersurface. We are interested in the quantity

N(a0xm
0 + a1xm

1 + · · ·+ anxm
n = 0),

where the ai are non-zero scalars of a finite field F = Fq and the number of solutions is calculated
in the projective space Pn(F). Some times, since the equation could be also thought of as an
equation in An+1(F), we will emphasize and write

Nproj(a0xm
0 + a1xm

1 + · · ·+ anxm
n = 0), Naff(a0xm

0 + a1xm
1 + · · ·+ anxm

n = 0),

to distinguish between the two. A basic observation is that

Nproj =
Naff − 1

q− 1
.

Indeed, any solution (x0, . . . , xn) to the affine equation, except for the zero solution, defines a
solution [x0 : · · · : xn] to the projective equation, and the map (x0, . . . , xn) 7→ [x0 : · · · : xn] is
(q− 1) : 1.

The final answer to the problem will be a complicated formula involving Jacobi sums which
generalize Gauss sums. To assist the reader a “cheat-sheet” is provided in Appendix A. To
motivate and explain the main idea, we begin with some examples.

28 M. Agrawal, N. Kayal and N. Saxena: PRIMES is in P. Ann. of Math. (2) 160 (2004), no. 2, 781–793.
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14.1. A motivating example. Let p > 2 be a prime, q = ps, and let λ(s) be the generalized
Legendre symbol for a ∈ Fq:

λ(s)(a) =


1, a 6= 0 is a square in Fq;
−1, a 6= 0 is not a square in Fq;
0, a = 0.

We have seen that λ(s) is a character of (exact) order 2, and, in fact,

λ(s)(a) =

(
NmF/Fp(a)

p

)
.

The notation λ(s) is convenient for typographical reasons, but a more suggestive notation is

(13)
(

a
p

)(s)

:=

(
NmF/Fp(a)

p

)
.

Note that we have (
a
p

)(s)

= a
q−1

2 ,

in the Field Fq.

Example 14.1.1. N(x2 + y2 = 1) over Fq.

We perform the calculation below. The final answer gives the main term q and an error term
expressed in terms of the extended Legendre symbol (namely, the character λ(s)). Of course, at
a later point we would want to justify using the terminology “error term” by showing that it is
actually small than the “main term”.

N(x2 + y2 = 1) = ∑
a+b=1

N(x2 = a) · N(y2 = b)

= ∑
a+b=1

(
1 +

(
a
p

)(s)
)(

1 +
(

b
p

)(s)
)

=q + ∑
a

(
a
p

)(s)

+ ∑
b

(
b
p

)(s)

+ ∑
a+b=1

(
a
p

)(s) ( b
p

)(s)

=q + ∑
a+b=1

(
a
p

)(s) ( b
p

)(s)

.

In the calculation we used that, by Lemma 13.1.4, ∑a

(
a
p

)(s)
= 0. Note the error term:

∑a+b=1

(
a
p

)(s) ( b
p

)(s)

Example 14.1.2. N(x3 + y3 = 1) over Fq, q = ps, 3|(q− 1).

The interesting case here is when 3|(q− 1), in the sense that when 3 6 |(q− 1) the answer is much
simpler. Show the following.
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Exercise 14.1.3. Show that if q ≡ 2 (mod 3) then

N(x3 + y3 = 1) = q.

Assume then that q ≡ 1 (mod 3). Then Xq ∼= µq−1 is a cyclic group whose order is divisible
by 3 and so Xq[3], the subgroup consisting of characters χ of F×q such that χ3 = ε, is a cyclic
group of order 3. Say,

Xq[3] = {ε, χ, χ2}, χ3 = ε.
Proposition 13.2.1 says that

N(x3 = a) = ε(a) + χ(a) + χ2(a).

We use that to calculate N(x3 + y3 = 1).

N(x3 + y3 = 1) = ∑
a+b=1

N(x3 = a) · N(y3 = b)

= ∑
a+b=1

(
2

∑
i=0

χi(a)

)(
2

∑
i=0

χi(b)

)

=
2

∑
i,j=0

∑
a+b=1

χi(a)χj(b)

=q +
2

∑
i,j=0

(i,j) 6=(0,0)

∑
a+b=1

χi(a)χj(b)

Once more, note the expressions that appear in this formula:

∑a+b=1 χi(a)χj(b)

14.2. Jacobi sums. Motivated by the two examples just discussed, we introduce Jacobi sums.

Let χ1, . . . , χ`, be characters of F×q , extended to Fq. Now q = ps, where p is any prime, including
the prime 2. Define two Jacobi sums by the following formulas. (The first definition is classic,
the second convenient; we follow Ireland & Rosen here).

(14) J(χ1, . . . , χ`) = ∑
t1+···+t`=1

χ1(t1) · · · χ`(t`),

(15) J0(χ1, . . . , χ`) = ∑
t1+···+t`=0

χ1(t1) · · · χ`(t`).

In both definitions the ti ∈ Fq. Note that for any permutation σ ∈ S` we have

J(χσ(1), . . . , χσ(`)) = J(χ1, . . . , χ`),

and similarly for J0. Finally, we remark that the case ` = 1 is allowed but then

(16) J(χ) = 1, J0(χ) = δχ,ε

(namely, J0(χ) = 1 if χ = ε, and 0 otherwise).

Revisiting the examples above, in this notation we have the formulas:
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Example 14.2.1. N(x2 + y2 = 1) over Fq, q = ps, p odd.

N(x2 + y2 = 1) = q + J(λ(s), λ(s)), λ(s)(a) =
(

a
p

)(s)

.

Example 14.2.2. N(x3 + y3 = 1) over Fq, q = ps, 3|(q− 1). Let χ be a generator of Xq[3]. Then,

N(x3 + y3 = 1) = q +
2

∑
i,j=0

(i,j) 6=(0,0)

J(χi, χj).

14.2.1. The relation between J and J0. The next proposition establishes some first properties of
Jacobi sums and shows that the introduction of the Jacobi sum variant J0 is mostly for notational
convenience.

Proposition 14.2.3. The Jacobi sums of ` characters have the following properties:

(1) J(ε, . . . , ε) = J0(ε, . . . , ε) = q`−1.
(2) If at least one, but not all, of the χi equals ε,

J(χ1, . . . , χ`) = J0(χ1, . . . , χ`) = 0.

(3) If χ` 6= ε then

J0(χ1, . . . , χ`) =

{
0, χ1χ2 · · · χ` 6= ε;
χ`(−1)(q− 1)J(χ1, . . . , χ`−1), χ1χ2 · · · χ` = ε.

Example 14.2.4. Using the second property of the Proposition we find the simplified formula

N(x3 + y3 = 1) = q + J(χ, χ) + 2J(χ, χ2) + J(χ2, χ2).

Proof of Proposition 14.2.3. The case ` = 1 is immediate. Assume therefore that ` ≥ 2.
The first part is clear; it amounts to N(t1 + · · ·+ t` = α) = q`−1, for α = 0 or 1, and this is in

fact true for any α ∈ Fq.
For part (2), by symmetry we may suppose that χ` = ε and χ1 6= ε. Then, for α = 0 or 1, we

have

∑
t1+···+t`=α

χ1(t1) · · · χ`(t`) = ∑
t1,...,t`−1

χ1(t1) · · · χ`−1(t`−1)

=

(
∑
t1

χ1(t1)

)(
∑

t2,...,t`−1

χ2(t2) · · · χ`−1(t`−1)

)
=0,

by Lemma 13.1.4.
For part (3) we have the following calculation. Note that in the first equality below we may

assume that s 6= 0 because, as χ` 6= ε, χ`(0) = 0. In the second equality we use the substitution
ti = −st′i and then χj(ti) = χj(−1)χj(s)χj(t′i). In the last equality we use again Lemma 13.1.4.
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J0(χ1, . . . , χ`) = ∑
s 6=0

(
∑

t1+···+t`−1=−s
χ1(t1) · · · χ`−1(t`−1)

)
· χ`(s)

=(χ1 · · · χ`−1)(−1) ∑
s 6=0

 ∑
t′1+···+t′`−1=1

(χ1 · · · χ`−1)(s)χ1(t′1) · · · χ`−1(t′`−1)

 · χ`(s)

=(χ1 · · · χ`−1)(−1)

(
∑
s 6=0

(χ1 · · · χ`)(s)

)
· J(χ1, . . . , χ`−1)

=

{
0, χ1 · · · χ` 6= ε;
χ`(−1) · (q− 1) · J(χ1, . . . , χ`−1), χ1 · · · χ` = ε.

�

14.3. Gauss and Jacobi sums. Our main goal here is to produce a connection between Gauss
and Jacobi sums. The formulas and proofs are rather mind-numbing, so a word of motivation
might be required. We have seen that Jacobi sums appear in the context of counting the number
of solutions N for an equation over a finite fields. However, their definition is involved and, at
this point, it is not clear if the terms in N that involve Jacobi sums should be regarded as error
terms, or main terms. Namely, we would like to have an estimate on the size of Jacobi sums.
When we connect Jacobi sums to Gauss sums, we’d be able to use the estimates we have on
Gauss sums to conclude estimates for Jacobi sums and thereby for N. This strategy goes a long
way and can be used for much more general systems of equations then the simple equations we
are considering. And, vice-versa, estimates coming from Weil’s conjectures, allow to produce
estimates to general trigonometric sums, and in particular for Jacobi sums.29

Theorem 14.3.1. Assume that χ1, . . . , χ`, ` ≥ 2, are all non-trivial characters in Xq, i.e. not equal to ε.

(1) If χ1 · · · χ` 6= ε then

g(χ1) · · · g(χ`) = J(χ1, . . . , χ`) · g(χ1 · · · χ`).

(2) If χ1 · · · χ` = ε, then

g(χ1) · · · g(χ`) = q · χ`(−1) · J(χ1, . . . , χ`−1),

and
(3)

J(χ1, . . . , χ`) = −χ`(−1) · J(χ1, . . . , χ`−1).

Proof. We begin with (1).

29A good introduction to these high-powered techniques is the article by Nicholas M. Katz, Sommes exponentielles
Astérisque, 79 (1980). Unfortunately, it assumes much background from the reader. This text also adds Fourier
analysis into the mix; a point of view that provides a much more conceptual understanding of Gauss sums, as
Fourier transforms, and Jacobi sums as a scaling factor between the product and convolution of characters.
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g(χ1) · · · g(χ`) =

(
∑
t1

χ1(t1)ψ(t1)

)
· · ·
(

∑
t`

χ`(t`)ψ(t`)

)
= ∑

t1,...,t`

χ1(t1) · · · χ`(t`)ψ(t1 + · · ·+ t`)

= ∑
s∈F

ψ(s) ∑
t1+···+t`=s

χ1(t1) · · · χ`(t`)

1
= ∑

s∈F×
ψ(s) ∑

t1+···+t`=s
χ1(t1) · · · χ`(t`)

= ∑
s∈F×

ψ(s)(χ1 · · · χ`)(s) ∑
t1+···+t`=1

χ1(t1) · · · χ`(t`)

= ∑
s∈F×

ψ(s)(χ1 · · · χ`)(s)J(χ1, . . . , χ`)

=g(χ1 · · · χ`) · J(χ1, . . . , χ`).

The justification for the equality marked by 1 is that J0(χ1, . . . , χ`) = 0 by Proposition 14.2.3.
Proceeding to (2), we will use (1) for χ1 . . . χ`−1 = χ−1

` = χ̄` 6= ε. We have,

g(χ1) · · · g(χ`−1) = g(χ1 · · · χ`−1) · J(χ1, . . . , χ`−1) = g(χ̄`)J(χ1, . . . , χ`−1).

Multiply this equality by g(χ`) and use that by Corollary 13.3.4 g(χ`)g(χ̄`) = χ`(−1)q to con-
clude

g(χ1) · · · g(χ`−1)g(χ`) = qχ`(−1)J(χ1, . . . , χ`−1).

We now prove part (3). We consider the case ` = 2 and ` > 2 separately. In the case ` = 2, let
χ := χ1 6= ε. Then,

J(χ1, χ2) = J(χ, χ−1) = ∑
a+b=1

χ(a)χ−1(b) = ∑
a+b=1,b 6=0

χ(a/b).

Note that b is determined by a and the condition b 6= 0 amount to a 6= 1. Also note that the
image of F− {1} under the map a 7→ a/(1− a) is F− {−1}. Therefore, we find that

J(χ, χ−1) = ∑
a 6=1

χ(a/(1− a)) = ∑
c 6=−1

χ(c) = ∑
c

χ(c)− χ(−1) = −χ(−1) = −χ(−1)J(χ).

For future reference we record this:

(17) J(χ, χ−1) = −χ(−1), χ 6= ε

Suppose now that ` > 2. In proving part (1) we calculated that

g(χ1) · · · g(χ`) = ∑
s∈F

ψ(s) ∑
t1+···+t`=s

χ1(t1) · · · χ`(t`).

Now we find, using calculations as in part (1) and χ1 · · · χ` = 1:

g(χ1) · · · g(χ`) =J0(χ1, . . . , χ`) + ∑
s∈F×

ψ(s) ∑
t1+···+t`=s

χ1(t1) · · · χ`(t`)

=J0(χ1, . . . , χ`) + J(χ1, . . . , χ`) ∑
s∈F×

ψ(s)
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Now, using Lemma 13.1.1 and Proposition 14.2.3, it follows that

g(χ1) · · · g(χ`) =J0(χ1, . . . , χ`)− J(χ1, . . . , χ`)

=χ`(−1)(q− 1)J(χ1, . . . , χ`−1)− J(χ1, . . . , χ`).

Using part (2), it follows that

qχ`(−1)J(χ1, . . . , χ`−1) = χ`(−1)(q− 1)J(χ1, . . . , χ`−1)− J(χ1, . . . , χ`),

and from which that
J(χ1, . . . , χ`) = −χ`(−1)J(χ1, . . . , χ`−1).

�

14.3.1. Absolute value of Jacobi sums. As a corollary of Theorem 14.3.1 we get the following infor-
mation about the size of Jacobi sums.

Corollary 14.3.2. Assume that χ1, . . . , χ` are non-trivial characters of Fq.
(1) If χ1 · · · χ` 6= ε then ∣∣∣J(χ1, . . . , χ`)

∣∣∣ = q(`−1)/2.

(2) If χ1 · · · χ` = ε then ∣∣∣J(χ1, . . . , χ`)
∣∣∣ = q(`−2)/2

and ∣∣∣J0(χ1, . . . , χ`)
∣∣∣ = (q− 1)q(`−2)/2.

Proof. The first claim follows from part (1) of Theorem 14.3.1 and the estimate |g(χ)| = √q for
χ 6= ε.

The first estimate in part (2) follows from parts (2) & (3) of the same Theorem. The second
estimate follows from Proposition 14.2.3 and the first claim. �

14.4. Application of Jacobi sums to p = a2 + b2. We use Jacobi sums to deduce a classical
theorem of Fermat concerning which primes can be written as a sum of squares. Note that
2 = 12 + 12 and a prime p congruent to 3 mod 4 cannot be a sum of two squares since any
square mod 4 is either 0 or 1. Thus, the only interested case is for primes that are congruent to 1
mod 4.

Theorem 14.4.1 (P. de Fermat). Let p ≡ 1 (mod 4) be a prime then p is the sum of two square
integers:

p = a2 + b2.

Proof. As p ≡ 1 (mod 4), Xp is a group of order divisible mod 4 and so there is a character χ of
F×p of order 4. Such a character necessarily takes the values {±1,±i}. Now,

J(χ, χ) = ∑
t1+t2=1

χ(t1)χ(t2) = a + bi,

for some integers a, b. But, by Corollary 14.3.2,

a2 + b2 =
∣∣∣J(χ, χ)

∣∣∣2 = p.

�
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It will be a mistake to think that this is the technique to prove similar statements about primes
appearing as quadratic expressions in integers. The right techniques come from algebraic num-
ber theory.30 Nonetheless, a similar argument can be used to solve the following exercise.

Exercise 14.4.2. F Prove that if p ≡ 1 (mod 3) then for suitable integers a, b

p = a2 − ab + b2.

14.5. Application of Jacobi sums to N(x2
1 + · · ·+ x2

` = 1). Assume that p > 2. Let us use our
results about Jacobi sums to understand better the number of solution to the quadraric affine
hypersuface x2

1 + · · ·+ x2
` = 1 in Fq. Recall the notation ( 13) of the extended Legendre symbol(

a
p

)(s)
that we also denote here temporarily χ (because of typographical reasons), and recall

also Example 13.2.2. We have then

N(x2
1 + · · ·+ x2

` = 1) = ∑
a1+···+a+r=1

N(x2
1 = a1) · · ·N(xell2 = a`)

= ∑
a1+···+a+r=1

(
1 +

(
a1

p

)(s)
)
· · ·
(

1 +
(

a`
p

)(s)
)

= ∑
(i1,...,i`)∈{0,1}`

J(χi1 , . . . , χi`).

If some ij = 0, but not all, then J(χi1 , . . . , χi`) = 0 by Proposition 14.2.3. As well, J(ε, . . . , ε) =

q`−1. Thus,
N(x2

1 + · · ·+ x2
` = 1) = q`−1 + J(χ, . . . , χ).

In the Jacobi symbol, χ appears ` times and so we need to distinguish two cases:

• If ` is odd, part (1) of Theorem 14.3.1 gives J(χ, . . . , χ) = (g(χ)2)
`−1

2 = χ(−1)
`−1

2 q
`−1

2 ,
where we have used also Corollary 13.3.4.
• If ` is even, then, by the same results, we have J(χ, . . . , χ) = −1

q (g(χ)2)
`
2 = −χ(−1)`/2q

`−2
2 .

Theorem 14.5.1. Suppose that p is an odd prime. Let q = ps and χ the extended Legendre symbol λ(s).
The number of solutions to x2

1 + · · ·+ x2
` = 1 in Fq is:

N(x2
1 + · · ·+ x2

` = 1) = q`−1 +

{
χ(−1)

`−1
2 q

`−1
2 , ` odd

−χ(−1)
`
2 q

`−2
2 , ` even.

We have q = ps and χ(a) = a
q−1

2 . If s is even, χ(−1) = 1, while if s is odd, χ(−1) = (−1)
p−1

2 .

Thus, in both cases χ(−1) = (−1)
s(p−1)

2 . That is, the formulas in the Theorem are completely
explicit and depend on the parity of s, the parity of ` and p (mod 4).

Exercise 14.5.2. Prove that for p ≡ 1 (mod 3) we have

N(x3 + y3 = 1) = p− 2 + 2Re(J(χ, χ)),

where we are considering solutions over Fp and χ is a non-trivial cubic character. Your starting
point should be Example 14.2.4.

30An excellent book in this direction is David A, Cox, Primes of the form x2 + ny2. Fermat, class field theory, and complex
multiplication.
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In the exercise, the exact answer remains unclear since although we know the absolute value of
J(χ, χ) (which is

√
p), we do not know its real part.

Exercise 14.5.3. Let A = 2ReJ(χ, χ). Prove that J(χ, χ) = a + bω where ω = −1+
√
−3

2 and
a, b ∈ Z. Conclude that A = 2a − b and a2 − ab + b2 = p. Furthermore, prove that if we let
B = b/3 then

4p = A2 + 27B2.

In the last exercise, in fact one can prove that B is an integer and A ≡ 1 (mod 3), but this is a bit
subtle. Furthermore, one can show that there is a solution in integers to

4p = A2 + 27B2,

satisfying A ≡ 1 (mod 3) and this determines the solution uniquely up to replacing B by −B.
Thus, modulo these missing pieces, one concludes a theorem of Gauss.

Theorem 14.5.4 (Gauss). Let p ≡ 1 (mod 3) be a prime number. There are integers A, B such that
4p = A2 + 27B2 and A ≡ 1 (mod 3); moreover, this determines A uniquely. In terms of these,

N(x3 + y3 = 1) = p− 2 + A.

Exercise 14.5.5. For p = 7, 13 calculate by hand the points on x3 + y3 = 1 over Fp, as well as A
and verify Gauss’s Theorem.

Using Gauss theorem, find the number of solutions for the equation x3 + y3 = 1 for p = 97.

Exercise 14.5.6. Does it ever happen for p ≡ 1 (mod 3) that N(x3 + y3 = 1) = p?, what about
N(x3 + y3 = 1) = p− 1? Suppose that p and p− 2 are primes, can it happen that the number
of solutions to x3 + y3 = 1 mod p is the same as the number of solutions mod p− 2? Explain
how to find large p for which A is close to 2

√
p (and thus N(x3 + y3 = 1) is very close to the

maximum possible number of points allowed by the Hasse bound p + 2
√

p).

14.6. Application of Jacobi sums to N(a1x`1
1 + · · ·+ arx`r

r = b). We now apply Jacobi sums to
the more difficult problem of calculating N(a1x`1

1 + · · ·+ arx`r
r = b). The answer is complicated,

but it gives a very good estimate.
In considering the equation a1x`1

1 + · · ·+ arx`r
r = b, we make the following assumptions:

• ai, b ∈ Fq, ai 6= 0 for all i.
• `i|(q− 1) for all i.

Exercise 14.6.1. The second condition is made for convenience only. More precisely, let di =
gcd(`i, q− 1). Prove that

N(a1x`1
1 + · · ·+ arx`r

r = b) = N(a1xd1
1 + · · ·+ arxdr

r = b).

(Use that if (r, q− 1) = 1, the map x 7→ xr is an isomorphism of groups F×q → F×q .)

We begin our analysis “as usual”, making use of Proposition 13.2.1.
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N(a1x`1
1 + · · ·+ arx`r

r = b) = ∑
t1+···+tr=b

N(a1x`1
1 = t1) · · ·N(arx`r

r = tr)

= ∑
a1t1+···+artr=b

N(x`1
1 = t1) · · ·N(x`r

r = tr)

= ∑
a1t1+···+artr=b

 ∑
χ1∈Xq[`1]

χ1(t1)

 · · ·
 ∑

χ1∈Xq[`1]

χ1(t1)


= ∑

(χ1,...,χr)∈Xq[`1]×···×Xq[`r ]

(
∑

a1t1+···+artr=b
χ1(t1) · · · χr(tr)

)
.

We next express the expressions appearing the parentheses in terms of Jacobi sums. We distin-
guish two cases.

• For b = 0,

∑
a1t1+···+artr=0

χ1(t1) · · · χr(tr) =χ1(a−1
1 ) · · · χr(a−1

r ) ∑
t1+···+tr=0

χ1(t1) · · · χr(tr)

=χ1(a−1
1 ) · · · χr(a−1

r )J0(χ1, . . . , χr).

We recall that by Proposition 14.2.3 J0(χ1, . . . , χr) is equal to:
(1) qr−1, if χ1 = · · · = χr = ε;
(2) 0, if some χi = ε, but not all;
(3) 0, if some χi 6= ε and χ1 · · · χr 6= ε.

Let us introduce the notation

Xq[`]
∗ = Xq[`] \ {ε}.

We conclude that

(18) N(a1x`1
1 + · · ·+ arx`r

r = 0)

= qr−1 + ∑
(χ1,...,χr)∈Xq[`1]

∗×···×Xq[`r ]∗

χ1···χr=ε

χ1(a−1
1 ) · · · χr(a−1

r )J0(χ1, . . . , χr).

• For b 6= 0,

∑
a1t1+···+artr=b

χ1(t1) · · · χr(tr) =(χ1 · · · χr)(b)χ1(a−1
1 ) · · · χr(a−1

r ) ∑
t1+···+tr=1

χ1(t1) · · · χr(tr)

=(χ1 · · · χr)(b)χ1(a−1
1 ) · · · χr(a−1

r )J(χ1, . . . , χr).

Similar consideration give us that for b 6= 0,

(19) N(a1x`1
1 + · · ·+ arx`r

r = b)

= qr−1 + ∑
(χ1,...,χr)∈Xq[`1]∗×···×Xq[`r ]∗

(χ1 · · · χr)(b)χ1(a−1
1 ) · · · χr(a−1

r )J(χ1, . . . , χr).

Combining Equations (19) and (18) with Corollary 14.3.2 we deduce the following estimates;
one can clearly improve them, by estimating better the number of characters involved in the
sums in the equations, and also whether the characters multiply to ε, or not.
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Proposition 14.6.2. We have the following estimates on the number of solutions for the equation a1x`1
1 +

· · ·+ arx`r
r = b over Fq.

(20)
∣∣∣N(a1x`1

1 + · · ·+ arx`r
r = b)− qr−1

∣∣∣ ≤ {`1 · · · `r · (q− 1)q
r−2

2 , b = 0;
`1 · · · `r · q

r−1
2 , b 6= 0.

14.7. Application of Jacobi sums to N(a0xm
0 + a1xm

1 + · · ·+ anxm
n = 0) in projective space.

A consequence of the results proven above is the following theorem.

Theorem 14.7.1. Let m|(q− 1), ai ∈ F× = F×q . Consider the number of solutions to the equation

a0xm
0 + · · ·+ anxm

n = 0

in Pn(F); we denote it Nproj(a0xm
0 + · · ·+ anxm

n = 0). Then,

Nproj(a0xm
0 + · · ·+ anxm

n = 0) = qn−1 + qn−2 + · · ·+ 1

+
1

q− 1 ∑
χi∈Xq[m]∗

χ0χ1···χn=ε

χ0(a−1
0 )χ1(a−1

1 ) · · · χn(a−1
n )J0(χ0, χ1, . . . , χn)

= qn−1 + qn−2 + · · ·+ 1

+
1
q ∑

χi∈Xq[m]∗

χ0χ1···χn=ε

χ0(a−1
0 )χ1(a−1

1 ) · · · χn(a−1
n )g(χ0)g(χ1) · · · g(χn)

Proof. To relate the Theorem to previous results, note that any solution (y0, . . . , yn) in An+1(F),
except the zero solution, is a projective solution [y0 : · · · : yn]. And, furthemore, any such projec-
tive solution arises precisely from (q− 1) affine solutions; to wit, (λy0, . . . , λyn), λ ∈ F×q . That is,
the number of solutions Nproj to a0xm

0 + · · ·+ anxm
n = 0 in the projective n-space Pn is gotten from

the number of solutions Naff in affine n + 1- space An+1 by the formula (Naff(a0xm
0 +···+anxm

n =0)−1)
(q−1) .

Applying (18), this number is

qn − 1
q− 1

+
1

q− 1 ∑
(χ0,...,χn)∈Xq[m]∗×···×Xq[m]∗

χ0···χn=ε

χ0(a−1
0 ) · · · χn(a−1

n )J0(χ0, . . . , χn).

The second expression is obtained from Proposition 14.2.3, combined with Theorem 14.3.1. �

Exercise 14.7.2. F Prove that∣∣∣Nproj(a0ym
0 + · · ·+ anym

n = 0)− ]Pn−1(Fq)
∣∣∣ ≤ f (m) · q n−1

2 .

where

f (m) =
1
m
((m− 1)n+1 + (−1)n+1(m− 1)).
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15. RATIONALITY OF CERTAIN ZETA FUNCTIONS

Our goal in this section is to prove the rationality of the zeta function of hypersurfaces of the
form

a0xm
0 + · · ·+ anxm

n = 0, ai ∈ F×, m|(q− 1).

As we have seen before, the condition that m|(q − 1) is not serious and clearly also the case
where some of the ai = 0 can be dealt with easily by reducing to a problem with less variables.

Given Theorem 14.7.1, which applies equally to F or to a finite extension F[s] of F (because we
can view the ai as lying in F[s]), what remains is to understand how the formulas change under
passage from the field F to an extension F[s]. The field F[s] has qs elements and the character
groups Xqs and Xq are not the same and neither are the Gauss and Jacobi sums. But, this is
really the extent of the problem. The part of relating the different Gauss sums is rather involved
and we will not do it here, referring the reader to Ireland & Rosen, Chapter 11, §4; After doing
the rest of the analysis, we will be able to prove the following theorem.

Theorem 15.0.1. Let F = Fq, m|(q− 1) and a0, . . . , an ∈ F×. Let V be the projective variety in Pn,
n ≥ 1, defined by the equation

a0xm
0 + · · ·+ anxm

n = 0.

Then,

(21) ζV(T) =
P(T)(−1)n

(1− T)(1− qT) · · · (1− qn−1T)
,

where P(T) is the polynomial

(22) ∏
χi∈Xq[m]∗

χ0χ1···χn=ε

(
1− (−1)n+1

q
χ0(a0)

−1χ1(a1)
−1 · · · χn(an)

−1 · g(χ0)g(χ1) · · · g(χn) · T
)

.

15.1. A criterion for rationality. To prove rationality of zeta functions, we first note a simple
criterion for a power series of the form arising in the definition of ζV to be rational.

Lemma 15.1.1. A power series

ζ(T) = exp(
∞

∑
s=1

Ns

s
Ts), Ns ∈ C

is rational, in the sense that it is of the form

ζ(T) = ∏
i
(1− αiT)/ ∏

j
(1− β jT)

for some αi, β j ∈ C, if and only if, for all s,

Ns = ∑
j

βs
j −∑

i
αs

i .

Proof. This is a computation we have essentially done before. To begin with, assume that ζ(T) =
∏i(1− αiT)/ ∏j(1− β jT). Then, on the one hand,

d log ζ =
∞

∑
s=1

NsTs−1,
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and, on the other hand,

d log ζ = d log

(
∏

i
(1− αiT)

)
− d log

(
∏

j
(1− β jT)

)
= ∑

i
d log(1− αiT)−∑

j
d log(1− β jT)

= ∑
j

∞

∑
s=1

βs
j T

s−1 −∑
i

∞

∑
s=1

αs
i Ts−1 =

∞

∑
s=1

(∑
j

βs
j)T

s−1 −
∞

∑
s=1

(∑
s=i

αs
i )T

s−1,

hence the formula for Ns.
Now, note that two functions f , g with d log f = d log g satisfy d log( f /g) = 0 and this implies

that f and g differ by a scalar. If f and g are both functions whose Taylor expansions start with 1,
such as is the case with the zeta function and with the function∏i(1− αiT)/ ∏j(1− β jT), then
f = g. Thus, the argument can be reversed! �

15.2. Relating Xq and Xqs . Let F[s] be a degree s extension of F. Since we may view ai as lying in
F[s], we may apply Theorem 14.7.1 to find the number of projective solutions Ns to the equation
a0xm

0 + · · ·+ anxm
n = 0 in F[s]. The answer is

(23) Ns = Nproj
s (a0xm

0 + · · ·+ anxm
n = 0)

= qs(n−1) + qs(n−2) + · · ·+ 1 +
1
qs ∑

χi∈Xqs [m]∗

χ0χ1···χn=ε

χ0(a−1
0 )χ1(a−1

1 ) · · · χn(a−1
n )g(χ0)g(χ1) · · · g(χn).

Note that the characters χ are now characters of F[s], a field with qs elements, so they are
elements of Xqs , a group that changes with s. Thus, our first task is to relate Xq and Xqs .

Given a character χ ∈ Xq, consider the function χ(s) defined as31

χ(s) : F×
[s] → C×, χ(s)(a) = χ ◦NmF[s]/F(a).

Lemma 15.2.1. The map χ 7→ χ(s) is an injective group homomorphism

Xq ↪→ Xqs .

Under this injection, Xq[m] is identified with Xqs [m].

Proof. First, χ(s) is a character, i.e., group homomorphism, because it is the composition of group
homomorphisms. We also need to verify that (χ1χ2)(s) = χ

(s)
1 χ

(s)
2 and, indeed,

(χ1χ2)
(s)(x) = (χ1χ2)(NmF[s]/F(x)) = χ1(NmF[s]/F(x))χ2(NmF[s]/F(x)) = (χ

(s)
1 χ

(s)
2 )(x).

The map χ 7→ χ(s) is injective because NmF[s]/F is a surjective homomorphism F×
[s] → F×. Since

both Xq[m] and Xqs [m] have m elements, we conclude the last statement of the lemma. �

Note that for x ∈ F we have

χ(s)(x) = χ(NmF[s]/F(x)) = χ(xs) = χ(x)s.

31This explains our notation for the extended Legendre symbol. We denote it λ(s), or
(
·
p

)(s)
.
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Thus, we may write,

(24) Ns = Nproj
s (a0xm

0 + · · ·+ anxm
n = 0)

= qs(n−1) + qs(n−2) + · · ·+ 1 +
1
qs ∑

χi∈Xq [m]∗

χ0χ1···χn=ε

χ
(s)
0 (a−1

0 )χ
(s)
1 (a−1

1 ) · · · χ(s)
n (a−1

n )g(χ
(s)
0 )g(χ

(s)
1 ) · · · g(χ(s)

n )

= qs(n−1) + qs(n−2) + · · ·+ 1 +
1
qs ∑

χi∈Xq [m]∗

χ0χ1···χn=ε

χ0(a−1
0 )sχ1(a−1

1 )s · · · χn(a−1
n )sg(χ

(s)
0 )g(χ

(s)
1 ) · · · g(χ(s)

n ).

15.3. The Hasse-Davenport relation and the rationality of ζV . The next task is to relate the
Gauss sums g(χ(s)) and g(χ). The result in known as the Hasse-Davenport relation and we refer
for the proof to Ireland & Rosen, Chapter 11, §4.

Theorem 15.3.1 (Hasse-Davenport). We have

g(χ(s)) = −(−1)sg(χ)s.

Substituting in Equation (24), we find that

(25) Ns = Nproj
s (a0xm

0 + · · ·+ anxm
n = 0)

= qs(n−1)+ qs(n−2)+ · · ·+ 1+(−1)n+1 ∑
χi∈Xq [m]∗

χ0χ1···χn=ε

((−1)n+1)s(
1
q
)sχ0(a−1

0 )s · · · χn(a−1
n )sg(χ0)

s · · · g(χn)
s.

We have written Ns exactly in the form suitable to apply the Rationality Criterion (Lemma 15.1.1).
Theorem 15.0.1 has thus been proven:

ζV(T) =
P(T)(−1)n

(1− T)(1− qT) · · · (1− qn−1T)
,

where P(T) is the polynomial

∏
χi∈Xq[m]∗

χ0χ1···χn=ε

(
1− (−1)n+1

q
χ0(a0)

−1χ1(a1)
−1 · · · χn(an)

−1 · g(χ0)g(χ1) · · · g(χn) · T
)

.

Exercise 15.3.2. F Prove that ζV provided in Theorem 15.0.1 satisfies the Weil conjectures.

15.4. Some additional examples. The results we have developed so far already provide rather
nice answers for the two exercises given further below. However, to have a really definite for-
mula the following additional information is needed.

Assume p is an odd prime and recall that Legendre symbol on Fp:

λ(a) =
(

a
p

)
, a ∈ Fp.

This is a character of order 2 and so,

g(λ)2 = g(λ)g(λ̄) = χ(−1) · p =

(
−1
p

)
p.

Thus, g(λ) is equal to ±√p if p ≡ 1 (mod 4) and is equal to ±i
√

p if p ≡ 1 (mod 4). The
following theorem of Gauss settles this point.
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Theorem 15.4.1 (Gauss).

g(λ) =

{√
p, p ≡ 1 (mod 4);

i
√

p, p ≡ 3 (mod 4).

Exercise 15.4.2. Give an explicit formula for Nproj(x2
0 + · · ·+ x2

n = 0).

Exercise 15.4.3. Give an explicit formula for Nproj(a0x2
0 + · · ·+ anx2

n = 0).

In contrast, it is very hard to determine exactly cubic Gauss sums, let alone Gauss sums for
general characters – even in the case when 3|(p− 1) where we are dealing with a Gauss sum of
a character of Fp. Let χ be a character of exact order 3 of F×p , then, by Theorem 14.3.1,

J(χ, χ) = g(χ)2/g(χ2).

But χ2 = χ−1 = χ̄ and so, applying Corollary 13.3.4 and noting that χ(−1) = 1, we find that

J(χ, χ) =
g(χ)3

p
.

We have seen that J(χ, χ) can be found by finding integer solutions to the equation

4p = A2 + 27B2,

such that A ≡ 1 (mod 3) (that arose in the study of the number of solutions to x3 + y3 = 1; see
Theorem 14.5.4). However, finding the exact expression to g(χ) from this is not easy, although
known.32

Exercise 15.4.4. Still using the notation λ for the Legendre character. Let α be any non-trivial
character of F×p . Prove that

J(λ, α) = ∑
t∈F

α(1− t2).

(Hint: use N(x2 = a) = 1 + λ(a).)

Exercise 15.4.5. Consider the equation y2 = x3 + a, where a ∈ F×P is fixed and p > 3. Find an
expression for N(y2 = x3 + a). This expression will involve J(λ, α) where α is a cubic character.
How does this compare with the expression for the zeta function of the projectivized curve
y2z = x3 + az3?

Exercise 15.4.6. Let p > 2 be a prime and consider an equation of the form

C : y2 = f (x),

where f is a separable polynomial in Fp[x] of the degree 2g + 1.
• Prove that this is a non-singular curve in A2.
• Check that the corresponding projective curve in P2, obtained by homogenizing y2 −

f (x) is singular if g > 1. However, one can show that there is a projective non-singular
curve C̃ (living in some higher dimensional projective space) that contains C and such
that C̃ \ C consists of a single point which is moreover defined over Fp. The genus of C̃
is g and that implies that

ζC̃(T) =
P1(T)

(1− T)(1− pT)
,

32A convenient modern reference is D. Schipani and M. Elia, Gauss sums of cubic character over Fpr , p odd. Bull.
Pol. Acad. Sci. Math. 60 (2012), no. 1, 1–19.
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where P1 ∈ Z[T] is a polynomial of degree 2g and constant coefficient 1.
Assuming all that show that

]C(Fp) = p + ∑
t∈Fp

(
f (t)

p

)
,

and deduce the estimate due to Burgess∣∣∣ ∑
t∈Fp

(
f (t)

p

) ∣∣∣ ≤ 2g
√

p.

Exercise 15.4.7. Let a, b, c ∈ Fp, p > 2,a 6= 0, b2 − 4ac 6= 0. Determine the zeta function of the
affine equation:

ax2 + bxy + cy2 = 0.

16. COHOMOLOGY AND THE WEIL CONJECTURES

Very often a non-singular projective variety V over a finite field arises as the reduction of
a non-singular projective variety in characteristic zero. Indeed, given a set of polynomials
fi(x0, . . . , xn) ∈ Fq[x], one can find a finite extension L of Q, L ⊂ C, and polynomials Fi(x0, . . . , xn)
whose coefficients are algebraic integers of L, namely, they lie in OL (the ring of algebraic inte-
gers of L) and a prime ideal p of OL such that OL/p ∼= Fq and the polynomials Fi reduce to fi.
Denote by V the variety defined by the Fi and assume it is irreducible and non-singular. Let d
denote its dimension. A good case to keep in mind is when Fq = Z/pZ; in this case, we simply
lift the coefficients of fi, which are mod p congruence classes, to integers. Quite surprisingly this
method doesn’t always work. Some of the first examples were given by Serre33. There are also
examples of non-singular projective surfaces in P5 that cannot be lifted to characteristic 0. But
let us assume that our situation is favourable and a lift exists.

The complex points V(C) of V are a compact topological manifold. As such, one can associate
to V(C) cohomology spaces {Hi(V, Q)}2d

i=0. In fact, such cohomology spaces are associated to
any topological manifold. These are finite dimensional rational vector spaces constructed by
topological means. They satisfy H0(V, Q) = H2d(V, Q) = Q. They have various properties
that make their computation almost axiomatic. And, they are functorial: a continuous map of
manifolds f : V→W induces linear maps f ∗i : Hi(W, Q)→ Hi(V, Q), for all i. In particular,
each such linear map has a trace Tr( f ∗i ).

Suppose that f : V→ V is a map that has finitely many fixed points. The Lefschetz trace
formula gives

(26) # fixed points of f =
d

∑
i=0

(−1)iTr( f ∗i ).

Consider for example, an elliptic curve E : y2 = x3 + ax + b and its projective model zy2 =
x3 + az2x + bz3. Consider the map P 7→ f (P) := −P, or in coordinates (x, y) 7→ (x,−y). This
map has precisely four fixed points {(t, 0) : t3 + at + b = 0} ∪ {[0 : 1 : 0]} and they comprise
E[2]. We also have H0(E, Q) = H2(E, Q) = Q and H1(E, Q) ∼= Q2. One can prove that f acts

33J.-P. Serre, Exemples de variétés projectives en caractéristique p non relevables en caractéristique zéro. Proc. Nat.
Acad. Sci. U.S.A. 47 (1961), 108–109. but see R. Vakil’s article for extensive history and ultimate bad news: R. Vakil,
Murphy’s law in algebraic geometry: badly-behaved deformation spaces. Invent. Math. 164 (2006), no. 3, 569–590.
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as multiplication by −1 on H1(E, Q) (and so its trace is −2) and as the identity on H0 and H2.
Thus, the alternating sum of traces is 1− (−2) + 1 = 4, in agreement with Lefschetz’s formula.

Weil’s idea was that perhaps such a cohomology theory exists also for varieties over finite
fields. Initially, such cohomology theories were called Weil cohomology theories, but today
they are known by the names of the techniques used for their constructions; for example, étale
cohomology, crystalline cohomology, etc. The existence of such theories was proven later by A.
Grothendieck and his school, with assistance from J.-P. Serre and P. Deligne.

How is all this connected to Weil’s conjectures? Let Fq = Fps be a finite field and let ϕ(x) = xp

be the Frobenius map. Weil observed that much in the same way that Fq is the fixed points of
ϕs on Fp, the Fq = Fps points of V, could be thought as the Fp points of V that are fixed points
for ϕs, where ϕ is now the Frobenius morphism on Pn given by

ϕ(x0 : · · · : xn) = (xp
0 : · · · : xp

n).

Let ψ = ϕs. In a good cohomology theory, one should then have the formula

(27) ]V(Fq) = ] fixed points of ψ =
2d

∑
i=0

(−1)iTr(ψ∗i ),

where ψ∗i are the maps induced by ψ on Hi(V)34. Many properties then follow: for example, the
functional equation property is a consequence of Poincaré duality for cohomology. Likewise,
the rationality of the zeta function follows readily, with

deg(Pi) = dim(Hi(V)) = dim(Hi(V)).

The “Riemann hypothesis”, though, is still a very hard fact.

For example, for the projective space itself we have that H2i(Pn) are 1-dimensional for i =
0, 1, . . . , n and all other cohomology groups vanish. This leads to ζPn = 1

(1−T)(1−pT)···(1−pnT) . For
an elliptic curve (which is a curve of genus 1), and more generally for a curve C of genus g, we
have H0(C) and H2(C) are 1-dimensional, H1(C) is 2g-dimensional and all other cohomology
spaces vanish. A lot is known also about the cohomology of hypersurfaces and that is, on some
conceptual level, in agreement with the fact that for very special hypersurfaces we were able to
find the zeta functions.

17. IN CONCLUSION

Weil’s conjectures have influenced greatly the development of number theory since their for-
mulation in the middle of the 20-th century. Weil’s idea, that such properties of zeta functions
of varieties over finite fields, will follow formally from the construction of good cohomology
theory for varieties over finite fields, together with reasonable conjectures as to the action of
a power of the Frobenius homomorphism on such a cohomology theory, impacted the devel-
opment of whole new theories in algebraic geometry, most notably étale cohomology and de-
formation theory. It continues to inspire much research: for a start, use of other cohomology
theories is still being investigated35. Next, the topic of variation of zeta functions for families
of varieties that vary in terms of some continuous parameters – for example, an elliptic curve

34We are being deliberately vague about the coefficients as to avoid the introduction of yet another mystery. One
needs to choose a prime ` 6= p; the Hi(V) are constructed as Q`-vector spaces, where Q` is the field of `-adic numbers.
35See for example, Kiran S. Kedlaya, “Fourier transforms and p-adic ”Weil II””, Compositio Mathematica 142 (2006),
1426-1450, and “Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology”, Journal of the Ra-
manujan Mathematical Society 16 (2001), 323-338. See also, Alan Lauder, ”Deformation theory and the computation
of zeta functions”, Proceedings of the London Mathematical Society, Vol. 88 Part 3, (2004), 565-602.
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y2 = x3 + a(t)x + b(t), where a(t), b(t) are functions of t and t varies over some parameter space
– is an active area of research, as is the understanding the variation of a zeta function of the re-
duction mod p of variety defined over the integers, say. Here, again, a good example to keep
in mind is the reduction of an elliptic curve y2 = x3 + ax + b, where a, b ∈ Z, modulo various
primes, where the most impressive result we have is the Sato-Tate conjecture. Analogues of
such questions for general varieties are unknown and are again related to recent and current
research that tries to prove that the statistics of the variation of the zeta functions, a statistics
that generalizes the Sato-Tate distribution, are controlled by the theory of random matrices for
a certain algebraic group determined by the family and the parameter space.

The cases we have dealt with in this part of the notes are very special and we could have
dealt with them using ancient knowledge – Gauss and Jacobi sums. Yet, the final result giving
the zeta function as a rational function where the polynomials have roots defined in terms of
such sums is rather intricate. And, to date, our understanding of Gauss and Jacobi sums is not
complete; this topic too remains a topic of current research.
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LATTICES, GEOMETRY OF NUMBERS AND CODES.

18. INTRODUCTION

In this part of the course we discuss lattices in Euclidean space, linear binary codes and a
connection between the two. We shall see various applications of lattices to number theory and
to sphere packing. The proofs of some results, results that have the advantage of explaining the
bigger picture, are unfortunately outside the scope of an undergraduate text, but their impor-
tance and elegance are such that it is worthwhile to include them even if no proof is offered.

The best advice to appreciate this chapter is to realize that we really don’t understand higher-
dimensional spaces. Questions like the best way to pack n-dimensional oranges, that are rather
clear for the 2-dimensional case, seem clear but extremely hard for the 3-dimensional case, are
largely beyond reach at the moment. Such questions cannot be approached from a naı̈ve point
of view; sophisticated tools are needed.

For lattices, a canonical reference is the resource book:

J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups. Third edition. Grundlehren
der Mathematischen Wissenschaften, 290. Springer-Verlag, New York, 1999.

It is not self-contained in the sense that many, perhaps most, of the results are not proven, but it
has an extensive bibliography. The various applications of lattices were collected from a variety
of resources, from books to research articles. Likewise, the material concerning binary codes
was collected from many sources, so it is hard to suggest one particular reference. That said,
some references we have often consulted are

J.-P. Serre, A course in Arithmetic, Graduate Texts in Mathematics, 7, Springer verlag.

N. J. N. Sloane, weight enumerators of codes, in Combinatorics, Proceedings of the NATO Ad-
vanced Study Institute, 1974.

N. D. Elkies, Lattices, Linear Codes, and Invariants, Part I & II, Notices AMS 47 (2000), no. 11
& 12.

19. BILINEAR FORMS, QUADRATIC FORMS AND EUCLIDEAN LATTICES

19.1. Bilinear forms and quadratic forms. A function

〈x, y〉 : Rn ×Rn → R,

is called a symmetric bilinear form if it satisfies the following properties for all x, x′, y, y′ ∈
Rn, α ∈ R:

(1) 〈x, y〉 = 〈y, x〉.
(2) 〈x + x′, y〉 = 〈x, y〉+ 〈x′, y〉 and 〈x, y + y′〉 = 〈x, y〉+ 〈x, y′〉.
(3) 〈αx, y〉 = α〈x, y〉 = 〈x, αy〉.

By choosing a basis u = {ui : i = 1, . . . , n} for Rn we can represent 〈x, y〉 by a symmetric real
matrix

B = (bij) = (〈ui, uj〉)i,j

that has the property
〈x, y〉 = t[x]uB[x]u,
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where we consider vectors in Rn as column vectors, and where [x]u = t(x1, . . . , xn) is the vector
of coordinates of x relative to the basis u: x = x1u1 + · · ·+ xnun.

The matrix B is not uniquely determined. If we change the basis u to a basis v, and let M be
the change of basis matrix so that [x]u = M[x]v, then

〈x, y〉 = t[x]uB[x]u = t[x]vt MBM[x]v,

and so the matrix relative to the new basis is t MBM. We say that B and t MBM are similar
bilinear forms over R.

To a symmetric bilinear form 〈x, y〉 we can associate the function

q : Rn → R, q(x) = 〈x, x〉,
which is a quadratic form. Namely, it satisfies

(1) q(αx) = α2q(x).
(2) The function (x, y) 7→ 1

2 (q(x + y)− q(x)− q(y)) is bilinear.
Indeed, starting from 〈x, y〉, the function in (2) is just 〈x, y〉 again. But, conversely, given a
quadratic form q, if we let

〈x, y〉 = 1
2
(q(x + y)− q(x)− q(y))

we get a symmetric bilinear form such that q(x) = 〈x, x〉. As before, choosing a basis u, and
defining a matrix B = (bij) as above, allows us to express q explicitly. If [x]u = t(x1, . . . , xn) then

q(x) = ∑
i,j

bijxixj,

which is a quadratic function in the variables {xi}. Hence the name.

If the symmetric bilinear pairing is positive definite, i.e. 〈x, x〉 ≥ 0 with equality only if x = 0,
then the quadratic form takes values in R≥0 and the value 0 is obtained only for x = 0, and
vice-versa. We will refer to such quadratic forms as positive.

19.2. Euclidean lattices. For v ∈ Rn and r ∈ R≥0 we denote the open and closed balls of
radius r centred at v by

B(v, r) = {u ∈ Rn : ‖u− v‖ < r}, B[v, r] = {u ∈ Rn : ‖u− v‖ ≤ r},
respectively. If we need to emphasize the ambient space, we shall write Bn(v, r) and Bn[v, r],
respectively.

Let us denote ωn = vol(Bn(0, 1)) then

(28) ω1 = 2, ω2 = π, ωn = ωn−2
2π

n
.

(See (5) for a closed formula.)

Recall that an abelian group A is called free of rank n if there are elements a1, . . . , an in A
such that any element of A can be written as ∑n

i=1 niai for some uniquely determined coefficients
ni ∈ Z; otherwise said A = ⊕n

i=1Zai. Equivalently, A ∼= Zn.
A lattice L ⊂ Rn is a free abelian group of rank n which is discrete: there exists an ε > 0

such that
L ∩ B(0, ε) = {0}.

Note the following: suppose that L = ⊕n
i=1Zvi. If there exists a basis {ui} for Rn such that

{ui} ⊂ L then {vi} is a basis for Rn too. We emphasize that when we speak of a lattice in Rn
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we always assume it has rank n; some authors refer to such a lattice as a “full lattice”, but we
will not use this terminology.

Exercise 19.2.1. F Let L ⊂ Rn be a free abelian group of rank n. Then, L is a lattice if and only
if L contains a basis of Rn.

The exercise provides us with a simple method to construct lattices. Let {v1, . . . , vn} be a basis
for Rn, equivalently, the matrix A = (v1|v2| . . . |vn) is in GLn(R). Then L = ⊕n

i=1Zvi is a lattice;
the matrix A is called a generator matrix for L . Conversely, given a lattice L choose a basis
{v1, . . . , vn} for L so that L = ⊕n

i=1Zvi. Then (v1|v2| . . . |vn) is in GLn(R).
If we choose a different basis {u1, . . . , un} to L , then there is an invertible matrix M ∈ GLn(Z)

such that (u1|u2| . . . |un) = (v1|v2| . . . |vn)M. (This just means that if M = (mij) then u1 =
m11v1 + m21v2 + · · ·+ mn1vn, etc.) And so, instead of the matrix A we get the matrix AM. We
conclude the following:

lattices with
a given basis

��

oo // GLn(R)

��
lattices oo // GLn(R)/GLn(Z)

19.2.1. Examples. Here are some very basic examples of lattices.

(1) Zn. We can also think about this lattice as corresponding to In ∈ GLn(R), but note
that the columns of any matrix A ∈ GLn(Z) also form a basis of Zn. The Gram matrix
associated to In is just In, but the Gram matrix associated to A is t AA, which could be

a very complicated matrix. For n = 3, for example, we can take A =
( 1 2 3

0 1 2
0 0 1

)
to get

B =
(

1 2 3
2 5 8
3 8 14

)
.

(2) Identify C with R2 so that a + bi ↔ (a, b), as usual. Let ω = e2πi/3 = −1+
√
−3

2 be
a third root of unity. Then 1, ω are a basis for C over R, and the corresponding real
vectors (1, 0) and (− 1

2 ,
√

3
2 ) are basis for R2. The lattice that we get, which corresponds

to the ring Z[ω] = Z + Zω, is called the hexagonal lattice; it has a generator matrix(
1 − 1

2

0
√

3
2

)
. (Incidentally, doing the same with the ring of Gaussian integers Z[i], produces

the lattice Z2.)
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Here is another example. The details are left as an exercise.

Exercise 19.2.2. Let d > 0 be an integer which is not a square. Consider the ring

Z[
√

d] = {a + b
√

d : a, b ∈ Z}.

Prove that the map

a + b
√

d 7→ (a + b
√

d, a− b
√

d) ∈ R2,

realizes Z[
√

d] as a lattice in R2. What is the intersection of this lattice with the circle x2 + y2 = 1?
the hyperbola xy = 1?

19.3. Lattices and quadratic forms. Let L be a lattice in Rn and choose a basis {v1, . . . , vn} for
it. Let B = (bij) = (〈vi, vj〉)ij be the matrix of inner products of the basis vectors. Then B is a
symmetric positive definite matrix. Changing the basis amount to changing the matrix B by

B 7→ t MBM, M ∈ GL2(Z).

Thus, to any lattice there is associated a similarity class of positive definite symmetric matrices.
A matrix B defined this way is called a Gram matrix for the lattice L .

Conversely, given a positive definite symmetric matrix B, we can define a lattice L such that
B is a Gram matrix for L . Indeed, as B is a positive definite symmetric real matrix, there is a
matrix A = (u1| · · · |un) ∈ GLn(R) such that

B = t AA.

Let L be the lattice ⊕n
i=1Zui.

Note that there is a little snag, though. The matrix A is unique only up to matrices N such
that tNN = In. Namely, up to an orthogonal matrix N ∈ On(R). And the lattice associated to
NA is usually different than L .

To remedy this we introduce the notion of isometric lattices. Two lattices L1, L2 in Rn are
called isometric if there is an orthogonal matrix N such that NL1 = L2. Note that if u = {ui}
is a basis for L1 then Nu := {Nui} is a basis for L2 and the Gram matrices for these bases are
equal. Indeed, 〈Nui, Nuj〉 = tui

tNNuj =
tuiuj = 〈ui, uj〉. Thus, in fact, we can associate to an

isometry class of lattices a similarity class of positive definite matrices {t MBM : M ∈ GLn(Z)}.
And, conversely, to a matrix B we can associate an isometry class of lattices by writing B = t AA,
as above. We summarize all that by the following diagram:
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lattices with
a given basis

��

oo // GLn(R)

��
lattices oo //

��

GLn(R)/GLn(Z)

��
lattices up to

isometry
oo //

aa

!!B
BB

BB
BB

B

On(R)\GLn(R)/GLn(Z)
99

yysss
sss

sss
sss

s

similarity classes of
positive definite

matrices

19.4. Discriminant, co-volume, and dual lattice.

19.4.1. Let A be a generator matrix for a lattice L , with columns u1, . . . , un. We define the
fundamental parallelepiped of L as

P = {
n

∑
i=1

riui : 0 ≤ ri ≤ 1, i = 1, . . . , n}.

By a well-known property of the determinant,

vol(P) = |det(A)|.
We define the co-volume of L to be

covol(L ) = vol(P) = |det(A)|.
For later use we also define

P0 = {
n

∑
i=1

riui : 0 ≤ ri < 1, i = 1, . . . , n}.

Note that P and P0 have the same volume, P is the closure of P0, and (as we will prove below)

Rn = ä
λ∈L

λ + P0.

On the other hand, P and λ + P may intersect, but only along their boundaries.

19.4.2. Let L ⊂ Rn be a lattice. Define its dual lattice as

L ⊥ := {v ∈ Rn : 〈v, `〉 ∈ Z, ∀` ∈ L }.
In general, the relation L ⊂ L ⊥ need not hold; if it does, L is called an integral lattice.

Exercise 19.4.1. Let L be a lattice with a generator matrix A. Show that L is integral if and only
if its Gram matrix b = t AA has integer entries.

Exercise 19.4.2. Let A be a generator matrix for L . Prove that t A−1 is a generator matrix for L ⊥.

Exercise 19.4.3. Let L be an integral lattice and let L1 ⊆ L be a sub lattice. Prove that L ⊥
1 ⊇ L ⊥

and [L ⊥
1 : L ⊥] = [L : L1]. (Hint: if [L : L1] = m then covol(L1) = m · covol(L ).)
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19.4.3. Let L be a lattice and choose a basis, and thus a Gram matrix B, associated to L . The
Gram matrix B is well-defined up to B 7→ t MBM, M ∈ GLn(Z). Note that det(t MBM) =
det(B)det(t M)det(M) = det(B)det(M)2 = det(B). Thus, det(B) is a well defined invariant of
the lattice, called its discriminant;

disc(L ) = det(B).

Note that
disc(L ) = covol(L )2.

19.4.4. Suppose now that L is an integral lattice. Thus, L ⊆ L ⊥. We have

covol(L ) = [L ⊥ : L ]× covol(L ⊥);

on the other hand, using Exercise 19.4.2,

covol(L ) = |det(A)|, covol(L ⊥) = |det(A−1)|.
We conclude that

disc(L ) = |det(A)2| = [L ⊥ : L ].

Exercise 19.4.4. Calculate the discriminant and the dual lattice of the following lattices.
(1) L = Zn.
(2) Let m be a positive integer, L = {(a1, . . . , an) ∈ Zn : ∑n

i=1 ai ≡ 0 (mod m)}. (The lattices
one gets for m = 2 are called the Dn lattices.)

(3) L = the hexagonal lattice.
(4) Let d > 1 be a square free integer. Consider the ring Z[

√
−d]. Under the identification

of C with R2 it becomes a lattice L ⊂ R2. Write a generator matrix and a Gram matrix
for L ; find the discriminant and the dual lattice. Is this an integral lattice?

Exercise 19.4.5. F A lattice is called self-dual, or unimodular, if L = L ⊥. Show that the only
unimodular lattice in R2, up to isometry, is Z2.

Exercise 19.4.6. Consider the quadratic forms q(x) = x2 + y2 and q(x) = x2 − xy + y2. Find
lattices in R2 with these quadratic forms (namely, that they have a Gram matrix with associated
quadratic form given by q).

Exercise 19.4.7. Let (x, y, z) ∈ R3 and consider the abelian group generated by (1, 0, 0), (0, 1, 0)
and (x, y, z). Namely, Z(1, 0, 0) + Z(0, 1, 0) + Z(x, y, z). What are the conditions for it to be free
of rank 3? What are the conditions for it to be a lattice? What are the conditions for it to be an
integral lattice? a self-dual lattice?

20. MINKOWSKI’S LATTICE POINT THEOREM

Let L be a lattice in Rn, say L = ⊕n
i=1Zvi. We have defined above the fundamental paral-

lelepiped P and the “half open” parallelepiped P0:

P0 = {
n

∑
i=1

rivi : 0 ≤ ri < 1, i = 1, . . . , n}.

As remarked before, P , which is the closure of P0 has the same volume as P0, and

(29) Rn = ä
λ∈L

λ + P0.
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Indeed, as {vi} form a basis, any x ∈ Rn can be written as x = x1v1 + · · ·+ xnvn, with xi ∈ R.
Then, for λ = bx1c · v1 + · · ·+ bxnc · vn ∈ L , we have

x ∈ λ +P0.

Moreover, suppose that (λ1 + P0) ∩ (λ2 + P0) 6= ∅, then (λ + P0) ∩P0 6= ∅, where λ =
λ1 − λ2 = a1v1 + · · ·+ anvn, for some integers ai. This implies that for some 0 ≤ ri, si < 1 we
have (a1 + r1)v1 + · · ·+(an + rn)vn = s1v1 + · · ·+ snvn and so ai = si− ri, ∀i. As−1 < si− ri < 1
the only possibility is that ai = 0, and so λ = 0. Therefore, the claim in (29) holds true.

A set S ⊂ Rn is convex if x, y ∈ S ⇒ αx + (1− α)y ∈ S for any 0 ≤ α ≤ 1. Namely, if the
line segment between any two points of the set is contained in it. A set S ⊂ Rn is centrally
symmetric if x ∈ S ⇒ −x ∈ S. Note that if S is convex and centrally symmetric then x, y ∈
S =⇒ 1

2 x− 1
2 y ∈ S. We will use this in the proof of Minkowski’s theorem.

Theorem 20.0.1 (H. Minkowksi). Let L ⊂ Rn be a lattice and let K be a centrally symmetric convex
bounded set36. If

vol(K) > 2n · covol(L ),
then

∃λ ∈ K ∩L , λ 6= 0.

Remark 20.0.2. As L is discrete, it is easy to conclude that if K is closed and bounded, we can
replace the strict inequality by vol(K) ≥ 2ncovol(L ) and the theorem still holds true.

Proof. Suppose that this is not the case. Namely, that for all λ 6= 0 in L , one has λ 6∈ K. Let

κ := ½ · K = {½ · x : x ∈ K}.
Then, for all λ 6= 0, λ ∈ L , we have

(30) (λ + κ) ∩ κ = ∅.

Indeed, otherwise ∃x, y ∈ K such that λ + 1
2 y = 1

2 x and that implies λ = 1
2 x − 1

2 y, which is a
vector in K, since K is centrally symmetric and convex. Contradiction.

We claim that
vol(κ) ≤ covol(L ),

and this is a contradiction since vol(κ) = 1
2n vol(K).

To verify the claim note that

(31) κ = ä
λ∈L

κ ∩ (λ +P0) = ä
λ1,...,λd

κ ∩ (λi +P0),

for some λ1, . . . , λd ∈ L , as κ is bounded.

36The boundedness condition is superfluous and can easily be removed.
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Consider the sets (κ ∩ (λi + P0))− λi = (κ − λi) ∩ P0; they are contained in P0. We claim
that they are disjoint. If not, for some λi 6= λj, (κ − λi) ∩ (κ − λj) ∩ P0 6= ∅, and so (κ − λi) ∩
(κ − λj) 6= ∅. Translating by λi we find

κ ∩ (κ + (λi − λj)) 6= ∅,

which contradicts (30). Therefore,

vol(κ) =
d

∑
i=1

vol(κ ∩ (λi +P0)) =
d

∑
i=1

vol(κ ∩ (λi +P0)− λi)

= vol(∪d
i=1(κ − λi) ∩ P0) ≤ vol(P0).

�

20.1. Applications of Minkowski’s theorem: short vectors. Let L ⊂ Rn be a lattice. Suppose
that rnωn ≥ 2ncovol(L ), where ωn = vol(Bn(0, 1)). We apply Minkowski’s theorem to the
closed ball Bn[0, r]. Minkowski’s theorem implies that there is a λ ∈ L such that λ 6= 0 and
‖λ‖ ≤ r. We deduce the following.

Corollary 20.1.1. Let L ⊂ Rn be a lattice. L contains a non-zero vector of length at most

2 n

√
covol(L )

ωn
.

Remark 20.1.2. Note that for n� 0, ωn is very small. Thus, dividing by ωn, increases the quantity
under the root. Plotting the volume ωn as a continuous function of n one finds the following
graph:
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Exercise 20.1.3. Prove that ωn ≥
(

2√
n

)n
and deduce that L contains a non-zero vector of length

at most √
n · (covol(L ))1/n.

20.2. Applications of Minkowski’s theorem: small values of quadratic forms. Consider a pos-
itive definite symmetric bilinear form

B(x, y) = txBy, B ∈ Mn(R), symmetric, positive definite.

Write B = t AA, A = (v1| . . . |vn) ∈ GLn(R) and let L be the lattice L = ⊕n
i=1Zvi. Then

covol(L ) = |det A| = det(B)1/2.

Applying Corollary 20.1.1, we find that L contains a vector x = x1v1 + · · · + xnvn such that
xi ∈ Z and

‖x‖2 ≤ 4 n

√
covol(L )2

ω2
n

= 4 n

√
det(B)

ω2
n

.

But,

‖x‖2 = 〈x, x〉 = (x1, . . . , xn)
t AA

( x1
...

xn

)
= B(x, x).

Thus, the following theorem follows.

Theorem 20.2.1. Let B be a symmetric positive-definite real bilinear form on Rn. Then, there is a non-
zero vector x = (x1, . . . , xn) with integral coordinates such that

B(x, x) ≤ 4 n

√
det(B)

ω2
n

.

20.3. Applications of Minkowski’s theorem: sums of squares. We apply Corollary 20.1.1 to
obtain another proof of a theorem of Fermat that we previously proved using Jacobi sums.

Theorem 20.3.1 (P. de Fermat). Let p ≡ 1 (mod 4) be a prime. There are integers x, y such that

p = x2 + y2.

Proof. We construct a sublattice L of Z2. Choose u ∈ Z such that u2 + 1 ≡ 0 (mod p). Such
exists because p ≡ 1 (mod 4). Let

L = {(x, y) ∈ Z2 : y ≡ ux (mod p)}.
L is a lattice and, in fact, has a basis (1, u), (0, p). Therefore, covol(L ) = det

( 1 0
u p
)
= p. As

ω2 = π, Corollary 20.1.1 tells us that there is a non-zero vector (x, y) ∈ L such that

x2 + y2 = ‖(x, y)‖2 ≤ 4p
π

< 2p.

But,
x2 + y2 ≡ (y− ux)(y + ux) ≡ 0 (mod p),

and it follows that x2 + y2 = p. �

Exercise 20.3.2. Prove that if p > 2 is a prime, p ≡ 1 (mod 3), then p is of the form x2 + 3y2.

Exercise 20.3.3. Prove that if p > 2 is a prime, p ≡ 1 (mod 8), then p is of the form x2 + 2y2.
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Theorem 20.3.4 (J. L. Lagrange). Every positive integer n is a sum of 4 squares. That is, ∃x, y, z, w ∈ Z

such that
n = x2 + y2 + z2 + w2.

The proof we give uses the Hamilton quaternions. We take some time to discuss this important
object.

20.3.1. The Hamilton quaternions. To begin with, we define the Hamilton quaternions H as a
real vector space of dimension 4, with a basis 1, i, j, k, where i, j, k are formal symbols. Thus,

H = R⊕Ri⊕Rj⊕Rk.

That is, the elements of H are formal sums

{a + bi + cj + dk : a, b, c, d ∈ R}.
There is a natural real vector space structure on H (and, in particular, addition). To define
mulitplication, it is useful to realize H as a subset of M2(C). If we let

1 =
(

1
1

)
, i =

( i
−i
)

, j =
(

1
−1

)
, k =

(
i

i

)
,

then

a + bi + cj + dk ←→

 a + bi c + di

−c + di a− bi

 .

This bijection respects the vector space structure and we can endow the quaternions with mul-
tiplication using multiplication of matrices. In particular,

ij = −ji = k, jk = i, ki = j, i2 = j2 = k2 = −1.

We also gain this way two functions:

Tr : H→ R, Tr(a + bi + cj + dk) := Tr

 a + bi c + di

−c + di a− bi

 = 2a,

and

Nm: H→ R, Nm(a + bi + cj + dk) := det

 a + bi c + di

−c + di a− bi

 = a2 + b2 + c2 + d2.

It follows that if z1, z2 ∈H then

Tr(z1 + z2) = Tr(z1) + Tr(z2), Nm(z1z2) = Nm(z1)Nm(z2).

Exercise 20.3.5. Prove that the map H→H, z 7→ z∗ := Tr(z)− z is an anti-involution. Namely,
it satisfies

(z1 + z2)
∗ = z∗1 + z∗2 , (z1z2)

∗ = z∗2z∗1 .

Prove also that Nm(z) = zz∗. (Suggestion: think in terms of matrices.)

Exercise 20.3.6. Prove that H is a non-commutative division ring (for any x 6= 0 there is a y such
that xy = yx = 1). One reason this is interesting is that there is no commutative division ring of
dimension 4 over R, but here we see that there is a non-commutative division ring.
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Consider the subset Z[i, j, k] := Z⊕Zi ⊕Zj⊕Zk; it is easy to see that this is a subring of H.
The assertion that an integer n is a sum of 4 squares is equivalent to saying that n is a norm of an
element of Z[i, j, k]. This will be a key point for the proof of the 4-squares theorem.

Exercise 20.3.7. The Hurwitz quaternions is the subset of H given by

Z

[
i, j,

1 + i + j + k
2

]
=

{
a + bi + cj + d

1 + i + j + k
2

: a, b, c, d ∈ Z

}
=
{

a + bi + cj + dk ∈H : a, b, c, d ∈ Z or a, b, c, d ∈ Z + 1
2

}
.

Prove that the Hurwitz quaternions form a subring of H. Prove that Nm is still integer-valued
on Z

[
i, j, 1+i+j+k

2

]
.

20.3.2. Proof of the 4-squares theorem. An integer n is a sum of four squares if and only if n is a
norm of a quaternion in Z[i, j, k]. Since the norm is multiplicative, it follows that if both n1 and
n2 are sums of 4 squares, so is n1n2. (This is rather laborious to verify by hand!) Therefore, it is
enough to prove that every prime is a sum of 4 squares. We note that 2 = 12 + 12 + 02 + 02 and
so we look at a prime p > 2.

Claim: There exists integers u, v such that

u2 + v2 = −1 (mod p).

Indeed, mod p, u2 takes p−1
2 + 1 values, as does −1− v2. As there are only p congruence classes

mod p, there must be a value taken by both u2 and −1− v2. That proves the Claim.

Let L ⊂ Z4 be the lattice37 spanned by the columns of
1 0 0 0

0 1 0 0

u v p 0

−v u 0 p

 .

Another presentation of L is as the column vectors

{(a, b, c, d) ∈ Z4 : c = ua + vb (mod p), d = −va + ub (mod p)}.
From the generator matrix we see that covol(L ) = p2. Since ω4 = π2/2, we conclude from
Corollary 20.1.1 that there are (a, b, c, d) ∈ L such that

a2 + b2 + c2 + d2 ≤

2 4

√
p2

π2/2

2

=
4
√

2
π
· p < 2p.

On the other hand, modulo p,

a2 + b2 + c2 + d2 ≡ a2 + b2 + (ua + vb)2 + (−va + ub)2

≡ (1 + u2 + v2)a2 + (1 + u2 + v2)b2 ≡ 0.

37We may keep thinking about L as contained in Z[i, j, k], but at this point there’s no advantage in doing so. We
may simply view L as a sub lattice of Z4 in R4.
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Thus, p|(a2 + b2 + c2 + d2) and it follows that

p = a2 + b2 + c2 + d2.

�

20.4. Applications of Minkowski’s theorem: Diophantine approximations. We will now use
Minkowski’s theorem, or rather Corollary 20.1.1, to give another proof of Dirichlet’s Theo-
rem 4.2.1, slightly reformulated.

Theorem 20.4.1 (Dirichlet). Let θ ∈ R. For every Q ∈ N+, there exists integers p, q, not both zero,
such that 0 ≤ q ≤ Q and

|qθ − p| ≤ 1
Q

.

Proof. Let

K = {(x, y) : −Q− 1
2
≤ x ≤ Q +

1
2

, |xθ − y| ≤ 1
Q
}.

We note that K is a convex, centrally symmetric set in R2 and

vol(K) = (2Q + 1)
2
Q

= 4 +
2
Q

> 4.

For L = Z2 we have covol(L ) = 1 and so vol(K) > 22covol(L ). Applying Minkowski’s
Lattice Point Theorem 20.0.1, we conclude that K contains a non-zero integer vector (q, p); as K
is centrally symmetric, we can always arrange that q ≥ 0. �

Exercise 20.4.2. F Prove the following generalization of Dirichlet’s theorem, by constructing a
suitable convex symmetric set in Rd+1. Let θ1, . . . , θd be real numbers and let Q ∈ N+. There
there are integers p1, . . . , pd, q, not all zero, such that 0 ≤ q ≤ Q and

|qθi − pi| ≤
1

Q1/d , ∀i.

20.5. Applications of Minkowski’s theorem: short solutions to congruences. Let z ∈ Zn, z =
(z1, . . . , zn) be a primitive vector, i.e. gcd(z1, . . . , zn) = 1. Let N ≥ 2 be an integer. We are
interested in finding non-identically-zero integer solutions to the congruence

a1z1 + · · ·+ anzn = 0 (mod N)

that are as small as possible in the sense that

‖(a1, . . . , an)‖∞ := max{|ai| : i = 1, . . . , n}
is small.
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Consider
L = {(a1, . . . , an) ∈ Zn : ∑ aizi ≡ 0 (mod N)}.

Note that as L ⊇ (NZ)n, L is a lattice. Moreover, its index in Zn can be calculated after
reduction modulo N,

[Zn : L ] = [(Z/NZ)n : L (mod N)].
To calculate this index, we view all vectors as columns vectors. The first fact that we need is left
as an exercise:

Exercise 20.5.1. Prove that there is a matrix M ∈ GLn(Z) whose first column is t(z1, . . . , zn).

In the notation of the exercise, the condition defining L modulo N is

0 ≡∑ aizi = (a1, . . . , an)(Mt(1, 0, . . . , 0)) = ((a1, . . . , an)M)t(1, 0, . . . , 0).

That is, M induces a bijection between L modulo N and the subgroup {(0, b2, . . . , bn) : bi ∈
Z/NZ} that has index N in (Z/NZ)n. Therefore, [Zn : L ] = N, and it follows that

covol(L ) = N.

On the other hand, consider the ball of radius r relative to the norm ‖ · ‖∞,

K(r) = {(x1, . . . , xn) ∈ Rn : max{|xi|} ≤ r}.
It is simply the cube [−r, r]n and has volume 2nrn. If 2nrn = 2ncovol(L ), that is, if r = N1/n,
then by Corollary 20.1.1 there is a non-zero vector (a1, . . . , an) ∈ L ∩ K(r). Namely, a non-zero
solution to the congruence mod N such that |ai| ≤ N1/n for all i. We proved the following
theorem.

Theorem 20.5.2. Let (z1, . . . , zn) ∈ Zn be a primitive vector. For any N ∈ N+ there is a non-zero
integer solution (a1, . . . , an) for the congruence

a1z1 + · · ·+ anzn ≡ 0 (mod N)

such that
|ai| ≤ N1/n.

Example 20.5.3. Suppose that (z1, z2) = (−49, 46). We have the solution (46, 49) which is a
solution modulo N for every N. Let N = 31. Compared to

√
31 ≈ 5.57 this a big solution. Even

noting that this solution modulo 31 is congruent to (15,−13) we get a solution (15,−13) mod 31
that is large compared to

√
31. The theorem says that there is solution (a1, a2) modulo 31 with

|ai| ≤ 5. Indeed, −1×−49 + 5× 46 = 279 = 9× 31, so (−1, 5) is a solution modulo 31.

Exercise 20.5.4. Derive a similar theorem for the norm ‖(x1, . . . , xn)‖1 = |x1|+ · · ·+ |xn|. Namely,
in this case we are trying to minimize the total amount of memory needed to store the solution
in its entirety and not minimize every xi separately. Makes sense!

21. SUCCESSIVE MINIMA

21.1. The shortest vector problem. Given a lattice L ⊂ Rn, what is the shortest non-zero vec-
tor in the lattice? Can we find, efficiently, this vector? This problem, which is of theoretical
and computational importance, is also currently of great technological importance. The recent
activity towards developing post-quantum cryptographic tools (for example, developing pro-
cedures for encrypting documents, digitally signing documents, or sharing a secret over open
channels) that can withstand attacks by (still putative) quantum computers has put problems



COURSE NOTES - MATH 346 & 377 111

concerning lattices at the forefront; some of the strongest contenders for such procedures are
based on hard computational problems concerning lattices, of which the short vector problem
(SVP) is an excellent example.

Minkowski’s theorem, or rather its direct corollary, Corollary 20.1.1, gave us an estimate: Let
L ⊂ Rn be a lattice. L contains a non-zero vector of length at most

2 n

√
covol(L )

ωn
.

While promising, consider the case where n = 1000 and the bound for the length is 30, which
is not that bad (cf. Exercise 20.1.3). Without further information, to find such a vector we might
need to run over all vectors with 0,±1 coordinates among which 30 or less are not 0, for example;
a back of an envelop calculation shows that this requires checking possibly up to 2300 different
vectors, probably more, which is completely out of the question. Finding a short vector, even
if it has relatively small length, is a very hard computational problem! It is believe to be NP
hard. That means that by solving this problem one would be able to solve any problem in the
complexity class NP, although one cannot determine at this point whether the problem itself is
in NP, or perhaps even harder.

One beautiful example of a cryptographic tool using that hard computational problem is a
construction due to M. Ajtai and is known as Ajtai’s hash function. A hash function f is a
function

f : {0, 1}N → {0, 1}n,

where N � n. Such functions have a variety of applications in cryptography and computer
science and we will not get into that here, but provide only one motivation. Our discussion will
be very naı̈ve, but it will provide the gist of the role played by hash functions in cryptography.
Imagine that you have a very large set of data (grades of students, bank accounts, a genome
mapping, . . . ) and that you want to verify periodically that this data was not compromised,
either by intention or due to natural causes. One method is to keep comparing bit-by-bit the file
at present time with a recent secure copy of the file. Another option is to apply a hash function
to both the secure copy and the current file; a hash function that produces, say, a string of one
hundered 0/1 bits. If the result is the same, then, with high probability, the files are identical.
Now, based on either statistical arguments, or imagining a scenario with an adversary interested
in modifying just a particular part of the data (e.g., adding two zeros to the balance in their bank
account), for such applications one wants the hash function to be very sensitive to small changes,
one also wants it to be infeasible to reverse-engineer a data file that would hash to a given value.

The following is a variant on Ajtai’s hash functions; it is very close to the way these functions
appear in the literature. We explain the connection afterwards.

Ajtai’s hash function. Fix a reasonably large integer N, say N = 250. Fix a primitive vector

(z1, . . . , zn) ∈ Zn,

where n is, say, 500. Construct a function

hz : {0, 1}n → Z/NZ, hz(a) = hz((a1, . . . , an)) =
n

∑
i=1

aizi (mod N).

If N = 250 any elements of Z/NZ can be uniquely written as ∑49
i=0 εi2i, εi ∈ {0, 1} and so we

can also view the output of hz as a vector in {0, 1}50, namely, a string of fifty 0/1 bits.
For cryptographic applications we want this function to be collision resistant. Namely, it

should be infeasible to find a 6= b such that hz(a) = hz(b).
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If hz(a) = hz(b) then hz(a− b) ≡ 0 (mod N) and note that ‖a− b‖∞ = 1. Thus, if one can
find collisions, one can find a very short non-zero solution to the problem

a ∈ Zn, a1z1 + · · ·+ anzn ≡ 0 (mod N);

in fact, a solution with infinity norm 1.

In the literature one finds the following variant. Let A be an integer matrix with n rows and m
columns that is primitive. That means that the subgroup L ⊂ Zn spanned by the columns of A
is free of rank m and is saturated: if for a non-zero integer m and a non-zero vector v ∈ Zn we
have mv ∈ L then v ∈ L. It is equivalent to the statement that one can complete A to a matrix in
GLn(Z) (cf. Exercise 20.5.3), and also to the statement that the Zn/L is torsion-free (hence, free).

One associates to A a hash function

hA : {0, 1}n → (Z/NZ)m, a 7→ aA (mod N).

Let us denote the columns of A by z1, . . . , zm. Using the bijection

(Z/NZ)m → Z/NmZ, (t1, . . . , tm) 7→ t1 + t2N + · · ·+ tmNm−1,

we find that the vector hA(a) = (a · z1, . . . , a · zm) corresponds to a · z1 + a · z2N + a · zmNm−1

which is just
a · (z1, Nz2, . . . , Nm−1zm) (mod Nm).

Note that if the original matrix was primitive, this is still a primitive vector. Thus, the hardness
of the more general Ajtai hash functions is computationally the same as in the case we first
presented.

Ajtai,38 and then Ajtai-Dwork, Goldreich-Goldwasser-Halevi, and others, have improved
more and more on the security of such schemes. In particular, they proved that the ability to
find collisions for all the hash functions hz implies that ability to find, approximately (namely,
to a good precision), a short basis for any lattice. This latter problem is known to be NP hard.

21.2. Minkowksi’s theorem on successive minima. Let L be a lattice in Rn. Let us introduce
notation and denote by µ1(L ) the length of a shortest non-zero vector in L . That is,

µ1(L ) = min{‖v‖ : v ∈ L , v 6= 0}.
Note that µ1(L ) is also the shorted possible distance between two distinct vectors in L .

More generally, for i = 1, 2, . . . , n define the successive minima of L by

µi(L ) = inf{r : rkR(Span(L ∩ B[0, r])) ≥ i}.
In words, µ1(L ) is the minimal real number r for which we can find a non-zero vector of length
r in L ; µ2(L ) is the minimal real number r for which we can find two linearly independent
vectors of length ≤ r in L ; µ3(L ) is the minimal real number r for which we can find three
linearly independent vectors of length ≤ r in L , and so on. It is easy to see, using that L is
discrete and the balls are closed, that we can replace “inf” by “min” in the definition.

We make some simple observations:
(1) From the definition,

0 < µ1(L ) ≤ µ2(L ) ≤ · · · ≤ µn(L ) < ∞.

(2) From Minkowski’s Theorem (cf. Exercise 20.1.3),

µ1(L ) ≤
√

n · covol(L )1/n.

38M. Ajtai, Generating Hard Instances of the Short Basis Problem, ICALP 1999: Automata, Languages and Program-
ming pp 1–9, LNCS, volume 1644.
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The following theorem, sometimes called Minkowski’s Second Theorem, of Minkowsk’s Suc-
cessive Minima Theorem, provides information about the successive minima.

Theorem 21.2.1 (Minkowski). The successive minima satisfy the following inequalities:

covol(L )1/n ≤
(

n

∏
i=1

µi(L )

)1/n

≤ 2
ω1/n

n
· covol(L )1/n ≤

√
n · covol(L )1/n.

In the proof we will need to use Hadamard’s inequality, which is the following.
Let A be a n× n real square matrix with columns v1, . . . , vn. Then

|det(A)| ≤
n

∏
i=1
‖vi‖.

To prove this statement, we first note that we can rescale the columns and thus assume that
each column is a unit vector. Under these conditions, we need to show that |det(A)| ≤ 1.
Equivalently, that det(t AA) ≤ 1. The advantage is that M = t AA is a real symmetric positive
definite matrix with diagonal entries 1. Let λ1, . . . , λn be the eigenvalues of M; they are real and
positive. Then, by the inequality of arithmetic and geometric means, we have

det(M)1/n = (λ1 · · · λn)
1/n ≤ λ1 + · · ·+ λn

n
=

1
n

Tr(M) = 1,

and thus det(M) ≤ 1.

We now prove Minkowki’s theorem.

Proof. Let x1, . . . , xn be vectors in L such that ‖xi‖ = µi(L ). We begin with the lower bound.
On the one hand, for Q = {∑n

i=1 αixi : 0 ≤ αi ≤ 1} we have

vol(Q) ≥ vol(P),
where P is a fundamental parallelepiped for L . This is true, because the lattice L ′ spanned by
{xi}n

i=1, which might be a proper sublattice of L , satisfies, on the one hand, covol(L ′) = vol(Q)
and, on the other hand, covol(L ′) = [L : L ′]covol(L ) = [L : L ′]vol(P). Let A be the
generator matrix for L ′ with columns x1, . . . , xn. Hadamard’s inequality states that vol(Q) =
|det A| ≤ ∏n

i=1 ‖xi‖. But this product is simply ∏n
i=1 µi(L ).

The upper bound is harder. We first apply the Gram-Schmidt process to the vectors x1, . . . , xn
to obtain a basis,

x̃1, . . . , x̃n,
to Rn. This basis has the following properties:

(1) {x̃1, . . . , x̃n} is an orthonormal set.
(2) ∀i, SpanR(x̃1, . . . , x̃i) = SpanR(x1, . . . , xi).
(3) x̃1 = x1/‖x1‖.

Since {x̃i} is an orthonormal basis, for any y ∈ Rn it holds that

y =
n

∑
i=1
〈y, x̃i〉 · x̃i, ‖y‖2 =

n

∑
i=1
〈y, x̃i〉2.

Consequently, the set {y ∈ Rn : ∑n
i=1〈y, x̃i〉2 ≤ 1} is just the closed unit ball Bn[0, 1]. We conclude

that the ellipsoid

T =

{
y ∈ Rn :

n

∑
i=1

(
〈y, x̃i〉

µi

)2

< 1

}
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has volume

vol(T) = µ1 · · · µn ·ωn.

Key point. T contains no non-zero vector of L .

Proof. Let y ∈ L , y 6= 0. Let 1 ≤ k ≤ n be the maximal integer such that

µk ≤ ‖y‖.

Hence, if k < n , ‖y‖ < µk+1.
We claim that y ∈ SpanR(x1, . . . , xk). This is clear if k = n. For k < n, if y 6∈ SpanR(x1, . . . , xk)

then

rk(SpanR(B[0, ‖y‖] ∩L )) ≥ k + 1,

and that contradicts the definition of µk+1. Therefore, y ∈ SpanR(x1, . . . , xk) and so

y ∈ SpanR(x̃1, . . . , x̃k).

Now,
n

∑
i=1

(
〈y, x̃i〉

µi

)2

=
k

∑
i=1

(
〈y, x̃i〉

µi

)2

≥ 1
µ2

k

k

∑
i=1

(〈y, x̃i〉)2 =
1
µ2

k
‖y‖2 ≥ 1,

and therefore y 6∈ T. �

The key point implies, by Minkowski’s theorem, that vol(T) ≤ 2ncovol(L ) and so the inequality,

µ1 · · · µn ·
(

2√
n

)n

≤ µ1 · · · µn ·ωn ≤ 2ncovol(L ),

from which the upper bound follows (we have also used the bound on ωn provided in Exer-
cise 20.1.3). �

Exercise 21.2.2. Find the successive minima and covol(L ) for the following lattices. Write nu-
merically the quantities in Minkowski’s lattice point and successive minima theorems.

(1) L = Z⊕Zi identified with Z2.
(2) L = Z⊕Zω, ω = −1+

√
−3

2 ⊂ C ∼= R2.
(3) L = SpanZ((1, 0), (r1, r2)), where r1, r2 are non-negative real numbers and r2 > 1. (For

µ2 find only an approximation.)

Exercise 21.2.3. The Dn lattices. The Dn lattice in Rn is defined as

Dn = {(x1, . . . , xn) ∈ Zn :
n

∑
i=1

xi ≡ 0 (mod 2)}.

Compare Exercise 19.4.4. Find its successive minima. Find also ]{x ∈ Dn : ‖x‖ = µ1(Dn)}.
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22. MORE EXAMPLES OF LATTICES

The following lattices are classical.

The lattices An. For n ≥ 1, let

An = {(x0, x1, . . . , xn) ∈ Zn+1 : x0 + · · ·+ xn = 0}
An is a free abelian group of rank n in Rn+1 and a basis for it is provided by

M =



−1 0 0 · · · 0

1 −1 0 · · · 0

0 1 −1 · · · 0
...

...

0 0 0 · · · −1

0 0 0 · · · 1


.

An is not a lattice per ce, because we always demand that a lattice has full rank in the ambient
space. But An lies on the hypersurface H = {∑ xi = 0}, and by choosing an orthonormal set
y1, . . . , yn in H, we can identify H, together with the inner product, with Rn with the standard
inner product by sending ∑ aiyi to ∑ aiei, {ei} being the standard basis for Rn. Thus, without
specifying this explicitly, we will think about An as an n-dimensional lattice.

Exercise 22.0.1. Show that A2 is identified this way with a lattice that is, up to scaling and perhaps
rotation, the hexagonal lattice.

The Gram matrix B of An is t MM, and a calculation gives

B =



2 −1 0 · · · 0

−1 2 −1 · · · 0

0 −1 2 · · · 0
...

...

0 0 0 · · · 2 −1

0 0 0 · · · −1 2


.

Exercise 22.0.2. Prove that covol(An) =
√

n + 1. Prove that µi(An) =
√

2 for all i. Find

]{x ∈ An : ‖x‖ = µ1}.
(Compare this with the lattice Zn that also has all its successive minima equal but for which
]{x ∈ Zn : ‖x‖ = µ1} = 2n.)

Exercise 22.0.3. Is it true or not that A3, properly rescaled, is isometric to D3? What about A4 and
D4?

The lattices A∗n. This is another notation for the dual lattice A⊥n , where the dual is calculated
in H ∼= Rn, and not in Rn+1. Otherwise said,

A∗n = {x ∈ H : 〈x, y〉 ∈ Z, ∀y ∈ An}.
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Exercise 22.0.4. Find a generator matrix for A∗n. Determine covol(A∗n) and prove that µ1(A∗n) =√
n/(n + 1) and that it is achieved 2n + 2 times if n ≥ 2 and 2 times if n = 1.

The lattice E6. The lattice E6 can be constructed as a sublattice of the lattice E8 we will con-
struct later. But we can also present it explicitly. It lies in the codimension 2 subspace of R8

given by ∑ xi = 0 and x1 + x8 = 0. A generator matrix is provided by

0 0 0 0 0 ½

−1 0 0 0 0 ½

1 −1 0 0 0 ½

0 1 −1 0 0 ½

0 0 1 −1 0 −½

0 0 0 1 −1 −½

0 0 0 0 1 −½

0 0 0 0 0 −½


Exercise 22.0.5. FWrite down the Gram matrix and calculate covol(E6). Show that µ1(E6) =

√
2

and it is achieved by 72 vectors – this is called the kissing number of the lattice. (Note that for
Z6 this number is 12, for A6 it is 42 and for D6 it is 60.) The lattice E6 is known to achieve the
highest kissing number among all lattices in R6, D4 and D5 hold the record in their respective
dimensions, and A2 and A3 in theirs.

23. THE SPHERE PACKING PROBLEM

The sphere packing problem ask for the densest packing of solid identical spheres in Rn. Here
“sphere” means a closed ball Bn[v, r] of some radius r > 0. By a packing we means a subset P
in Rn such that

P = ∪i∈I Bn[vi, r],
over some countable index set I and so that for i 6= j, Bn[vi, r] intersects Bn[vj, r] at most along
their boundaries. Note that

vol(Bn[vi, r]) = rnωn,
where ωn = vol(Bn[0, 1]) and is given in Equation (5).

We define the packing density as

∆(P) = lim
N → ∞

vol(P ∩ [−N, N]n)

vol([−N, N]n)
,

and we will assume it exists. The sphere packing problem is then to maximize ∆(P). Note that
∆(P) is invariant under rescaling; namely, we may assume r = 1, but it will be convenient to
allow a general r.
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23.1. Lattice packing. Our main focus will be on lattice packing. Let L ⊂ Rn be a lattice and
let r > 0 such that ∪λ∈L B[λ, r] is a packing; it is called a lattice packing. The maximal r such
that this is still a packing is called the packing radius. We shall denote it ρ(L ). Clearly,

ρ(L ) =
1
2

µ1(L ).

We will denote P(L ) the corresponding packing and by ∆(L ) its density. Another customary
notation is the centre density,

δ(L ) = ∆(L )/ωn.

Lemma 23.1.1. We have

∆(L ) =
vol(B[0, 1

2 µ1(L )])

covol(L )
=

µ1(L )nωn

2n · covol(L )
,

and

δ(L ) =
µ1(L )n

2n · covol(L )
.

The idea of the proof is quite clear, so we will state it and omit the details. For a very large N, the
number of translated fundamental parallelepiped contained in [−N, N]n is obtained as roughly
the ratio of the volumes: (2N)n/covol(L ). It is also essentially the same number of translated
parallelepiped required to cover [−N, N]n and it is also, roughly, the number of balls in P(L )
contained in [−N, N]n and the number of balls intersecting non-trivially [−N, N]n.This produces
an estimate for vol(P∩[−N,N]n)

vol([−N,N]n)
from which N disappears by cancellation and yields by passing to

the limit on N the formula in the lemma.

It is not clear at all that the best packing densities can always be obtained from lattice packing.
Here is the state of the art (February 2021):

(1) n = 1. This is true and trivial. In this case ∆(Z) = 1, δ = 1
2 .

(2) n = 2. This is true and non-trivial. The result is due to A. Thue. In this case the lattice
is the hexagonal lattice, ∆(L ) ≈ 0.91, δ = 1

2
√

3
. That is, the area covered by the discs

amounts to about 91% of the total area.
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(3) n = 3. This is true and extremely hard. The result is due to T. Hales, who gave two
proofs. The second one is in collaboration with S. Ferguson and is computer assisted.
In fact, there is more than one lattice achieving this density, one being the fcc, or D3,
lattice. There are also non-lattice packing achieving the same density (for example, the
hcp packing) but they, too, are formed by laying one layer of the hexagonal lattice on top
of itself

The (now proven) conjecture that the best packing is obtained by the fcc lattice is
known as Kepler’s conjecture.

Why is this a difficult problem?? Perhaps the following will give a clue. In the best
lattice packing each sphere touches precisely 12 adjacent spheres, but a thirteenth ball
very nearly fits. In fact, this problem is known as the kissing problem and it asks how
many spheres can touch a given sphere in Rn. In R2 the number is 6. In R3 the number is
known to be 12, but in Newton’s times this was an issue of a controversy, with Newton
siding with “12” camp. The solution to the kissing problem is known in dimension 4
(24), 8 (240) and 24 (196,560), but in no other dimensions. The lattices responsible for
these kissing numbers are D4, E8 and Λ24 (see below and Exercise 21.2.3). It is worth
noticing that the kissing number of Z4 is 8, while for D4 it is 24.

However, the fact that in R3 one can very nearly fit an additional sphere suggests the
idea that by somewhat upsetting a lattice packing one might be able to do better. In high
dimensions, already in dimension 10 in fact, there are examples of packings that beat the
best currently known lattice packing.

(4) In general one has Roger’s bound, illustrated in the figure below (taken from Conway &
Sloane) for the function log2(δ) +

1
96 n(24− n). It is valid for any packing, lattice or not.

We notice in dimensions 1, 2, 3, 8 and 24 very good candidates coming from lattices.
(5) n = 8. This is true. Marina Viazovska proved in 2016 that the E8-lattice achieves the best

density in R8. The E8 lattice has ∆ ≈ 0.25367 , δ = 0.0625.
(6) n = 24. This is true. Cohn, Kumar, Miller, Radchenko and Viazovska proved in 2017 that

the Leech lattice Λ24 achieves the best density in R24: ∆(Λ24) ≈ 0.001930, δ(Λ24) = 1.
The Leech lattice is named after John Leech who discovered it in 196739

(7) K. Ball proved in 1992 that the best ∆(P) is at least 2n · 2−n. This was improved in 2012
by A. Venkatesh:

∆(P) ≥ e−γ

2
n · log log(n) · 2−n.

39John Leech, “Notes on sphere packings.” Canadian J. Math. 19 (1967), 251–267.
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On the other hand, it is known that

∆(P) ≤ 2−0.5990n.

Example 23.1.2. Let us calculate the density of the lattice Zn. Since µ1(Z
n) = 1, we have

ρ(Zn) = 1/2.

∆(Zn) =
vol(Bn[0, 1/2])

vol([0, 1]n)
=

ωn

2n .

Using the estimate ωn ≥ 2nn−n/2, we get that ∆ ≥ n−n/2 = (1/n)n/2. But note that this is very
small compared to the upper bound 2−0.5990n = (1/21.1980)n/2. (In fact, we can easily prove that
there are always lattices with ∆ ≥ (1/4)n/2; see Proposition 23.1.3.)

So, for example, in dimension 8 we have ω8 = π4/4! and ∆(Zn) = π4

284! , while ∆(E8) =
π4

244! .
Namely, the E8 packing is 16 times more dense than the square packing!

Proposition 23.1.3. For every n, there is a packing with density ∆ ≥ 2−n.

Proof. Consider any packing P , lattice or not, by balls of radius r such that one cannot add any
ball of radius r to the packing. Without loss of generality r = 1. Suppose that

P = ∪i∈I B[vi, 1].

We claim that
Rn = 2P := ∪i∈I B[vi, 2].

Indeed, if x 6∈ B[vi, 2] for any vi then

‖x− vi‖ > 2, ∀i ∈ I.

That implies that B[x, 1] ∩ B[vi, 1] = ∅, ∀i ∈ I and so we can add B[x, 1] to P . Contradiction.
Now, for every N, vol(2P ∩ [−N, N]n) = vol([−N, N])n. When we compare ball-by-ball the

balls B[vi, 2] that contribute to P ∩ [−N, N]n we can divide them into two groups:
In the first group are those such that B[vi, 1] is entirely contained in [−N, N]n. For such balls

vol(B[vi, 1] ∩ [−N, N]n) ≥ 1
2n vol(B[vi, 2] ∩ [−N, N]n) (with equality only achieved if B[vi, 2] is

entirely contained in [−N, N]n, but that doesn’t matter to us).
In the second group are the balls B[vi, 1] that aren’t contained in [−N, N]n entirely, but B[vi, 2]

intersects non-trivially [−N, N]n. These B[vi, 2] have the property that the distance of vi from
the boundary of [−N, N]n is at most 2 and so their intersection with [−N, N]n is contained in
the difference of the cubes [−N, N]n \ [−(N − 4), (N − 4)]n (one can do better, but this doesn’t
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matter). Thus, they contribute to the volume at most 2n(Nn − (N − 4)n). We can therefore
conclude that

vol(P ∩ [−N, N]n) ≥ 1
2n (vol(2P ∩ [−N, N]n)− 2n(Nn − (N − 4)n)) .

To compute the density we need to divide by the volume of [−N, N]n which is 2nNn. We find
that

∆(P) ≥ 1
2n −

Nn − (N − 4)n

2nNn −→
N → ∞

1
2n .

�

Exercise 23.1.4. For which n, ∆(Zn) < 2−n? What explanation is offered by the proof of Proposi-
tion 23.1.3?

23.2. The covering radius. Let L ⊂ Rn be a lattice. The covering radius R(L ) of L is the
minimal real number R such that

Rn = ∪λ∈L B[λ, R].
In fact, this definition makes sense for any subset L of Rn if we allow the possibility that
R(L ) = ∞. It is can be expressed in terms of Voronoi cells.

Let S be a subset of Rn. For every point in s ∈ S its Voronoi cell is the subset

V(s) = {x ∈ Rn : ‖x− s‖ ≤ ‖x− t‖, ∀t ∈ S}.
Alternately, for every t ∈ S, t 6= s draw that half space of points closer to s than to t, or of equal
distance. It is one of the two half-spaces created by the hyperplane perpendicular to the interval
from s to t and passing through its middle point. Then V(s) is the intersection of all these half-
spaces. It is a convex closed set and the collection of Voronoi cells covers Rn with intersections
only along their boundaries. If one imagine cell-phone towers positioned at every point of S,
the covering radius determines the strength of signal required so that there is full-coverage and
is the minimal R such that ∀s ∈ S, V(s) ⊆ B[s, R].

For lattices, the picture that we get is more organized. All the Voronoi cells are polyhedra and
are all congruent to each other, each the intersection of finitely many (closed) half-spaces. Let V
be the Voronoi cell of 0. We have the following interpretation. The packing radius is

ρ(L ) = radius of the largest ball around 0 contained in V =
1
2

µ1(L ),

while the covering radius is

R(L ) = radius of the minimal ball around 0 containing V.
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Proposition 23.2.1. R(L ) ≥ 1
2 µn(L ).

Proof. Suppose that R = R(L ) < 1
2 µn(L ). We construct a set of linearly independent vectors

v1, . . . , vn in L such that
‖vi‖ ≤ 2R + ε,

where ε = 1
2 µn(L )− R > 0. As 2R + ε = R + 1

2 µn < µn this contradicts the definition of µn.
Let v0 = 0 and construct vi inductively. (One may take v1 a vector of length µ1(L ), but the

proof works also for i = 1.) Assume that v1, . . . , vi−1 were already defined. Let

Hi−1 = SpanR(v1, . . . , vi−1).

Let ti ∈ Rn be a vector perpendicular to Hi−1 such that ‖ti‖ = R + ε.

By the definition of R, there is a lattice vector vi ∈ B[ti, R]. Note that vi 6∈ Hi−1 (the orthogonal
projection of ti on Hi−1, which is of course 0, is also the vector in Hi−1 closest to ti and that
distance is R + ε. As the distance of vi from ti is strictly smaller, vi cannot be in Hi−1). It only
remains to verify that vi is short enough:

‖vi‖ ≤ ‖vi − ti‖+ ‖ti‖ ≤ R + (R + ε) = 2R + ε.

�
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Example 23.2.2. The successive minima of Zn are µ1(Z
n) = · · · = µn(Zn) = 1 as the standard

basis vectors are all of length 1. Let us find the covering radius of Zn. Given x ∈ Rn we can find
z ∈ Zn such that |xi − zi| ≤ 1/2, ∀i. Indeed, zi = bx1c or bx1c+ 1. Then, for z = (z1, . . . , zn),

‖x− z‖ ≤
√

n/2.

For x = (1/2, . . . , 1/2) we get equality. Hence,

R(Zn) =
√

n/2 =
√

n× 1
2

µn(Z
n).

Exercise 23.2.3. F Prove that for every lattice L ,

R(L ) ≤
√

n× 1
2

µn(L ).

Exercise 23.2.4. In light of Exercise 23.2.3, Zn has the worst covering radius, in the sense that
R(Zn)

1
2 µn(Zn)

attains the maximum possible. Find this ratio for the hexagonal lattice and the plane

lattices Z[
√
−d], where d > 0 is an integer and we identify C with R2.

24. CODES

When we talk about codes, this has nothing to do with secrecy, it has nothing to do with cryp-
tography. Codes are an ingenious device created to maintain integrity of data. Here are typical
situations: A rover on Mars transmits pictures to earth over a distance of about 55 million kilo-
metres, when the planets are the closest, using transmission of very limited strength. It is a
certainty that some errors will occur along the way. Bits of data may just be lost, or misinter-
preted as 0 instead of 1, etc. Errors can also occur at the stage of translating the camera feed into
bits for transmission. In another scenario, a scratched DVD is missing some of the data origi-
nally recorded on it. Or a computer code may contain errors simply due to the typing process.
Codes are used to recognize such errors and recover, with a certain degree of confidence, the
original data. In fact, one of the first codes, if not the very first, the Hamming code, was used
by R. W. Hamming precisely to correct errors in computer code. The book by T. M. Thompson,
From Error Correcting Codes Through Sphere Packings to Simple Groups, contains some of the history
of the subject.

As this is not a course in Coding Theory, we shall focus on very particular codes. For us, codes
will be linear codes over the field F2 with two elements, denoted 0, 1. Namely, over Z/2Z. Such
codes are called binary linear codes.
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24.1. Codes: first definitions. A code C of length n is a subspace of Fn
2 . Note that multiplication

by scalars is completely degenerate in this case. Thus, a non-empty subset C is a code precisely
when it is a subgroup. In fact, precisely when

x, y ∈ C =⇒ x + y ∈ C.

We define the Hamming distance on Fn
2 by

d(x, y) = ] places where x and y differ =
n

∑
i=1
|xi − yi|,

where |0| = 0, |1| = | − 1| = 1 (we mention that as, technically, 0, 1 = −1, are congruence classes
and not real numbers so we need to explain what is meant by their absolute value). The weight
of a vector x is

w(x) = d(x, 0) = ] non-zero entries of x.
The distance of a code C is

d(C) = min{w(x) : x ∈ C, x 6= 0}.
Note that this implies

u, v ∈ C, u 6= v =⇒ d(u, v) ≥ d(C).

Being a linear subspace, a code has dimension k. This is equivalent to saying that C contains 2k

vectors. Thus, given a code we shall say it is a (n, k, d)-code, meaning it is a subspace of Fn
2 (it

has length n), has dimension k and distance d.

Exercise 24.1.1. Prove that if C is a (n, k, d)-code then

d ≤ n− k + 1.

Given a code C define the dual code C⊥ by

C⊥ = {(y1, . . . , yn) :
n

∑
i=1

xiyi = 0, ∀x = (x1, . . . , xn) ∈ C}.

Namely, under the natural identification of Fn
2 with its dual space (any (y1, . . . , yn) ∈ Fn

2 de-
fines a linear functional (x1, . . . , xn) 7→ ∑n

i=1 xiyi or, more succinctly, x 7→ x · y), C⊥ is just the
annihilator of C. Thus, from linear algebra,

d(C⊥) = n− d(C), (C⊥)⊥ = C.

Let us also define the Hamming weight enumerator of C as the polynomial in variables x, y
given by

WC(x, y) =
n

∑
m=0

N(m)xn−mym,

where
N(m) = ] {x ∈ C : w(x) = m}.

Example 24.1.2. Here are some first examples of codes.
(1) The zero code Z. This is the code

Z = {0 = (0, . . . , 0)}.
It is a code of type (n, 0, 0) and

WZ(x, y) = xn.
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(2) The universal code U. This is the code Z⊥; namely,

U = Fn
2 .

This is a code of type (n, n, 1) and

WU(x, y) = (x + y)n =
n

∑
m=0

(
n
m

)
xn−mym.

(3) The repetition code R. This is the code {(0, . . . , 0), (1, . . . , 1)}. It is a code of type (n, 1, n)
and

WR(x, y) = xn + yn.

(4) The parity check code P. This is the code R⊥:

P = {(x1, . . . , xn) :
n

∑
i=1

xi = 0} = {(x1, . . . , xn) : xn =
n−1

∑
i=1

xi}.

(So, xn is the parity of the sum of the first n− 1 digits.) It is a code of type (n, n− 1, 2) for
n ≥ 2 and

WP(x, y) =
n

∑
m=0, m even

(
n
m

)
xn−mym =

1
2
((x + y)n + (x− y)n).

Given a code C ⊆ Fn
2 define the extended code Ce ⊆ Fn+1

2 by

Ce = {(x1, . . . , xn,
n

∑
i=1

xi) : (x1, . . . , xn) ∈ C}.

Thus, the parity check code P of length n + 1 is Ue, where U is the universal code in Fn
2 .

Exercise 24.1.3. Determine (n(Ce), k(Ce), d(Ce)) in terms of (n(C), k(C), d(C)). Determine WCe in
terms of WC. Determine (Ce)⊥ in terms of C⊥.

24.2. How are codes used? Codes are used to communicate over noisy channels. Imagine for
example a rover on Mars sending data back to earth. This data is a string of zero’s and one’s.

Space and the atmosphere are full of interference, the signal is weak and is sent over many
millions of kilometres. Errors are bound to happen. Let C be an error correcting code of type
(n, k, d). Break the original data into blocks of size k and choose a linear isomorphism

T : Fk
2 → C.
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The transformation T encodes any block of length k as a code word in C. If A is an n× k matrix
whose columns generate C then T is simply T(x) = Ax. Now the blocks of length n generated
this way are transmitted. Only code words are transmitted in this process, and at the receiving-
end blocks of length n are received such that each of them should be a code word. This is the
case if no errors occurred. But this is not always the case.

If a received vector v is not in the code, one looks for the code word closest to it. This is a
well-defined notion as long as at most b(d − 1)/2c errors occur, because then there is unique
code word closest to v and we choose it as the correction of v. However, we should also ask
ourselves how many errors can be detected? Well, if the original code word was v0 then, even
if d − 1 errors had occurred between transmission and reception of v0, we can detect that an
error had occured. We therefore say that a (n, k, d) code can detect d− 1 errors and correct up to
b(d− 1)/2c errors.

After the stage of detection and repair of errors is completed, the received data is decoded
using T−1 : C → Fk

2 and the original data is thus obtained.

Example 24.2.1. Let us use the code C generated by the following vectors

v1 = (1, 1, 0, 1, 0, 0, 0)

v2 = (0, 1, 1, 0, 1, 0, 0)

v3 = (0, 0, 1, 1, 0, 1, 0)

v4 = (0, 0, 0, 1, 1, 0, 1)

This is the (7, 4, 3) Hamming code to be discussed later. The matrix A is

A =


1 0 0 0
1 1 0 0
0 1 1 0
1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1


If the data we want to send is 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0 we send instead

A t(0, 0, 1, 0) = t(0, 0, 1, 1, 0, 1, 0), A t(1, 1, 1, 1) = t(1, 0, 0, 1, 0, 1, 1), A t(0, 1, 1, 0) = t(0, 1, 0, 1, 1, 1, 0).

Suppose that the first word received was u = (1, 0, 1, 1, 0, 1, 0). It is not in the code, but we find
the vector (0, 0, 1, 1, 0, 1, 0), which is in the code, in distance 1 from u. Thus, it is most likely
that u was originally (0, 0, 1, 1, 0, 1, 0).

24.3. MacWilliams’ identity. Our next result is a beautiful identity between the weight enumer-
ator of a code and its dual. To quote Neil Sloane, “This theorem, due to Mrs. F. J. MacWilliams,
is one of the most remarkable results in coding theory”.

Theorem 24.3.1 (F. J. MacWilliams’ identity). Let C be a code of dimension k. Then

WC⊥(x, y) =
1
2k WC(x + y, x− y).

Proof. Given any function
f : Fn

2 → R,

where R ⊃ Q is a commutative ring, define its Hadamard transform,

f̂ (u) = ∑
v∈Fn

2

(−1)u·v f (v).

The function f̂ is again a function Fn
2 → R. The construction is a special case of a Fourier trans-

form and the following formula is a special case of Plancherel’s identity, but we will give direct
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arguments instead of alluding to Fourier analysis for groups. We claim that

(32) ∑
u∈C⊥

f (u) =
1
2k ∑

u∈C
f̂ (u).

Indeed,
∑

u∈C
f̂ (u) = ∑

u∈C
∑

v∈Fn
2

(−1)u·v f (v) = ∑
v∈Fn

2

f (v)(∑
u∈C

(−1)u·v).

Now, if v 6∈ C⊥, ∑u∈C(−1)u·v = 0 (it is the sum of a non-trivial character u 7→ (−1)u·v, valued in
{±1}, on the abelian group C and the usual trick proves the claim). Thus, the last sum reduces
to

∑
v∈C⊥

f (v)(∑
u∈C

(−1)u·v) = 2k ∑
v∈C⊥

f (v),

which proves (32).

Note that
WC⊥(x, y) = ∑

u∈C⊥
f (u), where f (u) = xn−w(u)yw(u) ∈ Q[x, y].

We therefore want to apply the formula (32) to the function f (u). We apply the Hadamard
transform to f and find

f̂ (u) = ∑
v∈Fn

2

(−1)u·vxn−w(v)yw(v) =
1

∑
v1=0

1

∑
v2=0
· · ·

1

∑
vn=1

(−1)u·vxn−w(v)yw(v)

=
1

∑
v1=0

1

∑
v2=0
· · ·

1

∑
vn=1

n

∏
i=1

(−1)ui ·vi x1−vi yvi =
n

∏
i=1

1

∑
t=0

(−1)uitx1−tyt.

Now, if ui = 0, the inner sum is x + y, while if ui = 1 it is x − y. Taking now the product, we
find that

f̂ (u) = (x + y)n−w(u)(x− y)w(u) = f (u)(x + y, x− y).
Consequently,

WC⊥(x, y) = ∑
u∈C⊥

f (u) =
1
2k ∑

u∈C
f̂ (u) =

1
2k WC(x + y, x− y).

�

Exercise 24.3.2. A code is called self-dual if C = C⊥. Prove that in this case n is even and
k(C) = n/2. Prove also that every code word has even weight. Prove that

WC(x, y) = WC(y, x).

(This can be proven using the MacWilliams identity.)

Exercise 24.3.3. Prove that for a self-dual code C,

WC(x, y) = WC(
x + y√

2
,

x− y√
2

).

Let D be the group of matrices generated by

1√
2

1 1

1 −1

 ,

1 0

0 −1

 .

Prove that D is the dihedral group of 16 elements. Prove that if C is a self-dual code then WC is
invariant under the group D that acts on polynomials by f (x, y) 7→ f ((x, y)A), A ∈ D.
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Prove that the polynomials

φ2 = x2 + y2, φ8 = x8 + 14x4y4 + y8,

are invariant under D (we will see later that they actually arise from self-dual codes). It is a
theorem of A. M. Gleason that for a self-dual code C, WC is always a polynomial expression in
φ2 and φ8. 40

Exercise 24.3.4. Let C1, C2 be codes. The code C1 ⊕ C2 is defined as

{(x, y) : x ∈ C1, y ∈ C2}.
If Ci is an (ni, ki, di) code, what is the type of C1 ⊕ C2? Prove that if Ci are both self-dual so is
C1 ⊕ C2. Prove that

WC1⊕C2(x, y) = WC1(x, y)WC2(x, y).
Find all self-dual codes of dimension 2, 4, 6 and their weight enumerator polynomials. How do
your examples compare with Gleason’s theorem?

24.4. Cyclic codes. Cyclic codes are a simple method to construct codes. In spite of its simplic-
ity, this method produces surprisingly useful codes.

A code C of length n is called cyclic if

(u0, u1, . . . , un−1) ∈ C =⇒ (un−1, u0, . . . , un−2) ∈ C.

Given a vector u = (u0, u1, . . . , un−1) associate to it a polynomial

gu(t) = u0 + u1t + · · ·+ un−1tn−1 ∈ F2[t].

Example 24.4.1. Let C = (F2
2)

e = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}. We see that C is a cyclic
code and the polynomials associated to C are

0, t + t2, 1 + t2, 1 + t.

Proposition 24.4.2. Consider codes of length n.
(1) There is a bijection

{cyclic codes in Fn
2} ←→ {ideals of the ring F2[t]/(tn − 1)}.

(2) Any ideal of F2[t]/(tn − 1) is generated by a unique polynomial g(t)|(tn − 1), g(t) ∈ F2[t].
(3) The dimension of the code corresponding to g(t) is k = n − deg(g). This code has a basis
{g(t), tg(t), . . . , tn−deg(g)−1g(t)}.

Proof. We define
J(C) = {gu(t) : u ∈ C}.

We claim that J(C) is an ideal of F2[t]/(tn − 1). First, as gu1+u2 = gu1 + gu2 , J(C) is an abelian
group. To prove it is an ideal, it is enough to prove that tgu(t) ∈ J(C) for any u ∈ C. If
u = (u0, u1, . . . , un−1), then in the ring F2[t]/(tn − 1) we have

(33) tgu(t) = u0t + u1tt + · · ·+ un−1tn = un−1 + u0t + u1t2 + · · ·+ un−2tn−1 = gu′ ,

where u′ = (un−1, u0, . . . , un−2). The vector u′ belongs to C because C is cyclic.

40A way to prove this result is to calculate the dimension of polynomials of given degree d that are spanned by
polynomial expressions in φ2 and φ8, and on the other hand, calculate the dimension of the invariant polynomials
of degree d using representation theory. The paper Sloane, N. J. A. Error-correcting codes and invariant theory: new
applications of a nineteenth-century technique. Amer. Math. Monthly 84 (1977), no. 2, 82–107, is a nice introduction
to these ideas, although it doesn’t deal with the exact same result we need here.
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Conversely, given an ideal J of F2[t]/(tn − 1) associate to it the subset C of Fn
2 given by

C = {u : gu(t) ∈ J}.
Since u1, u2 ∈ J implies u1 + u2 ∈ J and gu1+u2 = gu1 + gu2 , C is an abelian group. The computa-
tion (33) shows C is cyclic.

The correspondences above are clearly inverses of each other. Note that, in fact, C ∼= J(C) as
abelian groups. This finishes the proof of the first claim.

To prove (2), we first note the surjective ring homomorphism

F2[t]→ F2[t]/(tn − 1).

The surjectivity implies that ideals of F2[t]/(tn − 1) correspond bijectively to ideals of F2[t] that
contain (tn − 1). But, any ideal of F2[t] is principal and so generated by a unique polynomial
g(t) (usually, g(t) is determined up to a non-zero scalar, but for F2 this means g(t) is uniquely
determined). The ideal (g(t)) contains (tn − 1) if and only if g(t)|(tn − 1).

We now consider claim (3). Under the identification

C ↔ J(C), u↔ gu,

the code C corresponds to J(C)/(tn − 1) in the ring F2[t]/(tn − 1). Since for every polynomial
f (t), dimF2(F2[t]/( f (t))) = deg( f ), we find that if J(C) = (g(t)),

dimF2(C) = dimF2(J(C)/(tn − 1)) = n− deg(g(t)).

Let f (t) = (tn − 1)/g(t). There is an isomorphism of vector spaces

F2[t]/( f (t))→ J(C)/(tn − 1), h(t) 7→ h(t)g(t) (mod tn − 1).

The basis 1, t, . . . , tdeg( f )−1(= tn−deg(g)−1) of F2[t]/( f (t)) is thus mapped bijectively to the basis
{g(t), tg(t), . . . , tn−deg(g)−1g(t)} of J(C)/(tn − 1), that is, of C. �

Example 24.4.3. Some of the codes we have already seen are cyclic codes. For example:
(1) The zero code Z corresponds to the ideal (tn − 1).
(2) The universal code U corresponds to the ideal (1).
(3) The repetition code R corresponds to the ideal (g(t)) where g(t) = (tn − 1)/(t− 1).
(4) The parity check code P corresponds to the ideal (t− 1).

24.4.1. The Hamming code. Our next example is one of the most important codes, certainly his-
torically. It is the Hamming code H7 and the extended Hamming code H8 = H e

7 .
The Hamming code it the cyclic code in F7

2 corresponding to the ideal (1 + t + t3) (note that
(1 + t + t3)(1 + t + t2 + t4) = t7 − 1). It is a code of dimension 4 = 7− 3 and a basis is provided
by

v1 = (1, 1, 0, 1, 0, 0, 0)

v2 = (0, 1, 1, 0, 1, 0, 0)

v3 = (0, 0, 1, 1, 0, 1, 0)

v4 = (0, 0, 0, 1, 1, 0, 1)

As w(vi) = 3, we find d(H7) ≤ 3. We claim that in fact d(H7) = 3.
If H7 has a code word of weight 1, using cyclicity, we may assume that it is

(1, 0, . . . , 0) = ε1v1 + ε2v2 + ε3v3 + ε4v4.
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The first coordinates forces ε1 = 1 and the second coordinate forces then ε2 = 1 and similarly,
considering the third and fourth coordinates, we get ε3 = 1, ε4 = 0. But then the 5-th coordinate
is not 0 and that’s a contradiction.

If H7 has a code word of weight 2, we may assume it is ua = (1, 0, . . . , 1, . . . ), where the other
1 appears at the a + 1 coordinate. Taking a cyclic shift, we get a vector with 1’s in the a + 1 and
2a+ 1 (mod 7) places, whose sum with u1 is a vector with 1’s in the first and 2a+ 1 coordinates;
we call it u2a. By the same token, we get vectors u2ia with 1’s in the first and 2ia + 1 coordinates.
As 1 ≤ a ≤ 6, we can always get either 2ia + 1 = 2 (when a = 1, 2, 4), or 2ia + 1 = 7 (when
a = 3, 5, 6) mod 7. Namely, if H7 has weight 2 it contains either the vector (1, 1, 0, . . . , 0) or
(1, 0, . . . , 0, 1). Since the code H7 is cyclic, it always contains (1, 1, 0, . . . , 0). Writing this vector
as ε1v1 + ε2v2 + ε3v3 + ε4v4, and considering the first coordinate first, then the second, and so on,
we find ε1 = 1, ε2 = 0, ε3 = 0, ε4 = 1. But then the seventh coordinate is not zero. Contradiction.

In summary, H7 is a (7, 4, 3) code.

Exercise 24.4.4. By considering the cyclic shifts of v1 conclude that H7 has at least 7 code words
of weight 3. Find a vector of weight 4 and use it to show that H7 has at least 7 code words
of length 4. Show also that there is a code word of weight 7 (Hint: what polynomial will it
correspond to?). Explain that this is enough to conclude that

WH7(x, y) = x7 + 7x4y3 + 7x3y4 + y7.

In particular, deduce this way that the distance of H7 is 3.

Exercise 24.4.5. Prove that H8 := H e
7 is an (8, 4, 4) self-dual code with

WH8(x, y) = x8 + 14x4y4 + y8.

Recall that a code C is self-dual if C = C⊥. Such a code is always even, namely,

w(x) ≡ 0 mod 2, ∀x ∈ C.

One way to see that is to note that for every x ∈ C,

0 = x · x =
n

∑
i=1

x2
i =

n

∑
i=1

xi = w(x) (mod 2).

A self-dual code C is called doubly even (or “type II”) if

w(x) ≡ 0 (mod 4), ∀x ∈ C.

Corollary 24.4.6. The extended Hamming code H8 is a self-dual doubly-even code.

Let v ∈ Fn
2 and let r be an integer. By a ball of distance r around v, B[v, r], we mean

B[v, r] := {x ∈ Fn
2 : d(x, v) ≤ r}.

What happens if we put balls of radius 1 around each v ∈H7?
(1) The do not intersect. Indeed, a point t of intersection will show that there exists u, v ∈

H7, u 6= v, such that d(u, v) ≤ d(u, x) + d(x, v) ≤ 2, which is a contradiction.
(2) Each ball contains 8 vectors – the centre and the 7 vectors in distance 1 from it.
(3) These 24 balls contain together 24 × 8 = 27 distinct vectors.
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That is, the Hamming code produces a perfect sphere packing in F7
2; the union of the balls is

precisely F7
2.

A code C of length n is called a perfect code if, for an appropriate r, the union of balls of
radius r and centres the codes words in C is a disjoint union equal to Fn

2 . Such codes exist only
for r = 0, r = n, r = (n− 1)/2 with n odd, r = 1 with n = 2m − 1 for m ≥ 1, and r = 3 with
n = 23. The first three cases are trivial, corresponding to the universal code, the zero code and
the code {0, (1, . . . , 1)}. The case r = 1 is not trivial and the simplest example is the Hamming
code H7. It is not hard to prove that if r = 1 then one must have n = 2m − 1 for some m ≥ 1
and the dimension of the code is then 2m − m − 1; such codes always exist and a particular
construction for every m is given by the so called Hamming codes Hm (where H7 = H3). The
last example is the Golay code to be discussed below.

24.4.2. Cyclic codes and duality. It is natural to ask if the dual code to a cyclic code is also cyclic.
It is easy to see that the answer is yes, just from the defining conditions for a vector to be in the
dual code. But in fact there is more precise answer.

Theorem 24.4.7. Let C ⊆ Fn
2 be the cyclic code associated with g(t)|(tn − 1). Let

h(t) =
tn − 1
g(t)

, f (t) = tdeg hh(1/t).

The C⊥ is the cyclic code associated with f (t).

Proof. Let us write

g(t) =
d

∑
i=0

giti, d = deg(g(t)) ≤ n,

and

h(t) =
e

∑
i=0

hiti, e = deg(h(t)) = n− d.

Then

f (t) =
e

∑
i=0

hite−i.

Denote C′ the cyclic code generated by f (t). Since k(C′) = k(C⊥), it is enough to show that
C′ ⊆ C⊥. For that, it is enough to show that every basis element ti f (t) of C′ is perpendicular to
every basis element tjg(t) of C.

Now, in general, under the bijection Fn
2 ↔ F2[t]/(tn − 1), under which

a = (a0, . . . , an−1)↔ ga =
n−1

∑
i=0

aiti,

we have that a · b = a0b0 + a1b1 + · · ·+ an−1bn−1, which is the coefficient of tn−1 in the product

(a0 + a1t + · · ·+ an−1tn−1)(b0tn−1 + b1tn−2 + · · ·+ bn−1) = ga(t) · tn−1gb(1/t).

Note that this is calculated in F2[t]/(tn − 1) and so whenever the product ga(t) · tn−1gb(1/t)
is divisibly by tn − 1, a · b = 0. Therefore, we need to calculate the coefficient of tn−1 in the
polynomial tjg(t) · tn−1t−i f (1/t). But this just some power of t times g(t)h(t) = tn − 1. �

Exercise 24.4.8. Prove that a cyclic code C associated to g(t) is self-dual, if and only if (in the
notation of Theorem 24.4.7) g(t) = f (t), and necessarily n is even. Prove that if n = 2r then
1 + tr defines a cyclic self-dual code.
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Exercise 24.4.9. Find all self-dual cyclic codes of length 2, 4, 6, 8, 10.

Exercise 24.4.10. F Find all self-dual cyclic codes of length 14.

24.5. The Golay code. Let α be a root of 1 in F2 of order 23. We claim that α ∈ F211 and not
to any smaller field. First, 211 − 1 = 2047 = 23 · 89 and so all roots of unity of order 23 lie in
F211 . As [F211 : F2] = 11 there are no intermediate extension between these two fields. Thus, the
minimal polynomial g(t) of α over F2 must be of degree 11 and divide t23 − 1. It accounts for
only 11 of the 22 primitive roots of unity of order 23. Any root of unity not among them is a root
of an additional polynomial h(t) of degree 11 such that h(t) is irreducible and divides t23 − 1. It
follows that the factorization of t23 − 1 into irreducible polynomials is

t23 − 1 = (t− 1)g(t)h(t).

On the other hand, one may verify that of two following polynomials divides t23 − 1. Thus,
we conclude that for a suitable choice of α,

g(t) = 1 + t + t5 + t6 + t7 + t9 + t11, h(t) = 1 + t2 + t4 + t5 + t6 + t10 + t11.

The cyclic code defined by g(t) is called the Golay code G23. We let G24 = G e
23. The Golay

codes are still being used by Voyager I and II in transmitting data back to earth over a distance
of about 20 billion kilometres at this time! (March 2021). They are truly remarkable and we shall
see some evidence of that.

The following theorem gives some properties of the Golay codes. I don’t know a proof that is
not massively computational, so we will not provide a proof here.

Theorem 24.5.1. The Golay codes have the following properties:
(1) G23 is a (23, 12, 7) code, which is perfect.
(2) G24 is a (24, 12, 8) code, which is self-dual and doubly even.
(3) The weight enumerators of these codes are

WG23(x, y) = x23 + 253x16y7 + 506x15y8 + 1288x12y11 + 1288x11y12 + 506x8y15 + 253x7y16 + y23,

and
WG24(x, y) = x24 + 75916y8 + 2576x12y12 + 759x8y16 + y24.

Assuming that G23 indeed has distance 7 and so is a (23, 12, 7) code, let us check that it is perfect.
First, the number of points in a ball of radius 3 in F23

2 is

1 +
(

23
1

)
+

(
23
2

)
+

(
23
3

)
= 211.

The number of vectors in G23 is 212. As balls of radius 3 with centres in G23 do not intersect
(d(G23) = 7), the number of points in their union is 211212 = 223 = ]F23

2 . This shows that the
Golay code G23 is perfect.

Exercise 24.5.2. One thought regarding error-correcting is that we may just send every block
of size k twice. Consider this for the Golay code. This idea suggests that instead of using the
Golay code which is of length 23, we can use the code C of dimension 24 which is a variant on a
repetition code.

C = {(x, x) : x ∈ F12
2 } ⊂ F24

2 .
Discuss the advantages and disadvantages of this idea.



132 EYAL Z. GOREN, MCGILL UNIVERSITY

Exercise 24.5.3. The Golay code G23 turns out to be also a special case of a quadratic residue code
(as is the Hamming code H7). We don’t enter into the general theory of such codes here, but it
implies that the Golay code is also the cyclic code generated by

f (t) = t + t2 + t3 + t4 + t6 + t8 + t9 + t12 + t13 + t16 + t18.

(The meaning of that is that the ideal generated by f (t) in F2[t]/(tn − 1) is the same as the one
used to define the Golay code.) It also implies that the Hamming code is also generated by

t + t2 + t4.

25. LATTICES AND CODES

What comes next is a rather astounding connection between codes and lattices. The link,
called Construction A, is so simple that one hardly suspects it will yield anything interesting,
but, in fact, the opposite is true! This construction is due to Neil J. A. Sloane.

25.1. Construction A of Sloane. Let C be a code in Fn
2 . Define a lattice

L(C) ⊆ Zn, L(C) = {v ∈ Zn : v ∈ C (mod 2)}.
This method is called Construction A of Sloane. Note that L(C) ⊇ (2Z)n and therefore is a
lattice. Note also that any lattice L such that (2Z)n ⊆ L ⊆ Zn arrises this way. We define

Λ(C) =
1√
2

L(C).

Before studying the properties of this construction, we recall the notion of kissing number.
Given a lattice L ⊂ Rn recall that its kissing number τ(L ) to be the number of spheres in

the lattice packing that touch the sphere at the origin. Otherwise said

τ(L ) = ] {v ∈ L : ‖v‖ = µ1(L )}.
Easy examples are

τ(Z2) = 4, τ(Zn) = 2n, τ(Hexagonal lattice) = 6, τ(FCC lattice) = 12.

We will soon see an easy way to describe the FCC lattice.

Theorem 25.1.1. Let C be an (n, k, d)-code. Then
(1) Λ(C) is a lattice in Rn.
(2) disc(Λ(C)) = 2n−2k.
(3) Λ(C)⊥ = Λ(C⊥).
(4) Λ(C) is a self-dual lattice of type II (i.e., for all x ∈ Λ(C), ‖x‖2 ≡ 0 (mod 2)) if and only if C

is a self-dual code of type II.
(5) Assume that C is not the zero code. For τ denoting the kissing number, ρ denoting the packing

radius and N(m) denoting the number of code words of weight m, we have

τ(Λ(C)) =


2dN(d) d < 4
2n + 16N(4) d = 4
2n d > 4

, ρ(Λ(C)) =


1
2

√
d
2 d < 4

√
2

2 d = 4√
2

2 d > 4

.

Exercise 25.1.2. Verify Theorem 25.1.1 for the codes Z, U, R, P and E8.
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Before proving the theorem, we provide some examples that will convince the reader of its
interest.

25.1.1. Examples of Construction A.
(1) For the zero code Z, which is an (n, 0, 0)-code, we have

L(Z) = (2Z)n = 2 ·Zn, Λ(Z) =
√

2 ·Zn.

For the universal code U = Z⊥, which is an (n, n, 1)-code, we have

L(U) = Zn, Λ(U) = Λ(Z)⊥ =
1√
2
·Zn.

(2) For the repetition code R, which is an (n, 1, n)-code, we have

L(R) = 2Zn + Z(1, 1, . . . , 1) = {x ∈ Zn : xi are all even, or are all odd}.
For the parity check code P = R⊥, which is an (n, n− 1, 2)-code, we have

L(P) = Dn = {x ∈ Zn : ∑ xi ≡ 0 (mod 2)}.
For n = 3, L(P) is the FCC lattice.

(3) For the extended Hamming code H8 the construction gives the E8-lattice

Λ(H8) = E8.

For us, this is the definition of the E8-lattice, but this lattice appears often in the theory of
Lie groups and in physics. It has remarkable symmetry. The group of isometries of E8 is
a group with 696, 729, 600 elements, generated by certain reflections in the space R8. As
H8 = H e

7 and we have an explicit basis for H7 (it is a cyclic code associated to 1+ t + t3)
we easily find that a basis for E8 is given by the columns of the following matrix:

1√
2
×


1 0 0 0 2 0 0 0
1 1 0 0 0 2 0 0
0 1 1 0 0 0 2 0
1 0 1 1 0 0 0 2
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 1 1 1 0 0 0 0


Recall that E8 is the best lattice packing, in fact best packing of any sort, in R8. It is
surprising that it has such a simple description. The lattice E8 turns out to be isometric
to the lattice with the following generating matrix - it has the advantage of showing some
of the symmetries more clearly:
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
2 −1 0 0 0 0 0 1/2
0 1 −1 0 0 0 0 1/2
0 0 1 −1 0 0 0 1/2
0 0 0 1 −1 0 0 1/2
0 0 0 0 1 −1 0 1/2
0 0 0 0 0 1 −1 1/2
0 0 0 0 0 0 1 1/2
0 0 0 0 0 0 0 1/2


(4) For the extended Golay code G24 = G e

23 we get a self-dual lattice of type II in R24. It is
closely related to the Leech lattice – the lattice which optimizes sphere packing, lattice or
not, in R24. If we let

Λ0 = { 1√
2

v :
24

∑
i=1

vi ≡ 0 (mod 4)} ⊂ Λ(G24),

then Λ0 is of index 2 in Λ(G24), hence a lattice, and the Leech lattice is

Λ24 := Λ0 + Zt, t =
1

2
√

2
(−3, 1, 1, . . . , 1).

(5) To show to what extent the lattices obtained by Construction A are accessible, we state
here a theorem without proof. Let L ⊂ Rn be an integral lattice and define it theta series
as

ΘL (q) =
∞

∑
m=0

r(m)qm,

where
r(m) = ]{v ∈ L : ‖v‖2 = m}.

Theorem 25.1.3. Let L = Λ(C), and let WC be the weight enumerator polynomial of C. Then,

ΘL (q) = WC(θ3(q2), θ2(q2)),

where

θ2(q) =
∞

∑
m=−∞

q(m+ 1
2 )

2
, θ3(q) =

∞

∑
m=−∞

qm2
.

Note that
θ2(q2) = 2q1/2(1 + q4 + q12 + q24 + . . . )

(the exponents are four times triangular numbers: i.e. four times a number of the form
m(m+1)

2 , where m is allowed to be negative). Also,

θ3(q2) = 1 + 2(q2 + q8 + q18 + . . . )

where the exponents are twice a square.

Exercise 25.1.4. Prove the identity θL1⊕L2 = θL1 θL2 . Prove that the coefficient of qm in (θZ)
4 is

positive for every m ≥ 0.

Exercise 25.1.5. Write an expression for ΘE8 in terms of θ2 and θ3. Use it to find the first minimum
of E8 and its kissing number. Using the generator matrix for E8 now determine all the successive
minima of E8.
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25.1.2. Proof of Theorem 25.1.1. We begin with the last claim. We may work with L(C) instead
of Λ(C), properly rescaling everything. It is clear that the vectors of minimal length will have
coordinates bounded in absolute value by 2, because we can otherwise add to them a multiple
of 2ei, where {ei = (0, . . . , 1

i
, . . . , 0) : i = 1, . . . , n} are the standard basis, staying in the lattice,

but reducing the length.
For d > 4, µ1(L(C)) is achieved by the vectors {±2ei} and there are 2n of them. So,

ρ(Λ(C)) =
1
2
· µ1(Λ(C)) =

1
2
· 2√

2
=

√
2

2
, τ(Λ(C)) = 2n.

For d < 4, since C 6= Z, µ1(L(C)) is achieved, in particular, on the N(d) vectors in C of weight
d, when we think about the coordinates of these vectors as integers 0, 1, thereby viewing them
as vectors in L(C). In fact, all the vectors in

{(±x1, . . . ,±xn) : xi ∈ {0, 1}, (x1, . . . , xn) ∈ C}
have this same length

√
d. There are 2dN(d) such vectors. Any other vector in L(C) is obtained

from one of these by addition or subtraction of multiples of some 2ei and, except for the vectors
already taken into account, will have greater length. Therefore,

ρ(Λ(C)) =
1
2
· µ1(Λ(C)) =

1
2
·
√

d√
2

, τ(Λ(C)) = 2dN(d).

Finally, for d = 4, by similar considerations, µ1(L(C)) is achieved on the 2dN(d) vectors
{(±x1, . . . ,±xn) : xi ∈ {0, 1}, (x1, . . . , xn) ∈ C, w(x) = 4}, as well as on the 2n vectors ±2ei.
Thus,

ρ(Λ(C)) =
1
2
· µ1(Λ(C)) =

1
2
· 2√

2
=

√
2

2
, τ(Λ(C)) = 16N(4) + 2n.

The proof of (2) is rather simple. We have disc(ΛC) = covol(Λ(C))2 = 2−ncovol(L(C))2. But,
(2Z)n ⊆

2k
L(C) ⊆

2n−k
Zn, and so covol(L(C)) = 2n−kcovol(Zn) = 2n−k and (2) follows.

For proving claims (3) - (4), we write Fn
2 as columns vectors. Note that the symmetric group Sn

acts as isometries of both Fn
2 , that is, it preserves the bilinear form x · y = ∑ xiyi (mod 2) and the

Hamming distance; Sn also acts as isometries of Rn, which means that it preserves the bilinear
form x · y = ∑ xiyi. Thus, we can permute the coordinates if needed. In particular, taking an
n × k generator matrix for a code C of type (n, k, d), after applying column reduction we may
assume that C has a generator matrix of the form

g =

Ik

B

 ∈ Mn,k(F2),

for some matrix B in Mn−k,k(F2).

Claim. The dual code C⊥ has a generator matrix

h =

−Bt

In−k

 ∈ Mn,n−k(F2).

Proof. As the matrix h above has rank n− k, it is enough to prove that the span of its columns is
contained in C⊥. Namely, it is enough to verify that thg = 0. Indeed,

thg =
(
−B In−k

)Ik

B

 = 0.
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Corollary. Interpreting B as a matrix with integer entries 0, 1, the lattices L(C) and L(C⊥) have gener-
ator matrices (corrspondingly)

G =

Ik 0

B 2In−k

 , H =

−Bt 2Ik

In−k 0

 .

Let also denote the generator matrices for Λ(C) and Λ(C⊥) correspondingly by

G1 =
1√
2

G, H1 =
1√
2

H.

To show Λ(C⊥) = Λ(C)⊥ we first check Λ(C⊥) ⊆ Λ(C)⊥. This amounts to tH1G1 = 1
2

tHG
being an integral matrix. We calculate

1
2

tHG =
1
2

−B In−k

2Ik 0

Ik 0

B 2In−k

 =
1
2

 0 2In−k

2Ik 0

 .

But as we were so successful, namely 1
2

tHG =
(

0 In−k
Ik 0

)
, this calculation implies that Λ(C⊥) =

Λ(C)⊥. This is because the last equality means that after permuting the columns of tH1 it be-
comes the inverse of G1. By Exercise 19.4.2, it follows that the span of the columns of the per-
muted tH1, which is the span of the columns of tH1, is the dual lattice.

Consider now part (4). The self-duality of C implies n = 2k and

Ik +
tBB = (Ik

tB)

Ik

B

 ≡ 0 (mod 2).

Part (3) implies that Λ(C) is self-dual if and only if C is self-dual, but we may also see that as
follows: Λ(C) is self-dual of type II if and only if SpanZ(G1) = SpanZ(

tG−1
1 ) and the diagonal

entries of tG1G1 are even. The condition on the span holds if and only if G1 = tG−1
1 N for some

N ∈ GLn(Z), which is equivalent to tG1G1 ∈ GLn(Z). A calculation gives

tG1G1 =

 1
2 (Ik +

t BB) tB

B 2In−k

 .

Because Ik +
t BB ≡ 0 (mod 2), tG1G1 is an integral matrix. Its determinant is det(G1)

2 =
1
2n det(G)2 = 1, and so it belongs to GLn(Z). (And, conversely, tG1G1 being an integral ma-
trix implies that Ik +

t BB ≡ 0 (mod 2) and that C is self-dual.) Now, the fact that C is of type II
means that the weight of every vector is divisible by 4. In particular, the diagonal entries of

Ik +
t BB = (Ik

tB)

Ik

B

 which express the length of the generators of C, are divisible by 4. It

follows that the diagonal entries of tG1G1 are even. This concludes the proof.
�

Exercise 25.1.6. Prove that the lattice E8 is a unimodular lattice. Namely, E8 is self-dual and
covol(E8) = 1. Prove that the same is true for Z8. Prove that the kissing number of E8 is
240, while for Z8 it is 16. This again illustrate how dramatically better the E8 -packing is in
comparison to the square packing provided by Z8.
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26. EVEN UNIMODULAR LATTICES

In this section we discuss some striking results about unimodular lattices. Some are rather
hard, for example Niemeier’s Theorem, or the Siegel-Minkowski Theorem, while others, for
example Witt’s theorem, are rather accessible.41

26.1. Some remarkable theorems concerning even unimodular lattices. A lattice L is called
unimodular if it is self-dual; equivalently, if it is integral and of covolume 1. We can obtain
examples of such lattices from self-dual codes via Construction A. Such a lattice is called even,
or type II, if ‖x‖2 ∈ 2Z for all x ∈ L . If B is a Gram matrix for L , this is the case if and only
if B has even diagonal entries. An example of an even unimodular lattice is the E8 lattice. If
n = 8n then the orthogonal sum of E8 with itself n times, E8 ⊕ · · · ⊕ E8, shows that there is an
even unimodular lattice of dimension 8n for every n ≥ 1. Remarkably, the converse holds.

Theorem 26.1.1 (E. Hecke). There is an even unimodular lattice of dimension n if and only if 8|n.

Theorem 26.1.2 (L. J. Mordell). Up to isometries, E8 is the unique even unimodular lattice in R8.

Theorem 26.1.3 (E. Witt). Up to isometries E8 ⊕ E8 and D+
16 are the unique even unimodular lattices

in R16.

Remark 26.1.4. It’s an interesting point that although E8 ⊕ E8 and D+
16 are not isometric, they

have the same theta function,

1 + 480
∞

∑
m=1

σ7(m)q2m,

where for a positive integer r we let σr(m) = ∑d|m dr (the sum is over positive divisors of m,
including 1 and m); namely, for every integer m they have exactly the same number of vectors of
length m. It follows that if one considers R16/E8⊕E8 and R16/D+

16 the spectrum of the Laplacian
operator on these two manifolds is the same. They have the same harmonics, the same “sound”.
This example, provide by J. W. Milnor, was the first example providing a negative answer to the
question “can one hear the shape of the drum?”.

Remark 26.1.5. The lattices D+
n are an interesting example. We explain what they are in a series

of exercises. Recall that

Dn = {(x1, . . . , xn) ∈ Zn : ∑ xi ≡ 0 (mod 2)}.
Let [½] = (½, ½, . . . , ½) ∈ Rn. Let

D+
n = Dn ä([½] + Dn).

Exercise 26.1.6. (1) Prove that D+
n is a lattice if and only if n is even.

(2) Prove that D+
n is an integral lattice if and only if 4|n.

(3) Prove that D+
n is even if and only if 8|n.

(4) Prove that covol(D+
n ) = 1.

(5) For n even, prove that µ1(Dn) = µ1(D+
n ) and calculate δ(D+

n ).

It follows from Mordell’s theorem that D+
8
∼= E8 (they are not actually equal). Both have the

theta function

1 + 240
∞

∑
m=1

σ3(m)q2m.

41The proof of Witt’s theorem can be found in the book J.-P. Serre, A Course in Arithmetic, GTM 7.
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Exercise 26.1.7. Find the vectors x in E8 ⊕ E8 and D+
16 such that ‖x‖2 = 2 (there should be 480 of

them). Prove that in E8 ⊕ E8 they generate the lattice while in D+
16 they do not. Conclude that

E8 ⊕ E8 6∼= D+
16.

Theorem 26.1.8 (H.-V. Niemeier). Up to isometries, there are 24 even unimodular lattices in R24.

Exercise 26.1.9. Prove that E3
8, E8 ⊕ D+

16, D+
24, Λ(G24), Λ24 are examples. (You are not required to

prove they are mutually non-isomorphic although this is true). Here Λ24 is the Leech lattice
already defined in § 25.1.1.

In higher dimensions exploring lattices is a bit like exploring star systems in the universe. For
example, it is known that there are more than 80, 000, 000 even unimodular lattices in dimension
32. Finding an interesting one is a bit like finding life on another planet.

Theorem 26.1.10 (Minkowski-Siegel). Let

Mn = ∑
L

1
]Aut(L )

,

the summation extending over all even unimodular lattices in dimension n = 8k, k > 0. Then,

Mn =
B2k

8k

4k−1

∏
i=1

Bj

4j
,

where Bs are the Bernoulli numbers.42

For example, if one calculates the isometry group, also called its automorphism group, of E8,
namely, all the isometries of R8 that map E8 isomorphically onto itself, and finds that its order
is 696729600, one can conclude that E8 is the unique even modular lattice of dimension 8, up
to isometry. Or, conversely, if one allows Hecke’s theorem that E8 is the unique even modular
lattice of dimension 8, up to isometry, then one can calculate the size of its isometry group.

As a final remark, the automorphism groups of lattices turn out to be very interesting ob-
jects. Conway discovered three new sporadic groups, and reconstructed already known spo-
radic groups, from automorphism groups of lattices.

26.2. The Leech lattice. It is rather unfortunate that there is no really simple way to introduce
the Leech lattice. Although many different constructions are known, for example some use
copies of the E8 lattice, some use the Octonions, some use the Hamilton quaternions over Q[

√
5],

none is straightforward. Of course, as the Leech lattice is a lattice in R24 one could simply list
a basis for the lattice consisting of 24 vectors, but this is hardly illuminating. The construction
we present at least starts very conceptually, by applying Construction A to the extended Golay
code G24, but then a rather unmotivated tweaking is required.

Recall the (24, 8, 8) extended Golay code G24 = G e
23. It is a doubly even, self dual code. Let

L = L(G24) = {a ∈ Z24 : a mod 2 ∈ G24}.

42The theorem can be found in Conway & Sloane, Chapter 16, but our convention for the Bernoulli numbers is as in
Serre, A course in Arithmetic. For example: B1 = 1

6 , B2 = 1
30 , B3 = 1

42 , B4 = 1
30 , B5 = 5

66 , B6 = 691
2730 , B7 = 7

6
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As the co-volume of Λ(C) is 1, the co-volume of L is 212, and as Λ(C) is self-dual, the dual of
L =

√
2 ·Λ(C) is L⊥ = 1

2 L. Define a new lattice

B = {v ∈ L :
24

∑
i=1

vi ≡ 0 (mod 4)}

Then, B is a sublattice of L. The map

L→ Z/4Z, v 7→∑ vi (mod 4)

has image {0, 2} and B is its kernel. It follows that [L : B] = 2.
Let

t =
1
2
(−3, 1, 1, . . . , 1) ∈ 1

2
Z24.

Define
L̃ = B ä(t + B).

Proposition 26.2.1. L̃ has the following properties.
(1) L̃ is a lattice and [L̃ : B] = 2.
(2) 1√

2
L̃ is an even self-dual lattice. The Leech lattice Λ24 is defined as

Λ24 =
1√
2

L̃.

It is thus an even unimodular lattice.

Proof. We first note that v = 2t satisfies ∑i vi = −3 + 23 · 1 ≡ 0 (mod 4). To check v ∈ L we
note that mod 2, v = (1, 1, . . . , 1) which is in (G 24)⊥ because very code word in G 24 is even.
Since G 24 is self-dual, (1, 1, . . . , 1) ∈ G 24. Therefore, v ∈ B. As −t = t− v, it follows that L̃ is an
abelian group and so a lattice; furthermore, [L̃ : B] = 2. We have the following situation:

L

2 ??
??

??
??

L̃

2��
��
��
��

B

In particular, covol(L̃) = covol(L) = 212.
We now check that Λ24 is even and integral. We need to show that for all x, y ∈ Λ24 we have

x · y ∈ Z and ‖x‖2 = x · x ∈ 2Z. This is equivalent to showing that for all x, y ∈ L̃ we have
x · y ∈ 2Z and ‖x‖2 = x · x ∈ 4Z.

Let us think about L as
L = ∪c∈G24 c + 2Z24,

where c is taken to be a vector with coordinates 0 and 1. Every code word in G24 has weight
divisible by 8. Therefore,

B = {c + u : c ∈ G24, u ∈ 2Z24, ∑
i

ui ≡ 0 (mod 4)}.

From this follows

L̃ = {εt + c + u : c ∈ G24, u ∈ 2Z24, ∑
i

ui ≡ 0 (mod 4), ε ∈ {0, 1}}.

It is useful to note that t = 1
2 (1, 1, . . . , 1)− (2, 0, . . . , 0). Using that G24 is doubly even, we find

that
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t · t = 8, t · c ≡ 0 (mod 2), t · u ≡ 0 (mod 2),

c1 · c2 ≡ 0 (mod 2), c · u ≡ 0 (mod 2), u · u′ ≡ 0 (mod 4).

Thus, for all x, y ∈ L̃ we have x · y ∈ 2Z and

x · x = (εt + c + u) · (εt + c + u) = ε2t · t + c · c + u · u + 2εt · c + 2εt · u + 2c · u ≡ 0 (mod 4),

the critical point being that c · c ≡ 0 (mod 4) because G24 is doubly even.
We have thus far shown that the Leech lattice Λ24 is an even integral lattice. As covol(Λ24) =

1
212 covol(L̃) = 1, we conclude that Λ24 is unimodular. �

Let L be a unimodular lattice in Rn. The packing density of L is then equal to

∆(L ) =
µ1(L )nωn

2ncovol(L )
= µ1(L )n × ωn

2n .

Thus, all unimodular lattices that have some given µ1(L ) provide the same packing density.
From Niemeier’s result, we know that there are 24 even unimodular lattices in R24, among
which are Λ(G24) and the Leech lattice Λ24. The minimum of ‖x‖2 for x ∈ Λ(G24) is 2 (take a
code word c of G24 of weight 8 and view 1√

2
c as an element of Λ(G24); it has norm squared equal

to 2 and so µ1 =
√

2. Thus Λ(G24) and any other even unimodular lattice with µ1 =
√

2 will
have the same packing density. For an even unimodular lattice, µ1 cannot be smaller. It turns
out that among the even unimodular lattices in dimension 24 there is only one, the Leech lattice,
that has larger µ1. In fact, it will have µ1 = 2.

Theorem 26.2.2. Let Λ24 be the Leech lattice. Then

µ1(Λ24) = 2, δ(Λ24) = 1.

Proof. The statement about the centre density δ(Λ24) is a direct consequence of the statement
about µ1 and that Λ24 is unimodular. Thus, it will be enough to prove that µ1(L̃) = 2

√
2,

equivalently
∀x 6= 0, x ∈ L̃, ‖x‖2 = 8.

Take first an 0 6= x ∈ B, x = c + u, in the notation of Proposition 26.2.1. Then

x = (c1 + u1, · · · , c24 + u24), |ci + ui| ≥ |ci|.
Therefore, since every non-zero code word in G24 has weight at least 8, we get for c 6= 0

‖x‖2 ≥ ‖c‖2 ≥ 8,

and for c = 0, we have
‖x‖2 = ‖u‖2 ≡ 0 (mod 8),

because u has only even integers entries and, because ∑ ui ≡ 0 (mod 4), there is an even num-
ber of them.

Now consider x of the form t + c + u. Then 2x = 2t + 2c + 2u and 2t = (1, 1, . . . , 1) −
(4, 0, . . . , 0). As 2x ∈

√
8Λ24 and Λ24 is an even integral lattice, if ‖x‖2 < 32 then it can only be

16. This implies that the number of non-zero entries of 2x is atmost 16. But, since every entry of
2c + 2u is even and every entry of t is odd, in fact all 24 entries of 2x are non-zero. �

The passage from L to L̃ is a process one can try in general (and is studied in Conway & Sloane),
and it is a fair question to ask if one cannot get a lattice with even larger µ1. This is a good
question, but the Roger’s bound shows that the answer is “no” in dimension 24 (this argument
doesn’t require the optimality of the Leech lattice proven by Viazovska et al.).
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APPENDICES

APPENDIX A. CHEAT SHEET FOR GAUSS AND JACOBI SUMS

χ : F×q → C× ψ(x) = ζ
TrFq/F(x)
p ζp = e2πi/p

ga(χ) = ∑t∈F χ(t)ψ(at) g(χ) = ∑t∈F χ(t)ψ(t) ga(χ) = χ(a−1)g(χ), a 6= 0, χ 6= ε and g0(ε) = q; else 0.

|g(χ)| = √q, if χ 6= ε g(χ) = χ(−1)g(χ̄) g(χ)g(χ̄) = χ(−1)q

J(χ1, . . . , χ`) = ∑t1+···+t`=1 χ1(t1) · · · χ`(t`) J0(χ1, . . . , χ`) = ∑t1+···+t`=0 χ1(t1) · · · χ`(t`)

J(ε, . . . , ε) = q`−1 J0(ε, . . . , ε) = q`−1

J0(χ1, . . . , χ`) = 0 J(χ1, . . . , χ`) = 0 if ∃i, ¬∀i, χi = ε

J0(χ1, . . . , χ`) = 0 if χ` 6= ε and χ1 · · · χ` 6= ε

J0(χ1, . . . , χ`) = χ`(−1)(q− 1)J(χ1, . . . , χ`−1) if χ` 6= ε and χ1 · · · χ` = ε |J0(χ1, . . . , χ`)| = (q− 1)q
`−2

2

J(χ1, . . . , χ`) = g(∏`
i=1 χi)

−1 ∏`
i=1 g(χi) ∀i χi 6= ε and ∏`

i=1 χi 6= ε |J(χ1, . . . , χ`)| = q
`−1

2

J(χ1, . . . , χ`) = −χ`(−1)J(χ1, . . . , χ`−1) ∀i χi 6= ε and ∏`
i=1 χi = ε |J(χ1, . . . , χ`)| = q

`−2
2

J(χ1, . . . , χ`−1) =
1
q χ`(−1)∏`

i=1 g(χi) ∀i χi 6= ε and ∏`
i=1 χi = ε
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APPENDIX B. SOME USEFUL CONSTANTS

B.1. π and e and some square roots. The following values are truncated, not rounded.

π = 3.14159265358979323846

e = 2.71828182845904523536
√

2 = 1.4142135623,
√

3 = 1.7320508075,
√

5 = 2.2360679774

B.2. Volumes of balls. The following table provides the volume ωn of the unit ball in Rn.

n 1 2 3 4 5 6 7 8 9 10 11 12 16 24

vol(Bn[0, 1]) 2 π 4π
3

π2

2
8π2

15
π3

6
16π3

105
π4

24
32π4

945
π5

120
64π5

10395
π6

720
π8

40320
π12

479001600

General formulas are given by:

ωn =


πk

k! , n = 2k even;

22k+1k!πk

(2k+1)! n = 2k + 1 odd.

and the recursion formula

ω1 = 2, ω2 = π, ωn = ωn−2
2π

n
.

B.3. Bernoulli numbers. The following tables gives the values of the Bernoulli numbers de-
fined by the identity

x
ex − 1

= 1− x
2
+

∞

∑
k=1

(−1)k+1Bk
x2k

(2k)!
.

There are other normalizations for Bernoulli numbers in the literature. Ours follows Serre in
A course in arithmetic, but note that Conway & Sloane use different conventions in Sphere pack-
ings, lattices and groups.

n 1 2 3 4 5 6 7 8 9 10 11 12

Bn
1
6

1
30

1
42

1
30

5
66

691
2730

7
6

3617
510

43867
798

174,611
330

854513
138

236364091
2730
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EXERCISES

(1) What is the continued fraction [1, 2, 3, 1, 2, 3, 1, 2, 3, . . . ]?

(2) Let a be a positive integer. What is the continued fraction expansion of the positive root of x2 −
ax− 1?

(3) Let a be a positive integer. What is the continued fraction expansion of the positive root of x2 +
ax− 1?

(4) Fill in the following table for e = exp(1). You may use a calculator, or a computer software. (For
1/q2

n write an approximate decimal expansion.)

n [a0, a1, . . . , an] pn/qn e− pn/qn 1/q2
n optimal?

0 [2] 2/1 0.7182818 . . . 1.0 no

1 [2, 1] 3/1 -0.2817181. . . 1.0 yes

2

3

4

5

(5) Using GP-PARI (see https://pari.math.u-bordeaux.fr), or any other mathematical software, or
even an online calculator (but make sure it’s precise enough otherwise you may be lead to a
wrong conjecture), find the continued fractions expansions of

e− 1
2

,
e1/2 − 1

2
,

e1/3 − 1
2

,
e1/4 − 1

2
, . . .

Formulate a conjecture.

(6) Let [a0, a1, a2, . . . ] be a continued fraction, where, as usual a0 ∈ Z, ai ∈ N+, i = 1, 2, 3, . . . . Prove
that

qn ≥ 2
n−1

2 .

(7) Prove that if a0, b0 ∈ Z, ai, bi ∈N+ for i ≥ 1, we cannot have

[a0, . . . , an] = [b0, b1, b2, . . . ].

(8) Prove that every rational number θ has a finite continued fraction expansion

θ = [a0, a1, . . . , aN ] (a0 ∈ Z, ai ∈N+, i = 1, . . . , N).

Moreover, prove that this expansion is unique, up to

[a0, a1, . . . , aN ] = [a0, a1, . . . , aN−1, 1],

if aN > 1.

(9) F Use the arguments appearing in Theorem 2.3.1 in the notes to prove
Theorem 12. Let θ be an irrational real number. Then, for all n ≥ 0 we have∣∣∣θ − pn

qn

∣∣∣ > 1
qn(qn+1 + qn)

.

(10) Prove that the measure of [0, 1] \Q is equal to 1. Note that this set contains no interval of positive
length.
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(11) Let 0 ≤ α ≤ 1. Find a set S contained in [0, 1] that has measure α, contains no interval of positive
length, and is dense in [0, 1].

(12) F Prove that Q̄ is a field as follows:
(a) In general, if F ⊆ L are commutative rings and α ∈ L let

F[α] = {
n

∑
i=0

aiα
i : ai ∈ F}.

Namely, the set of all finite polynomial expression in α with coefficients from F. Prove that
F[α] is a ring. If F is a field prove that it is also a vector space over F.

(b) Prove that α ∈ C is algebraic over Q if and only if dimQ(Q[α]) < ∞. If this is the case, prove
that Q[α] is a field and, in fact, Q[α] ∼= Q[x]/( f (x)), where f (x) is the minimal polynomial
of α.

(c) Let α, β ∈ C be algebraic over Q. Prove that dimQ(Q[α, β]) < ∞, where Q[α, β] = (Q[α])[β].
(d) Let α, β ∈ C be algebraic over Q. Prove that −α, 1

α (for α 6= 0), α + β and αβ all belong to
Q[α, β]. Conclude that they are algebraic too.

(13) Prove that log(2), log(3), log(2) + log(3), log(2)/ log(3) are transcendental numbers.

(14) F Use the expansion

e = 1 +
1
1!

+
1
2!

+
1
3!

+ . . .

to prove that e is not a rational number (which is much easier than proving it’s transcendental!).

(15) Show that there are no inverse implications in Lemma 4.1.1.

(16) Prove that every real irrational number θ has infinitely many BAF without using Dirichlet’s the-
orem. (Or continued fractions...)

(17) Prove that every real irrational number θ has infinitely many BAS by using Dirichlet’s theorem.

(18) Analyze the proof of Liouville’s theorem and find a constant C as in the theorem for
√

2, 1+
√

5
2 , 3
√

5 ∈
R.

(19) Let θ = ∑∞
n=1

1
10n! . Prove that θ is transcendental.

(20) F Construct a set T of real transcendental numbers such that
∣∣∣T∣∣∣ > ℵ0 and µ(T) = 0.

(21) Find positive solutions for the following equations:
(a) x2 − 39y2 = 1.
(b) x2 − 41y2 = 1.

(22) Prove that there are infinitely many solutions to the equation

x2 − 39y2 = −3.

(Hint: given a solution (a, b) to x2 − 39y2 = −3 and a solution (c, d) to x2 − 39y2 = 1, show that
one can generate a new solution to x2 − 39y2 = −3 by using the product (a + b

√
39)(c + d

√
39).)

(23) Find a positive solution to the equation x2 − 41y2 = 5.

(24) F Triangular numbers are the integers 1, 3, 6, . . . , n(n+1)
2 , . . . .

• •
• •

•
• •

• • •

. . .

Show that there are infinitely many triangular numbers that are squares and find 3 of them be-
sides 0, 1.

(25) F Find five pairs of integers (n, N), 1 ≤ n ≤ N, such that

1 + 2 + · · ·+ (n− 1) = (n + 1) + (n + 2) + · · ·+ N.
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(26) Let (a, b) be a solution to Pell’s equation x2 − dy2 = 1. Show that for any n, if we define An, Bn as
follows

An + Bn
√

d = (a + b
√

d)n,
then An, Bn are also solutions to the same equation. Use this to show that if a Pell equation
x2 − dy2 = N has a solution then it has infinitely many solutions.

(27) F Show that there are infinitely many solutions (a, b) to x2 − 10y2 = 1 such that 7|a.

(28) Let d be an integer that is not a square.
(a) The equation x2 − dy2 = −1 doesn’t always have integral solutions: prove that if d ≡ 0,−1

(mod 4) there are no integral solutions. However, prove that if a solution exists then it is a
convergent to

√
d.

(b) More generally, if −
√

d < N < 0 prove that every positive solution to the equation x2 −
dy2 = N is a convergent to

√
d.

(29) Prove that [a, b, c, ] =
√

n if and only if a > 0, c = 2a, b|c, in which case n = a2 + c/b.

(30) Find µ(S) and µ(T) where

S = {[0, a1, a2, . . . ] : a1 = 2, a2 = 3}, T = {[0, a1, a2, . . . ] : a1 = a2}.
For T, the answer should be expressed as an infinite sum to which you should provide non-trivial
(i.e. different that 0 or 1) lower and upper bounds.

(31) Prove that

ρ :=
µ
(

E
(

1 2 ... n n+1
k1 k2 ... kn s

))
µ
(

E
(

1 2 ... n
k1 k2 ... kn

)) =
1
s2 ·

1 + qn−1
qn

(1 + qn−1
sqn

)(1 + 1
s +

qn−1
sqn

)
;

it satisfies,
1

3s2 < ρ <
2
s2 ,

independently of k1, . . . , kn (!)

(32) Prove that µ(E
(

1
2
)
) = 1

6 = 0.1666 . . . , while

µ(E
(

2
2
)
) =

∞

∑
k=1

1
(2k + 1)(3k + 1)

.

The value of this series is numerically close to 0.1685. How well can you approximate this sum?

(33) F Let T : [0, 1]→ [0, 1] be the transformation given on continued fractions by T([0, a1, a2, a3, . . . ] =
[0, a2, a3, . . . ]. Prove that for any 0 ≤ β ≤ 1,

ν(T−1(0, β)) = ν((0, β)).

(34) Let f (x) =

{
1 a1(x) = k
0 else.

Using the ergodic theorem, deduce that for almost all x ∈ (0, 1) the

frequency of k in the partial quotients of x, namely in the sequence {ai(x)}∞
i=1, is

1
log(2)

log
(
(k + 1)2

k(k + 2)

)
.

(35) Let f (x) = a1(x) and deduce that with probability 1,

lim
n→ ∞

a1(x) + · · ·+ an(x)
n

= ∞.

(36) FWhat result can we deduce from the Ergodic Theorem if we let f (x) = 1 if a1(x) is prime and
f (x) = 0 otherwise?

(37) F Give a proof based on the Ergodic Theorem for Theorem 7.2.1.
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(38) Prove that for every s,Hs(∪∞
i=1Fi) ≤ ∑∞

i=1Hs(Fi).

(39) Prove parts (1) - (4) of Theorem 8.1.4. You may use Exercise 38.

(40) Let f : Rn → Rn be a function such that for some α > 0

‖ f (x)− f (y)‖ = α‖x− y‖.
Then,

Hs( f (F)) = αsHs(F).

(41) Let A be the set of all numbers in [0, 1] whose base 5 expansion only contains the digits 0, 2 and
4. Let d = dimH(A) and assume that 0 < Hd(A) < ∞. Calculate dimH(A).

(42) F Let N ≥ 3 be an odd integer. Let AN be the set of all numbers in [0, 1] whose base N
expansion only contains the digits 0, 2, . . . N − 1. Let d = dimH(AN) and assume again that
0 < Hd(AN) < ∞. Calculate limN → ∞ dimH(AN).

(43) Let F ⊆ Rn be a subset such that dimH(F) < 1. Prove that F is totally disconnected. Here is a
suggestion. Suppose x 6= y are points in F:
• Define

f : Rn → R, f (s) = ‖x− s‖.
Prove that this function has the property

| f (s)− f (t)| ≤ ‖s− t‖.
• Prove that dimH( f (F)) ≤ dimH(F).
• Let Z = R \ f (F). Prove that Z is dense in R.
• Prove that there is a z ∈ Z lying between f (x) and f (y) and so the sets (−∞, z), (z, ∞)

separate f (x) and f (y).
• Complete the proof.

(44) Let D be a compact set and let S be the collection of non-empty compact subsets of D. We will
make S into a metric space; the metric is known as the Hausdorff metric. Let δ ≥ 0. Define the
δ-neighbourhood of a set A ∈ S , denoted Aδ, to be the set

Aδ = {x ∈ D : ∃a ∈ A, |x− a| ≤ δ}.
Using that for a fixed x ∈ D, infa∈A{‖x− a‖} is achieved for some ax ∈ A, by compactness of A,
it is not hard to prove that Aδ is a closed subset of D, hence in S itself.

Now, given A, B ∈ S , define

d(A, B) = inf{δ : A ⊆ Bδ and B ⊆ Aδ}.

(45) Prove that for Ai, Bj ∈ S ,

d(∪m
i=1 Ai,∪m

j=1Bj) ≤ max
1≤i≤m

d(Ai, Bi).

(46) Prove that the attractor E of an IFS is unique in the following sense. If F ⊆ D is a compact
non-empty set of D such that S1(F) = F then F = E. (Consider d(E, F) and apply the previous
exercises for Ai = si(E), Bi = si(F).)

(47) Prove that the dimension of the Sierpinski cube is log(20)/ log(3). (See Figure 12. Picture from
Wikipedia commons.)

(48) Consider a set Cα which is very similar to the Cantor set. At each step we remove an interval of
length 2α which is centrally located. See Figure 13. Thus, the case of the Cantor set itself is when
α = 1/3. Calculate the cardinality, the measure and the dimension of Cα.

(49) F Use Ramharter’s Theorem to prove that dimH(S) ≥ 0.9, say, where S is the set of all real num-
bers for which the partial quotients of their continued fractions take only finitely many values.
The theorem is not powerful enough to imply that dimH(S) = 1, but it can be used for a great
many examples of sets defined by conditions on continued fractions.
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FIGURE 12. The Sierpinski cube.

FIGURE 13. Generalized Cantor set Cα.

(50) F Let C be the Cantor set then

C + C = {x + y : x, y ∈ C } = [0, 2].

(51) Let L/F be a finite extension of finite fields. Prove that the maps trace TrL/F and norm NmL/F

are surjective maps onto F and F×, respectively.

(52) Let P = Pm,n be the subgroup of GLn such that P(L) consists of matrices M of the form M =(
A B
0 D
)

, A ∈ GLm(L), B ∈ Mm,n−m(L), D ∈ GLn−m(L). Show that for a field L there is a natural
bijection

GLn(L)/P(L)↔ Gm,n(L).
This bijection is associating to a right coset M · P(L) the m-dimensional subspace of An spanned
by the first m columns of M.

(53) Let L be a finite field with q elements. Prove that

]GLn(L) =
n

∏
i=1

(qn − qn−i) =: c(n),

]Gm,n(L) =
c(n)

c(m)c(n−m)qm(n−m)
.

Verify the formula for the case of the projective space.

(54) Prove that the Grassmann variety G2,4, considered as a variety over Fp, has the following zeta
function:

ζ(T) =
1

(1− T)(1− pT)(1− p2T)2(1− p3T)(1− p4T)
.

(55) Calculate the zeta function of the projective surface x0x1 − x2x3 = 0 over Fp, in P3.
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(56) Find the number of projective points of the elliptic curve y2 = x3 − 1 over F5. Use it to calcu-
late the cardinalities of E(F52), E(F53), E(F54); write the zeta function of E as a ratio of explicit
polynomials.

(57) In the context of the Sato-Tate conjecture, find the probability that

|Ep(Fp)− (p + 1)| ≤ √p.

(58) Prove Lemma 13.1.4. Compare with the proof of Lemma 13.1.1.

(59) Let p be an odd prime and q a power of p. Prove the formula N(x2 = a) = 1 +
(

Nm(a)
p

)
for Fq

by proving that a is a square in Fq if and only if Nm(a) is a square in Fp.

(60) Consider the case of Fp and let λ(a) =
(

a
p

)
be the Legendre symbol. Suppose that p - a. By

considering two ways to evaluate the sum ∑
p−1
n=0

(
1 +

(
n
p

))
e2πian/p, prove that

g(λ) =
p−1

∑
n=0

e
2πian2

p .

(61) How many solutions do the following equations have?
(a) x2 + 120 ≡ 0 (mod 257).
(b) x2 − x− 1 ≡ 0 (mod p), where p > 5 is a prime.

(62) Find a prime p > 2 such that 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 are all squares modulo p. You may use a
computer for some of the computations.

(63) Let Fn be the n-th Fermat number, n ≥ 1.
(a) Prove that Fn ≡ 5 (mod 12).
(b) If Fn is prime, prove that (

3
Fn

)
= −1.

(64) Show that if q ≡ 2 (mod 3) then

N(x3 + y3 = 1) = q.

(65) F Prove, using a suitable Jacobi sum, that if p ≡ 1 (mod 3) then for suitable integers a, b

p = a2 − ab + b2.

(66) Let p ≡ 1 (mod 3) be a prime. Let χ be an order 3 character in Xp. Let A = 2ReJ(χ, χ). Prove that

J(χ, χ) = a + bω where ω = −1+
√
−3

2 and a, b ∈ Z. Conclude that A = 2a− b and a2 − ab + b2 =
p. Furthermore, prove that if we let B = b/3 then

4p = A2 + 27B2.

(One can prove that B is an integer – see comments before Theorem 14.5.4.)

(67) For p = 7, 13, calculate by hand the points on x3 + y3 = 1 over Fp, as well as the A appearing in
Exercise 66, and verify Gauss’s Theorem.

Using Gauss’s theorem, find the number of solutions for the equation x3 + y3 = 1 for p = 97.

(68) Does it ever happen for p ≡ 1 (mod 3) that N(x3 + y3 = 1) = p? What about N(x3 + y3 =
1) = p− 1? Suppose that p and p− 2 are primes, can it happen that the number of solutions to
x3 + y3 = 1 mod p is the same as the number of solutions mod p− 2? Explain how to find large
p for which A, appearing in Exercise 66, is close to 2

√
p (and thus N(x3 + y3 = 1) is very close to

the maximum possible number of points43 allowed by the Hasse bound p + 2
√

p).

43One can show that x3 + y3 = z3 is an elliptic curve. This is easier if one allows a more general definition of elliptic
curves that doesn’t insist on describing them by equations of the form y2 = f (x).
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(69) Let di = gcd(`i, q− 1), ai ∈ F×q . Prove the equality for the number of solutions in Fq:

N(a1x`1
1 + · · ·+ arx`r

r = b) = N(a1xd1
1 + · · ·+ arxdr

r = b).

(70) Prove that ∣∣∣Nproj(a0ym
0 + · · ·+ anym

n = 0)− ]Pn−1(Fq)
∣∣∣ ≤ f (m) · q

n−1
2 .

where

f (m) =
1
m
((m− 1)n+1 + (−1)n+1(m− 1)).

(71) F Prove that ζV provided in Theorem 15.0.1 satisfies the Weil conjectures.

(72) Give an explicit formula for Nproj(x2
0 + · · ·+ x2

n = 0) in Fq.

(73) Give an explicit formula for Nproj(a0x2
0 + · · ·+ anx2

n = 0) in Fq (ai ∈ F×q , ∀i).

(74) Let λ be the Legendre character. Let α be any non-trivial character of F×p . Prove that

J(λ, α) = ∑
t∈F

α(1− t2).

(Hint: use N(x2 = a) = 1 + λ(a).)

(75) Consider the equation y2 = x3 + a, where a ∈ F×P is fixed and p > 3. Find an expression for
N(y2 = x3 + a). This expression will involve J(λ, α) where α is a cubic character. How does this
compare with the expression for the zeta function of the projectivized curve y2z = x3 + az3?

(76) Let p > 2 be a prime and consider an equation of the form

C : y2 = f (x),

where f is a separable polynomial in Fp[x] of the degree 2g + 1.
• Prove that this is a non-singular curve in A2.
• Check that the corresponding projective curve in P2, obtained by homogenizing y2 − f (x)

is singular if g > 1. However, one can show that there is a projective non-singular curve
C̃ (living in some higher dimensional projective space) that contains C and such that C̃ \ C
consists of a single point which is moreover defined over Fp. The genus of C̃ is g and that
implies that

ζC̃(T) =
P1(T)

(1− T)(1− pT)
,

where P1 ∈ Z[T] is a polynomial of degree 2g and constant coefficient 1.
Assuming all that show that

]C(Fp) = p + ∑
t∈Fp

(
f (t)

p

)
,

and deduce the estimate due to Burgess∣∣∣ ∑
t∈Fp

(
f (t)

p

) ∣∣∣ ≤ 2g
√

p.

(77) Let a, b, c ∈ Fp, p > 2,a 6= 0, b2 − 4ac 6= 0. Determine the zeta function of the affine equation:

ax2 + bxy + cy2 = 1.

(78) F Let L ⊂ Rn be a free abelian group of rank n. Then, L is a lattice if and only if L contains a
basis of Rn.
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(79) Let d > 0 be an integer which is not a square. Consider the ring

Z[
√

d] = {a + b
√

d : a, b ∈ Z}.

Prove that the map

a + b
√

d 7→ (a + b
√

d, a− b
√

d) ∈ R2,

realizes Z[
√

d] as a lattice in R2. What is the intersection of this lattice with the circle x2 + y2 = 1?
the hyperbola xy = 1?

(80) Let L be a lattice with a generator matrix A. Show that L is integral if and only if t AA has
integer entries.

(81) Let A be a generator matrix for a lattice L . Prove that t A−1 is a generator matrix for the dual
lattice L ⊥. Conclude that (L ⊥)⊥ = L .

(82) Let L be an integral lattice and let L1 ⊆ L be a sub lattice. Prove that L ⊥
1 ⊇ L ⊥ and [L ⊥

1 :
L ⊥] = [L : L1]. (Hint: if [L : L1] = m then covol(L1) = m · covol(L ).)

(83) Calculate the discriminant and the dual lattice of the following lattices.
(a) L = Zn.
(b) Let m be a positive integer, L = {(a1, . . . , an) ∈ Zn : ∑n

i=1 ai ≡ 0 (mod m)}. (The lattices
one gets for m = 2 are called the Dn lattices.)

(c) L = the hexagonal lattice.
(d) Let d > 1 be a square free integer. Consider the ring Z[

√
−d]. Under the identification of C

with R2 it becomes a lattice L ⊂ R2. Write a generator matrix and a Gram matrix for L ;
find the discriminant and the dual lattice. Is this an integral lattice?

(84) F A lattice is called self-dual, or unimodular, if L = L ⊥. Show that the only unimodular
lattice in R2, up to isometry, is Z2.

(85) Consider the quadratic forms q(x) = x2 + y2 and q(x) = x2 − xy + y2. Find lattices in R2 with
these quadratic forms (namely, that they have a Gram matrix with associated quadratic form
given by q).

(86) Let (x, y, z) ∈ R3 and consider the abelian group generated by (1, 0, 0), (0, 1, 0) and (x, y, z).
Namely, Z(1, 0, 0) + Z(0, 1, 0) + Z(x, y, z). What are the conditions for it to be free of rank 3?
What are the conditions for it to be a lattice? What are the conditions for it to be an integral
lattice? a self-dual lattice?

(87) Let L be a lattice in Rn. Prove that ωn ≥
(

2√
n

)n
and deduce that L contains a non-zero vector

of length at most
√

n · (covol(L ))1/n.

(88) Prove that if p > 2 is a prime, p ≡ 1 (mod 3), then p is of the form x2 + 3y2.

(89) Prove that if p > 2 is a prime, p ≡ 1 (mod 8), then p is of the form x2 + 2y2.

(90) Let H denote the Hamilton quaternions (over R). Prove that the map H→H, z 7→ z∗ := Tr(z)−
z is an anti-involution. Namely, it satisfies

(z1 + z2)
∗ = z∗1 + z∗2 , (z1z2)

∗ = z∗2z∗1 .

Prove also that Nm(z) = zz∗. (Suggestion: think in terms of matrices.)

(91) Prove that H is a non-commutative division ring (for any x 6= 0 there is a y such that xy =
yx = 1). One reason this is interesting is that there is no commutative division ring of dimen-
sion 4 over R, but here we see that there is a non-commutative division ring.
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(92) The Hurwitz quaternions is the subset of Hamilton quaternions H given by

Z[i, j,
1 + i + j + k

2
] =

{
a + bi + cj + d

1 + i + j + k
2

: a, b, c, d ∈ Z

}
=
{

a + bi + cj + dk ∈H : a, b, c, d ∈ Z or a, b, c, d ∈ Z + 1
2

}
.

Prove that the Hurwitz quaternions form a subring of H. Prove that Nm is still integer valued
on Z[i, j, 1+i+j+k

2 ].

(93) Prove the following generalization of Dirichlet’s theorem, by constructing a suitable convex sym-
metric set in Rd+1. Let θ1, . . . , θd be real numbers and let Q ∈ N+. There there are integers
p1, . . . , pd, q, not all zero, such that 0 ≤ q ≤ Q and

|qθi − pi| ≤
1

Q1/d , ∀i.

(94) Let z = (z1, . . . , zn) be a primitive vector in Zn. Prove that there is a matrix M ∈ GLn(Z) whose
first column is t(z1, . . . , zn). (This is equivalent to showing that z can be completed to a basis of
Zn. Consider Zn/Zz and prove first that it is a free abelian group of rank n− 1.)

(95) F Derive a theorem similar to Theorem 20.5.2, but for the norm

‖(x1, . . . , xn)‖1 = |x1|+ · · ·+ |xn|.
Namely, in this case we are trying to minimize the total amount of memory needed to store the
solution in its entirety and not minimize every xi separately.

(96) Find the successive minima and covol(L ) for the following lattices. Write numerically the quan-
tities in Minkowski’s lattice point and successive minima theorems.

(a) L = Z⊕Zi, identified with Z2.
(b) L = Z⊕Zω, ω = −1+

√
−3

2 ⊂ C ∼= R2.
(c) L = SpanZ((1, 0), (r1, r2)), where r1, r2 are non-negative real numbers and r2 > 1. (For µ2

find only an approximation.)

(97) The Dn lattices. The Dn lattice in Rn is defined as

Dn = {(x1, . . . , xn) ∈ Zn :
n

∑
i=1

xi ≡ 0 (mod 2)}.

Compare Exercise 96. Find its successive minima. Find also ]{x ∈ Dn : ‖x‖ = µ1(Dn)}.

(98) Consider the lattice An = {(z0, . . . , zn) ∈ Zn+1 : ∑n
i=0 zi = 0}. Prove that covol(An) = n + 1.

Prove that µi(An) =
√

2 for all i. Find

]{x ∈ An : ‖x‖ = µ1}.
(Compare this with the lattice Zn that also has all its successive minima equal but for which
]{x ∈ Zn : ‖x‖ = µ1} = 2n.)

(99) Is it true or not that A3, properly rescaled, is isometric to D3? What about A4 and D4?

(100) Show that the lattice A2 can be identified with a lattice in R2 that is, up to scaling and perhaps
rotation, the hexagonal lattice.

(101) Find a generator matrix for A∗n, the dual lattice to the lattice An. Determine covol(A∗n) and prove
that µ1(A∗n) =

√
n/(n + 1) and that it is achieved 2n + 2 times if n ≥ 2 and 2 times if n = 1.

(102) F Write down the Gram matrix and calculate covol(E6). Show that µ1(E6) =
√

2 and it is
achieved by 72 vectors – this is called the kissing number of the lattice. (Note that for Z6 this
number is 12, for A6 it is 42 and for D6 it is 60.) The lattice E6 is known to achieve the highest
kissing number among all lattices in R6, D4 and D5 hold the record for their dimension, and A2
and A3 for theirs.
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(103) For which n, ∆(Zn) < 2−n? What explanation is offered by the proof of Proposition 23.1.3?

(104) FProve that for every lattice L ,

R(L ) ≤
√

n× 1
2

µn(L ).

(105) In light of Exercise 104, Zn has the worst covering radius, in the sense that R(Zn)
1
2 µn(Zn)

attains the

maximum possible. Find this ratio for the hexagonal lattice and the plane lattices Z[
√
−d], where

d > 0 is an integer and we identify C with R2.

(106) Prove that if C is a (n, k, d)-code then

d ≤ n− k + 1.

(107) Determine (n(Ce), k(Ce), d(Ce)) in terms of (n(C), k(C), d(C)). Determine WCe in terms of WC.
Determine (Ce)⊥ in terms of C⊥.

(108) A code is called self-dual if C = C⊥. Prove that in this case n is even and k(C) = n/2. Prove also
that every code word has even weight. Prove that

WC(x, y) = WC(y, x).

(This can be proven using the MacWilliams identity.)

(109) Prove that for a self-dual code C,

WC(x, y) = WC(
x + y√

2
,

x− y√
2

).

Let D be the group of matrices generated by

1√
2

1 1

1 −1

 ,

1 0

0 −1

 .

Prove that D is the dihedral group of 16 elements. Prove that if C is a self-dual code then WC(x, y)
is invariant under the group D that acts on polynomials by f (x, y) 7→ f ((x, y)A), A ∈ D.

Prove that the polynomials

φ2 = x2 + y2, φ8 = x8 + 14x4y4 + y8,

are invariant under D. It is a theorem of A. M. Gleason that for a self-dual code C, WC is always
a polynomial expression in φ2 and φ8.

(110) Let C1, C2 be codes. The code C1 ⊕ C2 is defined as

{(x, y) : x ∈ C1, y ∈ C2}.

If Ci is an (ni, ki, di) code, what is the type of C1 ⊕ C2? Prove that if Ci are both self-dual so is
C1 ⊕ C2. Prove that

WC1⊕C2(x, y) = WC1(x, y)WC2(x, y).

Find all self-dual codes of dimension 2, 4, 6 and their weight enumerator polynomials. How do
your examples compare with Gleason’s theorem?

(111) By considering the cyclic shifts of v1 conclude that H7 has at least 7 code words of weight 3. Find
a vector of weight 4 and use it to show that H7 has at least 7 code words of length 4. Show also
that there is a code word of weight 7 (Hint: what polynomial will it correspond to?). Explain that
this is enough to conclude that

WH7(x, y) = x7 + 7x4y3 + 7x3y4 + y7.

In particular, deduce this way that the distance of H7 is 3.
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(112) Prove that H8 = H e
7 is an (8, 4, 4) self-dual code with

WH8(x, y) = x8 + 14x4y4 + y8.

(113) Prove that a cyclic code C associated to g(t) is self-dual, if and only if (in the notation of Theo-
rem 24.4.7) g(t) = f (t), and necessarily n is even. Prove that if n = 2r then 1 + tr defines a cyclic
self-dual code.

(114) Find all self-dual cyclic codes of length 2, 4, 6, 8, 10.

(115) F Find all self-dual cyclic codes of length 14.

(116) One thought regarding error-correcting is that we may just send every block of size k twice.
Consider this for the Golay code. This idea suggests that instead of using the Golay code which
is of length 23, we can use the code C of dimension 24 which is a variant on a repetition code.

C = {(x, x) : x ∈ F12
2 } ⊂ F24

2 .

Discuss the advantages and disadvantages of this idea.

(117) The Golay code G23 turns out to be also a special case of a quadratic residue code (as is the
Hamming code H7). We don’t enter into the general theory of such codes here, but it implies that
the Golay code is also the cyclic code generated by

f (t) = t + t2 + t3 + t4 + t6 + t8 + t9 + t12 + t13 + t16 + t18.

(The meaning of that is that the ideal generated by f (t) in F2[t]/(tn − 1) is the same as the one
used to define the Golay code.) It also implies that the Hamming code is also generated by

t + t2 + t4.

(118) Verify Theorem 25.1.1 for the codes Z, U, R, P and E8.

(119) Prove the identity θL1⊕L2 = θL1
θL2 . Prove that the coefficient of qm in (θZ)

4 is positive for every
m ≥ 0.

(120) Write an expression for ΘE8 in terms of θ2 and θ3. Use it to find the first minimum of E8 and
verify that its kissing number is 240. Using the generator matrix for E8 now determine all the
successive minima of E8.

(121) Prove that the lattice E8 is a unimodular lattice. Namely, E8 is self-dual and covol(E8) = 1.
Prove that the same is true for Z8. Prove, using Theorem 25.1.1, that the kissing number of E8
is 240, while for Z8 it is 16. This again illustrate how dramatically better the E8 -packing is in
comparison to the square packing provided by Z8.

(122) Recall that Dn = {(x1, . . . , xn) ∈ Zn : ∑ xi ≡ 0 (mod 2)}. Let [½] = (½, ½, . . . , ½) ∈ Rn. Let

D+
n = Dn ä([½] + Dn).

(a) Prove that D+
n is a lattice if and only if n is even.

(b) Prove that D+
n is an integral lattice if and only if 4|n.

(c) Prove that D+
n is even if and only if 8|n.

(d) Prove that covol(D+
n ) = 1.

(e) For n even, prove that µ1(Dn) = µ1(D+
n ) and calculate δ(D+

n ).
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(123) , The problem of the square pyramid. It was conjectured by E. Lucas in 1875 and finally
proven by G. N. Watson in 1918,44 that the only cases where a sum of squares 12 + 22 + · · ·+ n2

is a square of an integer z are the cases where (n, z) ∈ {(1, 1), (24, 70)}. The origin of the problem
is that when cannon balls are laid in the form of a square pyramid, with 1 ball at the top, 4 balls
in the second layer, 9 points in the third layer and so on. The number of balls is 12 + 22 + · · ·+ n2

and so one asks if the pyramid is a square.

This is a remarkably deep problem. The question is what are the positive integer solutions to
the equation

z2 =
n(n + 1)(2n + 1)

6
.

Multiply the equation by 24 and put x = 2n, y = 2z to reduce the problem to finding integral so-
lutions to the equation 6y2 = x(x + 1)(x + 2), and putting u = x + 1 to finding integral solutions
the equation

6y2 = u3 − u.
The original solutions [n, z] correspond to the solutions [u, y] = [3, 2], [49, 140], to the last equa-
tion. Clearly there are other integral solutions. For example, [0, 0], [1, 0], [2,±1].

The equation 6y2 = u3 − u defines an elliptic curve E over Q. It turns out that there is an
abelian group law on the set of rational points of E; in fact, this is true for any elliptic curve
dy2 = u3 + au + b over Q (the zero point 0E is an ideal point “at infinity”, visible as the point
[0 : 1 : 0] when completing the elliptic curve to a projective curve dy2v = u3 + auv2 + bv3 in
the projective plane with coordinates u, y, v). The celebrated Mordell-Weil Theorem says that the
group E(Q), is finitely generated abelian group, hence isomorphic to Zr ⊕ T where r is called the
rank of E over Q, and T is a finite abelian group, the torsion group of E(Q).

For the elliptic curve 6y2 = u3− u, we change coordinates once more by putting y = Y/62, u =
U/6 to find the equation Y2 = U3 − 36 ∗ U, which is in a form suitable to be tested by PARI.
The points [u, y] = [3, 2], [49, 140], correspond to the points [18, 72], [294, 5040] in the coordinates
[U, Y].

The command E = ellinit([0, 0, 0, 0, -36]) creates the elliptic curve Y2 = U3 − 36 ∗
U in PARI. Then ellanalyticrank(E) calculates the rank of E(Q) and returns in our case the
value 1. The command elltors(E) returns the values

[4, [2, 2], [[-6, 0], [0, 0]]],

which means the torsion group has 4 elements, is isomorphic to Z/2Z×Z/2Z and is generated
by the two points [−6, 0], [0, 0]. To find all torsion points we can add these two points using
elladd(E, [-6, 0], [0, 0]) and find the additional point [6, 0]. Thus,

Etors(Q) = {0E, [−6, 0], [0, 0], [6, 0]}.
Another powerful theorem due to Gross and Zagier tells us that when the rank of E is 1, as it
is in our case, then a generator can be found by the method of Heegner points. The command

44G. N. Watson, “The problem of the square pyramid”, Messenger of Math. XLYIII (1918), 1 - 22.
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ellheegner(E) calculates this point, which is [12, 36], and so

E(Q) = Z · [12, 36] + Etors(Q).

One must remember that, for example, 3 · [12, 36] means adding the point [12, 36] to itself 3 times
using the elliptic curve group law. You can do that using the command ellmul(E, [12, 36],

3) and find the point [16428/529,−2065932/12167].
From this perspective, the difficulty of Lucas’s problem is that there are infinitely many ra-

tional solutions on the curve Y2 = U3 − 36 ∗ U. In fact, if (n, z) is an integral solution to the
original problem, the point on Y2 = U3 − 36 ∗U is given as [6(2n + 1), 72z] and, so, in effect we
are looking for positive solutions (U, Y) such that 72|Y and U/6 is an odd integer. This is not an
easy problem. For a modern treatment of a class of similar problems, and literature review, see
M. Bennet, “Lucas’ square pyramid problem revisited”. Acta Arith. 105 (2002), no. 4, 341–347. In
particular the solution by I. Cucurezeanu in “An Elementary Solution of Lucas’ Problem”, Jour-
nal of Number Theory 44 (1993), 9-12, is attractive in its simple methods; as the abstract states
“By the method of infinite descent, Pell’s equation, and the quadratic reciprocity law, it is proved
that the equation x(x + 1)(2x + 1) = 6y2 has the only nontrivial integer solution x = 24, y = 70.”

(124) , Let n ≥ 2. Let A, B be positive integers. Find a sufficient condition that a positive solution
(x, y) for the equation

xn − Ayn = B,

arises as a convergent x/y for α := n
√

A. Use the factorization

xn − Ayn = (x− αy)(xn−1 + αxn−2y + α2xn−2y2 + · · ·+ αn−1yn−1).

This is a special kind of a so-called Thue equation. It is know that any Thue equation has only
finitely many integer solutions.

(125) , Let χ ∈ Xq. Calculate ∑a∈Fq ga(χ).
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