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Part 1. Basic Concepts and Key Examples

Groups are among the most basic of algebraic structures. Because of their simplicity in terms
of their definition, their complexity is large. For example, vector spaces, which have a very
complex definition, are easy to classify; once the field and dimension are known, the vector
space is unique up to isomorphism. In contrast, it is difficult to list all groups of a given order,
or even obtain an asymptotic formula for this number.

In the study of vector spaces the objects are well understood and so one focuses on the study
of maps between them. One studies canonical forms (e.g., the Jordan canonical form), diag-
onalization, and other special properties of linear transformations (normal, unitary, nilpotent,
etc.). In contrast, at least in the theory of finite groups on which this course focuses, there is no
comparable theory of maps. A theory exists mostly for maps into matrix groups; such maps are
called linear representations and we will make initial steps in this theory towards the end of the
course.

While we shall define such maps (called homomorphisms) between groups in general, there
will be a large set of so-called simple groups for which there are essentially no such maps: the
image of a simple group under a homomorphism is for all practical purposes just the group
itself. To an extent, the simple groups serve as basic building blocks, or “atoms”, from which
all other finite groups are composed. The set of atoms is large, infinite in fact. The classification
of all simple groups was completed in the second half of the 20-th century and has required
thousands of pages of difficult math. There will be little we will be able to say about simple
groups in this course, besides their existence and some key examples. Thus, our focus - apart
from the three isomorphism theorems - will be on the structure of the objects, that is the groups,
themselves. We will occupy ourselves with understanding the structure of subgroups of a finite
group, with groups acting as symmetries of a given set and with special classes of groups –
cyclic, simple, abelian, solvable, etc.

1. FIRST DEFINITIONS

1.1. Group. A group G is a non-empty set with a function

m : G× G → G,

where we usually abbreviate m(g, h) to g ∗ h or simply gh, such that the following hold:

(1) (Associativity) f (gh) = ( f g)h for all f , g, h ∈ G. 1

(2) (Identity) There is an element e ∈ G such that for all g ∈ G we have eg = ge = g.
(3) (Inverse) For every g ∈ G there is an element h ∈ G such that gh = hg = e.

We call m(g, h) the product of g and h. It follows quite easily from associativity that given any n
elements g1, . . . , gn of G we can put parentheses as we like in g1 ∗ · · · ∗ gn without changing the
final outcome. For that reason we allow ourselves to write simply g1 · · · gn, though the actual
computation of such a product is done by successively multiplying two elements at the time,
e.g. (((g1g2)(g3g4))g5)g6 is a way to compute g1g2g3g4g5g6.

1In full notation m( f , m(g, h)) = m(m( f , g), h).
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The identity element is unique: if e′ has the same property then e′ = ee′ = e. Often we will
denote the identity element by 1 (or by 0 is the group is commutative - see below). When
confusion is possible, we will write eG or 1G to indicate that the corresponding element is the
identity of the group G.

The element h provided in axiom (3) is unique as well: if h′ has the same property then
hg = e = gh′ and so h = he = h(gh′) = (hg)h′ = eh′ = h′. We may therefore denote this h
unambiguously by g−1 and call it the inverse of g. Note that if h is the inverse of g then g is the
inverse of h and so (g−1)−1 = g. Another useful identity is ( f g)−1 = g−1 f−1. It is verified just by
checking that g−1 f−1 indeed functions as ( f g)−1. And it does: (g−1 f−1)( f g) = g−1( f−1 f )g =
g−1eg = g−1g = e, and a similar calculation gives ( f g)(g−1 f−1) = e.

We define by induction gn = gn−1g for n > 0 and gn = (g−n)
−1 for n < 0. Also g0 = e, by

definition. One proves that gn+m = gngm for any n, m ∈ Z.

A group is called of finite order if it has finitely many elements. It is called abelian if it is
commutative: gh = hg for all g, h ∈ G. The term “abelian” comes from the name of Niels
Henrik Abel (1802 – 1829), a Norwegian mathematician who made fundamental contributions
to Algebra; the Abel prize is named after him.

1.2. Subgroup and order. A subgroup H of a group G is a subset of G such that: (i) e ∈ H, (ii)
if g, h ∈ H then gh ∈ H, and (iii) if g ∈ H then also g−1 ∈ H. One readily checks that in fact H
is a group. One checks that {e} and G are always subgroups, called the trivial subgroups. Any
other subgroup is called proper. We will use the notation

H < G

to indicate that H is a subgroup of G. This notation allows H = G.
One calls a subgroup H cyclic if there is an element h ∈ H such that H = {hn : n ∈ Z}. Note

that for h ∈ G, {hn : n ∈ Z} is always a cyclic subgroup of G. We denote it by 〈h〉. The order of
an element h ∈ G, ord(h), is defined to be the minimal positive integer n such that hn = e. If no
such n exists, we say h has infinite order.

Lemma 1.2.1. For every h ∈ G we have ord(h) = ]〈h〉.

In words the Lemma says that the order of an element is the order of the (cyclic) subgroup it
generates.

Proof. Assume first that ord(h) is finite. Since for every n we have hn+ord(h) = hnhord(h) = hn we
see that 〈h〉 = {e, h, h2, . . . , hord(h)−1}. Thus, also ]〈h〉 is finite and is at most ord(h).

Suppose conversely that ]〈h〉 is finite, say of order n. Then the elements of 〈h〉 given by
{e = h0, h, . . . , hn} cannot be distinct and thus for some 0 ≤ i < j ≤ n we have hi = hj. Therefore,
hj−i = e and we conclude that ord(h) is finite and ord(h) is at most ]〈h〉. This concludes the
proof. �

Corollary 1.2.2. If h has a finite order n then 〈h〉 = {e, h, . . . , hn−1} and it consists of precisely n
elements (that is, there are no repetitions in this list.)

It is ease to check that if {Hα : α ∈ J} is a non-empty set of subgroups of G then ∩α∈J Hα is a
subgroup as well. Let {gα : α ∈ I} be a set consisting of elements of G (here I is some index set).
We denote by 〈{gα : α ∈ I}〉 the minimal subgroup of G containing {gα : α ∈ I}. It is clearly the
intersection of all subgroups of G containing the set {gα : α ∈ I}.

The next lemma provides a more concrete description of the subgroup 〈{gα : α ∈ I}〉 gener-
ated by the set {gα : α ∈ I}.
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Lemma 1.2.3. The subgroup 〈{gα : α ∈ I}〉 is the set of all finite expressions h1 · · · ht where each hi is
some gα or g−1

α .

Proof. Clearly 〈{gα : α ∈ I}〉 contains each gα hence all the expressions h1 · · · ht where each hi
is some gα or g−1

α . Thus, from the characterization of 〈{gα : α ∈ I}〉 as the minimal subgroup
containing the set {gα : α ∈ I}, it is enough to show that the set of all finite expressions h1 · · · ht,
where each hi is some gα or g−1

α , is a subgroup. Clearly e (equal to the empty product, or to
gαg−1

α if you prefer) is in it. Also, from the definition it is clear that this set is closed under
multiplication. Finally, since (h1 · · · ht)−1 = h−1

t · · · h−1
1 , it is also closed under taking inverses.

�

We call 〈{gα : α ∈ I}〉 the subgroup of G generated by {gα : α ∈ I}; if it is equal to G, we say
that {gα : α ∈ I} are generators for G.

2. MAIN EXAMPLES

It is critical to familiarize ourselves with the fundamental examples. This is the only way one
can build intuition for the subject and realize its vast applicability.

2.1. Z, Z/nZ and (Z/nZ)×. The set of integers Z = {. . . ,−2,−1, 0, 1, 2, 3, . . . }, with the ad-
dition operation, is an infinite abelian group whose identity element is 0. It is cyclic; both 1 and
−1 are generators and, in fact, the only generators. But note that we also have Z = 〈2, 3〉 and so
on. So Z has many generating sets. However, if we wish to generate it just by a single element,
the only choices are either 1, or −1.

The group Z/nZ of integers modulo n, {0, 1, 2, . . . , n− 1}, with addition modulo n, is a finite
abelian group. The group Z/nZ is a cyclic group with generator 1. In fact (see the section on
cyclic groups), an element x generates Z/nZ if and only if (x, n) := gcd(x, n) = 1.

Consider (Z/nZ)× = {a ∈ Z/nZ : (a, n) = 1} with multiplication. Its order is denoted
by ϕ(n) (the function n 7→ ϕ(n) is called Euler’s phi function; See Exercise 17 for further
properties of this function). To see it is a group, note that multiplication is associative and if
(a, n) = (b, n) = 1 then also (ab, n) = 1 and so we do indeed get an operation on Z/nZ×.
The congruence class 1 is the identity and the existence of inverse follows from finiteness: given
a ∈ Z/nZ× consider the function x 7→ ax. It is injective: if ax = ay then a(x− y) = 0 (mod n),
that is (using the same letters to denote integers in these congruence classes), n|a(x− y). Since
(a, n) = 1, we conclude that n|(x − y), that is, x = y in Z/nZ. It follows that x 7→ ax is also
surjective and thus there is an element x such that ax = 1.

The Euclidean algorithm gives another proof that inverses exists. Since (a, n) = 1, there are
integers x, y such that ax + ny = 1, and the algorithm allows us to find x and y. Note that ax ≡ 1
(mod n) and so x is the multiplicative inverse to a modulo n.

2.2. Fields. Let F be a field. This structure was introduced in the course MATH 235. Then
(F,+), the set F with the addition operation, is a commutative group. As well, (F×,×), the
non-zero elements with the product operation, is a commutative group. Thus, for example,
Q, R, C, Z/pZ (p prime) are groups with respect to addition. The sets Q− {0}, R− {0}, C−
{0}, Z/pZ− {0} (p prime) are groups with respect to multiplication. The unit circle {z ∈ C :
|z| = 1} is a subgroup of C×.
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2.3. The dihedral group Dn. Let n ≥ 3. Consider the linear transformations of the plane that
take a regular polygon with n sides, symmetric about zero, onto itself. One easily sees that every
such symmetry is determine by its action of the vertices 1, 2 (thought of as vectors, they form a
basis for R2) and that it takes these vertices, respectively, to the vertices i, i + 1 or i + 1, i, where
1 ≤ i ≤ n (and the labels of the vertices are read modulo n). One concludes that every such
symmetry is of the form yaxb for suitable and unique a ∈ {0, 1}, b ∈ {1, . . . , n}, where y is the
reflection fixing 1 (so takes n to 2 and 2 to n) and x is the rotation taking 1, 2 to 2, 3. One finds
that y2 = e = xn and that yxy = x−1. All other relations in this group are consequences of these.
For example, one proves that xay = yx−a for any power a.

n 1

2

x

3

y

FIGURE 1. Symmetries of a regular Polygon with n vertices.

The Dihedral group Dn, the group consisting of all these symmetries, is thus a group of
order 2n generated by a reflection y and a rotation x satisfying y2 = xn = xyxy = e. Expressing
the group Dn by means of x and y satisfying these relations makes sense also for n = 1, 2, but
one loses the geometric interpretation. Therefore, we will typically consider only n ≥ 3.

The elements {1, x, x2, . . . , xn−1} are clock-wise rotations by the angles {0, 2π
n , 4π

n , . . . , 2(n−1)π
n },

respectively. The elements {y, xy, x2y, . . . , xn−1y} are all reflections. If n is odd, each such reflec-
tion has a unique fixed vertex. If n is even, half the reflections have no fixed vertices and half
the reflections have 2 fixed vertices.

2.4. The symmetric group Sn. Consider the set Sn consisting of all injective (hence bijective)
functions, called permutations,

σ : {1, 2, . . . , n} → {1, 2, . . . , n}.
We define multiplication by

m(σ, τ) = σ ◦ τ.
This makes Sn into a group, whose identity 1 is the identity function 1(i) = i, ∀i.

We may describe the elements of Sn in the form of a table:(
1 2 . . . n
i1 i2 . . . in

)
.

This defines a permutation σ by the rule σ(a) = ia.
Another device is to use the notation (n1 n2 . . . ns), where the nj are distinct elements of

{1, 2, . . . , n}. This defines a permutation σ according to the following convention: σ(na) = na+1
for 1 ≤ a < s, σ(ns) = n1, and for any other element x of {1, 2, . . . , n} we let σ(x) = x. Such a
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permutation is called a cycle. A cycle of length 2 is called a transposition. One can easily prove
the following facts:

(1) Disjoint cycles commute.
(2) Every permutation is a product of disjoint cycles (uniquely up to permuting the cycles

and omitting cycles of length one).
(3) The order of (n1 n2 . . . ns) is s.
(4) If σ1, . . . , σt are disjoint cycles of orders r1, . . . , rt then the order of σ1 ◦ · · · ◦ σt is the least

common multiple of r1, . . . , rt.
(5) The symmetric group has order n!.

More generally, given any non-empty set T, we let ΣT denote the group whose elements are
bijections σ : T → T; the group operation is composition m(σ, τ) = σ ◦ τ, the identity element is
the identity function 1 : T → T (the function given by 1(t) = t, ∀t ∈ T) and, finally, the inverse
of σ is just the inverse function σ−1. If T = {1, 2, . . . , n} we have ΣT = Sn. If T has n elements,
then there is a natural identification of ΣT with Sn.

Example 2.4.1. The order of the permutation (1 2 3 4) is 4. Indeed, it is not trivial and (1 2 3 4)2 =
(1 3)(2 4), (1 2 3 4)3 = (4 3 2 1), (1 2 3 4)4 = 1.

The permutation
(

1 2 3 4 5 6
6 1 3 5 4 2

)
is equal to the product of cycles (1 6 2)(4 5). It is of order 6.

The problem with the notation
( 1 2 ... n

i1 i2 ... in

)
is that it’s long. On the other hand, any permutation

in Sn can be written this way. A compromise is achieved by the notation [i1 i2 · · · in] for( 1 2 ... n
i1 i2 ... in

)
. This notation appears in many textbooks and articles. Note, however, that we will

never use it in this course.
The reason we will never use it after the end of this paragraph is that it’s potentially very

confusing. Note, for example, that
(

1 2 3 4 5 6
6 1 3 5 4 2

)
is written [6 1 3 5 4 2] in this notation. However,

this is very different from the cycle permutation (6 1 3 5 4 2) – for example, the first takes 1 to 6
and 2 to 1, but the second takes 1 to 3 and 2 to 6. Thus, confusing the type of parentheses could
be disastrous.

2.4.1. Sign; permutations as linear transformations.

Lemma 2.4.2. Let n ≥ 2. Let Sn be the group of permutations of {1, 2, . . . , n}. There exists a surjective
function

sgn : Sn → {±1}
(called the sign). It has the property that for every i 6= j,

sgn( (ij) ) = −1,

and for any two permutations σ, τ,

sgn(στ) = sgn(σ) · sgn(τ).

Terminology: We will refer to the property sgn(στ) = sgn(σ) · sgn(τ) by saying sgn is a homo-
morphism. The terminology will be justified later.

Proof. Consider the polynomial in n-variables2

p(x1, . . . , xn) = ∏
i<j

(xi − xj).

Given a permutation σ, we may define a new polynomial

∏
i<j

(xσ(i) − xσ(j)).

2For n = 2 we get x1 − x2. For n = 3 we get (x1 − x2)(x1 − x3)(x2 − x3).
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Note that σ(i) 6= σ(j) and for any pair k < ` we obtain in the new product either (xk − x`) or
(x` − xk). Thus, for a suitable choice of a sign sgn(σ) ∈ {±1}, we have3

∏
i<j

(xσ(i) − xσ(j)) = sgn(σ)∏
i<j

(xi − xj).

We obtain a function
sgn : Sn → {±1}.

This function satisfies, for k < `, sgn( (k`) ) = −1: Let σ = (k`) and consider the product

∏
i<j

(xσ(i) − xσ(j)) = (x` − xk) ∏
i<j

i 6=k,j 6=`

(xσ(i) − xσ(j)) ∏
k<j
j 6=`

(x` − xj) ∏
i<`
i 6=k

(xi − xk).

(This corresponds to the cases (i) i = k, j = `; (ii) i 6= k, j 6= `; (iii) i = k, j 6= `(⇒ j > k);
(iv) i 6= k, j = `(⇒ i < `).) Counting the number of signs changes (note that case (ii) doesn’t
contribute at all!), we find that

∏
i<j

(xσ(i) − xσ(j)) = (−1)(−1)]{j:k<j<`}(−1)]{i:k<i<`}∏
i<j

(xi − xj) = −∏
i<j

(xi − xj).

It remains to show that sgn satisfies sgn(στ) = sgn(σ) · sgn(τ). We first make the seemingly
innocuous observation that for any variables y1, . . . , yn and for any permutation σ we have

∏
i<j

(yσ(i) − yσ(j)) = sgn(σ)∏
i<j

(yi − yj).

Let τ be a permutation. We apply this observation for the variables yi := xτ(i). We get

sgn(τσ) · p(x1, . . . , xn) = p(xτσ(1), . . . , xτσ(n))

= p(yσ(1), . . . , yσ(n))

= sgn(σ) · p(y1, . . . , yn)

= sgn(σ) · p(xτ(1), . . . , xτ(n))

= sgn(σ) · sgn(τ) · p(x1, . . . , xn).

This gives
sgn(τσ) = sgn(τ) · sgn(σ).

�

Calculating sgn in practice. Recall that every permutation σ can be written as a product of
disjoint cycles

σ = (a1 . . . a`)(b1 . . . bm) . . . ( f1 . . . fn).

Lemma 2.4.3. sgn(a1 . . . a`) = (−1)`−1.

Proof. We write
(a1 . . . a`) = (a1a`) . . . (a1a3)(a1a2)︸ ︷︷ ︸

`−1 transpositions

.

Since a transposition has sign −1 and sgn is a homomorphism, the claim follows. �

Corollary 2.4.4. sgn(σ) = (−1)] even length cycles.

3For example, if n = 3 and σ is the cycle (123) we have

(xσ(1) − xσ(2))(xσ(1) − xσ(3))(xσ(2) − xσ(3)) = (x2 − x3)(x2 − x1)(x3 − x1) = (x1 − x2)(x1 − x3)(x2 − x3).

Hence, sgn( (1 2 3) ) = 1.
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A Numerical example. Let n = 11 and

σ =

(
1 2 3 4 5 6 7 8 9 10
2 5 4 3 1 7 8 10 6 9

)
.

Then
σ = (1 2 5)(3 4)(6 7 8 10 9).

Now,
sgn( (1 2 5) ) = 1, sgn( (3 4) ) = −1, sgn( (6 7 8 10 9) ) = 1.

We conclude that sgn(σ) = −1.

Realizing Sn as linear transformations. Let F be any field. Let σ ∈ Sn. There is a unique linear
transformation

Tσ : Fn → Fn,
such that

Tσ(ei) = eσ(i), i = 1, . . . n,
where, as usual, e1, . . . , en are the standard basis of Fn. Note that

Tσ


x1
x2
...

xn

 =


xσ−1(1)
xσ−1(2)

...
xσ−1(n)

 .

(For example, because Tσx1e1 = x1eσ(1), the σ(1) coordinate is x1, namely, in the σ(1) place we
have the entry xσ−1(σ(1)).) Since for every i we have TσTτ(ei) = Tσeτ(i) = eστ(i) = Tστei, we have
the relation

TσTτ = Tστ.
The matrix representing Tσ is the matrix (aij) with aij = 0 unless i = σ(j) and aσ(i) i = 1. For
example, for n = 4 the matrices representing the permutations (12)(34) and (1 2 3 4) are,
respectively 

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 .

Otherwise said,4

Tσ =
(
eσ(1) | eσ(2) | . . . | eσ(n)

)
=



eσ−1(1)
——–
eσ−1(2)
——–

...
——–
eσ−1(n)


.

From the matrix representation of Tσ we get

det(Tσ) = det
(
eσ(1) | eσ(2) | · · · | eσ(n)

)
= sgn(σ)det

(
e1 | e2 | · · · | en

)
=

sgn(σ)det(In) = sgn(σ).

4This gives the interesting relation Tσ−1 = Tt
σ. Because σ 7→ Tσ is a group homomorphism we may conclude that

T−1
σ = Tt

σ. Of course, for a general invertible matrix this doesn’t hold – there is no reason for the inverse to be given
by the transpose.
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2.4.2. Transpositions and generators for Sn. For 1 ≤ i < j ≤ n we have the transposition σ = (ij).
Let T be the set of all transpositions in Sn. T has n(n − 1)/2 elements and it generates Sn. In
fact, the transpositions (12), (23), . . . , (n− 1 n) alone generate Sn (Exercise 10).

2.4.3. The alternating group An. Consider the set An of all permutations in Sn whose sign is 1.
They are called the even permutations (those with sign −1 are called odd). We see that e ∈ An
and that if σ, τ ∈ An also στ and σ−1 are in An. This follows from sgn(στ) = sgn(σ)sgn(τ) and
sgn(σ−1) = sgn(σ)−1.

Thus, An is a group. It is called the alternating group. For n > 1, it has n!/2 elements (use
multiplication by (12) to create a bijection between the odd and even permutations). Here are
some examples

n An

2 {1}
3 {1, (123), (132)}
4 {1, (123), (132), (124), (142), (134), (143), (234), (243),

(12)(34), (13)(24), (14)(23)}

2.4.4. A useful formula for conjugation. Let σ, τ ∈ Sn. There is a nice formula for τστ−1 (this is
called conjugating σ by τ). If σ is written as a product of cycles then the permutation τστ−1 is
obtained by applying τ to the numbers appearing in the cycles of σ. That is, if σ takes i to j then
τστ−1 takes τ(i) to τ(j). Indeed,

τστ−1(τ(i)) = τ(σ(i)) = τ(j).

Here is an example: say σ = (1 4)(2 5)(3 7 6) and τ = (1 2 3 4)(6 7) then τστ−1 =
(τ(1) τ(4)) (τ(2) τ(5)) (τ(3) τ(7) τ(6)) = (2 1)(3 5)(4 6 7).

2.4.5. The dihedral group as a subgroup of the symmetric group. Let n ≥ 3. By encoding the action of
the elements of Dn on the n vertices of the n-gon, we may view Dn as a subgroup of Sn; indeed,
every symmetry is completely determined by its action on the vertices. Thus,

x 7→ (1 2 · · · n),

and, if n is even
y 7→ (2 n)(3 n− 1) · · · (n

2
n
2
+ 2),

while if n is odd

y 7→ (2 n)(3 n− 1) · · · (n + 1
2

n + 3
2

).

2.5. Matrix groups and the quaternions. Let R be a commutative ring with 1. We let GLn(R)
denote the n× n matrices with entries with R, whose determinant is a unit in R.

Proposition 2.5.1. GLn(R) is a group under matrix multiplication.

For the proof we will use properties of the determinant, in particular that it is multiplicative.
When you proved it in MATH 251 you most likely assumed that the entries of the matrices be-
long to some field R. If you go back to your notes you will find that the proof applies whenever
R is a commutative ring. Similarly, for the adjoint matrix.
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Proof. Multiplication of matrices is associative and the identity matrix is in GLn(R). If A, B ∈
GLn(R) then det(AB) = det(A)det(B) gives that det(AB) is also a unit of R and so AB ∈
GLn(R). The adjoint matrix satisfies Adj(A)A = det(A)In and so every matrix A in GLn(R) has
an inverse equal to det(A)−1Adj(A). Note that A−1A = In implies that det(A−1) = det(A)−1,
hence det(A−1) is an invertible element of R. Thus, A−1 is in GLn(R). �

Proposition 2.5.2. Let F is a finite field of q elements. The group GLn(F) is a finite group of cardinality
(qn − 1)(qn − q) · · · (qn − qn−1).

Proof. To give a matrix in GLn(F) is to give a basis of Fn (consisting of the columns of the matrix).
The first vector v1 in a basis can be chosen to be any non-zero vector in Fn, and there are qn − 1
such vectors. The second vector v2 can be chosen to be any vector not in Span(v1); there are
qn − q such vectors. The third vector v3 can be chosen to be any vector not in Span(v1, v2); there
are qn − q2 such vectors. And so on. �

Example 2.5.3. It is not hard to prove that the set of upper triangular matrices in GLn(F), where
F is any field, forms a subgroup of GLn(F). It is also called a Borel subgroup. Likewise, the
set of upper triangular matrices in GLn(F) with 1 on the diagonal, where F is any field, forms a
subgroup of GLn(F). It is also called a unipotent subgroup. Calculate the cardinality of these
groups when F is a finite field of q elements.

Let us change gears and consider the case R = C, the complex numbers, and the set of eight
matrices

Q =

{
±
(

1 0
0 1

)
,±
(

i 0
0 −i

)
,±
(

0 1
−1 0

)
,±
(

0 i
i 0

)}
.

One verifies that this is a subgroup of GL2(C), called the Quaternion group. One can use the
notation

±1, ±i, ±j, ±k
for these matrices. We then have

i2 = j2 = k2 = −1, ij = −ji = k, jk = i, ki = j.

Note that Q is a non-abelian group of order 8.

2.6. Direct product. Let G, H be two groups. Define on the cartesian product G × H multipli-
cation by

m : (G× H)× (G× H)→ G× H, m((a, x), (b, y)) = (ab, xy).
This makes G× H into a group, called the direct product (also direct sum) of G and H.

One checks that G × H is abelian if and only if both G and H are abelian. The following
relation among orders hold: ord((x, y)) = lcm(ord(x), ord(y)). It follows that if G, H are finite
cyclic groups whose orders are co-prime then G× H is also a cyclic group. More precisely, if g
generates G and h generates H, ord(g) = a, ord(h) = b and (a, b) = 1, then the order of the
element (g, h) ∈ G× H is ab, which is equal to the order of G× H. Thus, (g, h) is a generator of
G× H.

The construction generalizes easily to a product of finitely many groups G1 × · · · × Gn; the
elements are vectors with coordinate-wise group operation. As a matter of notation, we write
G2 for G× G and, more generally, Gn for G× · · · × G (n-times).

Example 2.6.1. If H1 < H, G1 < G are subgroups then H1×G1 is a subgroup of H×G. However,
not every subgroup of H × G is of this form. For example, the subgroups of Z/2Z×Z/2Z are
{0} × {0}, {0} ×Z/2Z, Z/2Z× {0}, Z/2Z×Z/2Z and the subgroup {(0, 0), (1, 1)} which is
not a product of subgroups. See also Exercise 146.
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2.7. Groups of small order. One can show that in a suitable sense (namely, “up to isomor-
phism”; see § 7.1) the following is a complete list of groups for the given orders. In the middle
column we give the abelian groups and in the right column the non-abelian groups. These
groups are all familiar to us, except T, which will be discussed later.

order abelian groups non-abelian groups

1 {1}
2 Z/2Z

3 Z/3Z

4 (Z/2Z)2, Z/4Z

5 Z/5Z

6 Z/6Z S3

7 Z/7Z

8 (Z/2Z)3, Z/2Z×Z/4Z, Z/8Z D4, Q

9 (Z/3Z)2, Z/9Z

10 Z/10Z D5

11 Z/11Z

12 Z/2Z×Z/6Z, Z/12Z D6, A4, T

13 Z/13Z

14 Z/14Z D7

15 Z/15Z

In the following table we list for every n the number G(n) of groups of order n (this is taken
from J. Rotman/An introduction to the theory of groups):

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

G(n) 1 1 1 2 1 2 1 5 2 2 1 5 1 2 1 14 1 5 1

n 20 21 22 23 24 25 26 27 28 29 30 31 32

G(n) 5 2 2 1 15 2 2 5 4 1 4 1 51

You may wish to consider the number of groups of order n when n is prime and form a conjec-
ture. We will prove it shortly, in fact. Can you also make a conjecture when n is a product of two
primes? It may help you to know a few more values: G(33) = G(35) = 1 but G(55) = 2.

Asymptotically, the number of groups of order pn, where p is prime, is

p
2
27 n3+O(n8/3).

This is an asymptotic formula and it takes a while until it reflects the truth. For n = 10 it
predicts that there should be about 274 ∼ 1022 groups of order 1024. The true number seems to
be 49, 487, 365, 422, which is still very large! Here is the number of groups of order 2n for small
values of n (from Wikipedia and Groupprops, September 2021)
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exponent n 0 1 2 3 4 5 6 7 8 9 10 11

order 2n 1 2 4 8 16 32 64 128 256 512 1024 2048

no. of groups 1 1 2 5 14 51 267 2328 56092 10494213 49487365422 unknown (!)

3. COSETS AND LAGRANGE’S THEOREM

3.1. Cosets. Let G be a group and H a subgroup of G. A left coset of H in G is a subset S of G
of the form

gH := {gh : h ∈ H},
for some g ∈ G. A right coset is a subset of G of the form

Hg := {hg : h ∈ H},
for some g ∈ G. For brevity, we shall only discuss left cosets but the discussion with minor
changes applies to right cosets as well.

Example 3.1.1. Consider the group S3 and the subgroup H = {1, (12)}. The following table lists
the left cosets of H. For an element g, we list the coset gH in the middle column, and the coset
Hg in the last column.

g gH Hg

1 {1, (12)} {1, (12)}
(12) {(12), 1} {(12), 1}
(13) {(13), (123)} {(13), (132)}
(23) {(23), (132))} {(23), (123))}
(123) {(123), (13)} {(123), (23)}
(132) {(132), (23)} {(132), (13)}

TABLE 1. Cosets of 〈(12)〉

The first observation is that the element g such that S = gH is not unique. In fact, as the
following lemma implies, gH = kH if and only if g−1k ∈ H. The second observation is that
two left cosets are either equal or disjoint (but a left coset can intersect a right coset in a more
complicated way); this is a consequence of the following lemma.

Lemma 3.1.2. Define a relation g ∼ k if ∃h ∈ H such that gh = k. This is an equivalence relation such
that the equivalence class of g is precisely gH.

Proof. Since g = ge and e ∈ H the relation is reflexive. If gh = k for some h ∈ H then kh−1 = g
and h−1 ∈ H. Thus, the relation is symmetric. Finally, if g ∼ k ∼ ` then gh = k, kh′ = ` for
some h, h′ ∈ H and so g(hh′) = `. Since hh′ ∈ H we conclude that g ∼ ` and the relation is
transitive. �

Thus, pictorially the cosets look like that:
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H=1*H a*H b*H k*HIt
FIGURE 2. Cosets of a subgroup H.

Remark 3.1.3. One should note that in general gH 6= Hg; The table above provides an example.
Moreover, (13)H is not a right coset of H at all. A difficult theorem of P. Hall asserts that given
a finite group G and a subgroup H one can find a set {g1, . . . , gd} of elements of G such that
g1H, . . . , gdH are precisely the lest cosets of H, and Hg1, . . . , Hgd are precisely the right cosets
of H.

Example 3.1.4. When the group G is commutative and we choose to write the group law addi-
tively then the cosets of a subgroup H are of the form

x + H = {x + h : h ∈ H}
and

x + H = y + H ⇔ y− x ∈ H.
For example, if G = Z and H = nZ, where n is a positive integer, the cosets are of the form
x + H = {x + nt : t ∈ Z} and so the cosets correspond to congruence classes modulo n. We
have x + H = y + H if and only if y− x ∈ H. This is equivalent to n|(y− x), i.e. x ≡ y (mod n).

3.2. Lagrange’s theorem.

Theorem 3.2.1. Let H < G. The group G is a disjoint union of left cosets of H. If G is of finite order
then the number of left cosets of H in G is |G|/|H|. We call the number of left cosets the index of H in G
and denote it by [G : H].

Proof. We have seen that there is an equivalence relation whose equivalence classes are the cosets
of H. Recall that different equivalence classes are always disjoint. Thus,

G = ·∪s
i=1gi H,

a disjoint union of s cosets, where the gi are chosen appropriately. We next show that for every
x, y ∈ G the two cosets xH, yH have the same cardinality by producing a bijection between
them. Define a function

f : xH → yH, f (g) = yx−1g.
Note that f is well defined: since g = xh for some h ∈ H, f (g) = yh, which is an element of
yH. Similarly, the function f ′ : yH → xH, f ′(g) = xy−1g is well-defined. Clearly, f ◦ f ′ and
f ′ ◦ f are the identity functions of yH and xH, respectively. This shows that f is bijective and so
|xH| = |yH| for any x, y ∈ G. Thus, |G| = s · |H| and s = [G : H] = |G|/|H|. �

Corollary 3.2.2. If G is a finite group then |H| divides |G|.

Remark 3.2.3. The converse does not hold. The group A4, which is of order 12, does not have a
subgroup of order 6.

Corollary 3.2.4. If G is a finite group then ord(g) | |G| for all g ∈ G.

Proof. We saw that ord(g) = |〈g〉|, so we may use Corollary 3.2.2. �
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Remark 3.2.5. The converse does not hold. That is, if n| |G| it does not follow that G has an
element of order n. In fact, if G is not a cyclic group then there is no element g ∈ G such that
ord(g) = |G|.

Corollary 3.2.6. If the order of G is a prime number then G is cyclic.

Proof. From Corollary 3.2.4 we deduce that every element different from the identity has order
equal to |G|. Thus, every such element generates the group. �

Example 3.2.7. Consider the group S4 and its subgroup D4. There is no subgroup J of S4 such
that S4 % J % D4. Indeed, from Lagrange’s theorem we get

[S4 : J][J : D4] = [S4 : D4] = 3.

Thus, either [S4 : J] = 1, in which case J = S4, or [J : D4] = 1, in which case J = D4.

4. CYCLIC GROUPS

Let G be a finite cyclic group of order n, G = 〈g〉 = {1, g, . . . , gn−1}.

4.1. Order of elements and subgroups.

Lemma 4.1.1. We have ord(ga) = n/gcd(a, n).

Proof. Note that gt = gt−n and so gt = e if and only if n|t (cf. Corollary 1.2.2). Thus, the order of
ga is the minimal r such that ar is divisible by n. Clearly a · n/gcd(a, n) is divisible by n so the
order of ga is less or equal to n/gcd(a, n).

On the other hand if ar is divisible by n then n
gcd(a,n) divides a

gcd(a,n) · r. Because n
gcd(a,n) and

a
gcd(a,n) are relatively prime, n

gcd(a,n) must divide r. �

Corollary 4.1.2. The element ga generates G, i.e. 〈ga〉 = G, if and only if (a, n) = 1. Thus, the number
of generators of G is ϕ(n) := ]{1 ≤ a ≤ n : (a, n) = 1}, where ϕ is Euler’s function.

Proposition 4.1.3. For every h|n the group G has a unique subgroup of order h. This subgroup is cyclic.

Proof. We first show that every subgroup of G is cyclic. Let H be a non trivial subgroup. Then
there is a minimal 0 < a < n such that ga ∈ H and hence H ⊇ 〈ga〉. Let gr ∈ H. We may assume
that r > 0. Write r = ka + k′ for 0 ≤ k′ < a. Note that gr−ka ∈ H. The choice of a then implies
that k′ = 0. Thus, H = 〈ga〉.

Since gcd(a, n) = αa + βn for some integers α, β, we have ggcd(a,n) = (gn)β(ga)α ∈ H. Thus,
ga−gcd(a,n) ∈ H. Therefore, by the choice of a, a = gcd(a, n); that is, a|n. Thus, every subgroup is
cyclic and of the form 〈ga〉 for an appropriate a|n. Its order is n/a. We conclude that for every
b|n there is a unique subgroup of order b and it is cyclic, generated by gn/b. �

4.2. F× is cyclic.

Lemma 4.2.1. Let n be a positive integer. We have the following identity for Euler’s ϕ function:

n = ∑
d|n

ϕ(d).

(The summation is over positive divisors of n, including 1 and n.)
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Proof. Let G be a cyclic group of order n. Then we have

n = |G|
= ∑

1≤d≤n
]{g ∈ G : ord(g) = d}

= ∑
d|n

]{g ∈ G : ord(g) = d},

where we have used that the order of an element divides the order of the group.
Now, if h ∈ G has order d it generates a subgroup of order d, which is in fact the unique

subgroup of G of that order. Therefore, it follows that all the elements of G of order d generate
the same subgroup. That subgroup is a cyclic group of order d and thus has ϕ(d) generators
(that are exactly the elements of G of order d). The formula follows. �

Proposition 4.2.2. Let G be a finite group of order n such that for h|n the group G has at most one
subgroup of order h then G is cyclic.

Proof. Consider an element g ∈ G of order h. The subgroup 〈g〉 it generates is of order h and
has ϕ(h) generators. We conclude that every element of order h must belong to this subgroup
(because there is a unique subgroup of order h in G) and that there are exactly ϕ(h) elements of
order h in G.

On the one hand n = ]G = ∑d|n ]{elements of order d} = ∑d|n ϕ(d)εd, where εd is 1 if there
is an element of order d in G and is zero otherwise. On the other hand, by Lemma 4.2.1, n =
∑d|n ϕ(d). We conclude that εd = 1 for all d|n and, in particular, εn = 1 and so there is an element
of order n in G. This element is a generator of G. �

Corollary 4.2.3. Let F be a finite field then F× is a cyclic group.

Proof. Let q be the number of elements of F. To show that for every h dividing q − 1 there is
at most one subgroup of order h, we note that every element in that subgroup - call it H - will
have order dividing h and hence will solve the polynomial xh − 1. As a polynomial of degree h
in a field cannot have more than h roots, the h elements in that subgroup must be exactly the h
solutions of the polynomial xh − 1. In particular, this subgroup is unique. �

The proof shows an interesting fact. If F is a field of q elements, then F is the union of {0} and
the q− 1 roots of xq−1− 1, equivalently F is the solutions to the polynomial xq− x. It’s a general
fact that F has some finite characteristic p, which is a prime, and that therefore q is a power
of p. Conversely, suppose that L is a field of characteristic p and the polynomial xq − x splits
completely in L. Then F := {a ∈ L : aq − a = 0} is a field with q elements. Indeed, one only
needs to verify that this set is closed under addition, multiplication and inverse (multiplicative
and additive). The only tricky one to check is closure under addition. But, since for p prime,
p|(p

i ), 1 < i < p, one concludes from the binomial theorem that (x + y)p = xp + yp in L and, by
iteration, that (x + y)q = xq + yq in L. This gives immediately that F is closed under addition.

Remark 4.2.4. Although the groups (Z/pZ)× are cyclic for every prime p, that doesn’t mean
we know an explicit generator. Artin’s primitive root conjecture states that 2 is a generator for
infinitely many primes p (the conjecture is the same for any prime number instead of 2). Work
starting with R. Murty and R. Gupta, and continued with K. Murty and R. Heath-Brown, had
shown that for infinitely many primes p either 2, 3 or 5 are a primitive root.
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5. CONSTRUCTING SUBGROUPS

5.1. Commutator subgroup. Let G be a group. Define its commutator subgroup G′, or [G, G],
to be the subgroup generated by {xyx−1y−1; x, y ∈ G}. An element of the form xyx−1y−1 is
called a commutator. We use the notation [x, y] = xyx−1y−1. It is not true, in general, that every
element in G′ is a commutator, though, using [x, y]−1 = [y, x], we see that every element of G′ is
a product of commutators.

Example 5.1.1. We calculate the commutator subgroup of S3. First, note that every commu-
tator is an even permutation, hence contained in A3. Thus, S′3 < A3. Next, [(12), (13)] =
(12)(13)(12)(13) = (123) is in S′3. It follows that S′3 = A3.

5.2. Centralizer subgroup. Let H be a subgroup of G. We define its centralizer CentG(H) to be
the set {g ∈ G : gh = hg, ∀h ∈ H}. One checks that it is a subgroup of G called the centralizer
of H in G.

Given an element h ∈ G we may define CentG(h) = {g ∈ G : gh = hg}. It is a subgroup of G
called the centralizer of h in G. One checks that CentG(h) = CentG(〈h〉) and that CentG(H) =
∩h∈HCentG(h).

Taking H = G, the subgroup CentG(G) is the set of elements of G such that each of them
commutes with every other element of G. It has a special name; it is called the center of G and
denoted Z(G). In this course we will not be using the centralizer of a proper subgroup much,
but the centralizer of G, namely, its centre, will be often used.

Example 5.2.1. If G is abelian then G = Z(G) = CentG(H) for any subgroup H < G. If H1 ⊆
H2 ⊂ G then CentG(H2) ⊆ CentG(H1). If G = G1×G2 then CentG1×G2(G1× {1}) = Z(G1)×G2
and, more generaly, CentG1×G2(H1 × H2) = CentG1(H1)×CentG2(H2).

Example 5.2.2. We calculate the centralizer of (12) in S5. First recall the useful observation from
§2.4.4: τστ−1 is the permutation obtained from σ by changing its entries according to τ. For
example: (1234)[(12)(35)](1234)−1 = (1234)[(12)(35)](1432) = (1234)(1453) = (23)(45) and
(23)(45) is indeed obtained from (12)(35) by changing the labels 1, 2, 3, 4, 5 according to the rule
(1234).

Using this, we see that the centralizer of (12) in S5 is just S2× S3 – here S2 are the permutations
of 1, 2 and S3 are the permutations of 3, 4, 5. Viewed this way they are subgroups of S5.

5.3. Normalizer subgroup. Let H be a subgroup of G. Define the normalizer of H in G, NG(H),
to be the set {g ∈ G : gHg−1 = H}. It is a subgroup of G. Note that H ⊂ NG(H), CentG(H) ⊂
NG(H) and H ∩CentG(H) = Z(H).

Example 5.3.1. Consider S3 < S4. If τ ∈ NS4(S3) then τ(123)τ−1 ∈ S3 and so τ takes 1, 2 and 3
to 1, 2 and 3 (perhaps scrambling their order). Thus, τ ∈ S3. That is, NS4(S3) = S3.

6. NORMAL SUBGROUPS AND QUOTIENT GROUPS

Let N < G. We say that N is a normal subgroup if for all g ∈ G we have gN = Ng; equiva-
lently, gNg−1 = N for all g ∈ G; equivalently, gN ⊂ Ng for all g ∈ G; equivalently, gNg−1 ⊂ N
for all g ∈ G. For example, if gN ⊂ Ng for all g, then also g−1N ⊂ Ng−1, which gives Ng ⊂ gN.
So it follows that gN = Ng.
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We will use the notation NCG to signify that N is a normal subgroup of G. Note that an
equivalent way to say that NCG is to say that N < G and NG(N) = G.

Example 6.0.1. The group A3 is normal in S3. If σ ∈ A3 and τ ∈ S3 then τστ−1 is an even
permutation because its sign is sgn(τ)sgn(σ)sgn(τ−1) = sgn(τ)2sgn(σ) = 1. Thus, τA3τ−1 ⊂
A3. The same argument gives that AnCSn.

The subgroup H = {1, (12)} is not a normal subgroup of S3. One can use Table 3.1.1 above to
see that (13)H 6= H(13). Or, use that (13)(12)(13)−1 = (32).

Example 6.0.2. If G is abelian every subgroup of G is normal. The converse does not hold. Every
subgroup of the quaternion group Q is normal, but Q is not abelian.

6.1. Construction of a quotient group. Let NCG. Let G/N denote the set of left cosets of N
in G. We show that G/N has a natural structure of a group; it is called the quotient group of G
by N.

Given two cosets aN and bN we define

aN ∗ bN = abN.

We need to show this is well defined, because the formula seems to depend on the choice of
representatives a and b to represent the cosets aN, bN. Suppose then that aN = a′N and bN =
b′N then we must prove that abN = a′b′N. Now, we know that for suitable α, β ∈ N we have
aα = a′, bβ = b′. Thus, a′b′N = aαbβN = abb−1αbβN = ab(b−1αb)N. Note that since NCG and
α ∈ N also b−1αb ∈ N and so ab(b−1αb)N = abN. This innocuous step – noting that b−1αb ∈ N
because N is normal – is crucial. Indeed, if N is not a normal subgroup the collection of cosets
G/N has no natural group structure.

One checks easily that N = eN is the identity of G/N and that (gN)−1 = g−1N.

Definition 6.1.1. A non-trivial group G is called simple if its only normal subgroups are the
trivial ones: {e} and G.

Remark 6.1.2. We shall later prove that An is a simple group for n ≥ 5. By inspection, one
finds that also A2 and A3 are simple. On the other hand A4 is not simple. The “Klein 4 group”
V := {1, (12)(34), (13)(24), (14)(23)} is a normal subgroup of A4. The notation V is customary,
coming from the word “vier” (four, in German), but we will usually denote it K, for Klein.

6.2. Abelianization. Recall the definition of the commutator subgroup G′ of G from §5.1. In
particular, the notation [x, y] = xyx−1y−1. One easily checks that g[x, y]g−1 = [gxg−1, gyg−1]
and that [x, y]−1 = [y, x]. Hence, also g[x, y]−1g−1 = [gxg−1, gyg−1]−1.

Proposition 6.2.1. The subgroup G′ is normal in G. The group Gab := G/G′ is abelian (it is called the
abelianization of G). Furthermore, if N is a normal subgroup of G and G/N is abelian then N ⊇ G′.

Proof. We know that G′ = {[x1, y1]
ε1 · · · [xr, yr]εr : xi, yi ∈ G, εi = ±1}. It follows that

gG′g−1 = {[gx1g−1, gy1g−1]ε1 · · · [gxrg−1, gyrg−1]εr : xi, yi ∈ G, εi = ±1} ⊆ G′,

hence G′CG.
For every x, y ∈ G we have xG′ · yG′ = xyG′ = xy(y−1x−1yx)G′ = yxG′ = yG′ · xG′. Thus,

G/G′ is abelian. If G/N is abelian then for every x, y ∈ G we have xN · yN = yN · xN. That is,
xyN = yxN; equivalently, x−1y−1xyN = N. Thus, for every x, y ∈ G we have xyx−1y−1 ∈ N.
So N contains all the generators of G′ and therefore N ⊇ G′. �
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Example 6.2.2. Abelianization of Dn. Recall that the dihedral group Dn – the symmetries of a
regular n-gon – is generated by x, y subject to the relations y2 = xn = yxyx = 1. Let H = 〈x2〉.
Note that if n is odd, H = 〈x〉, while for n even H has index 2 in 〈x〉. We check first that H is
normal. Since Dn is generated by x, y, it is enough to check that H is closed under conjugation
by these elements. Clearly xHx−1 = H, and the identity yx2y−1 = (yxy)2 = x−2 implies that
yHy−1 = H too.

We next claim that in fact H = D′n. First, since x2 = [y, x]−1 we have H ⊆ D′n. To show
equality it is enough to show that Dn/H is abelian. Since Dn/H is generated by the images x̄, ȳ
of the elements x, y, it is enough to show that x̄ and ȳ commute. That is, that [ȳ, x̄] is the identity
element; otherwise said, that [y, x] ∈ H. But [y, x] = x−2 ∈ H.

Note that for n odd, the group Dab
n has order 2 and so is isomorphic5 to Z/2Z. For n even, the

group Dab
n has order 4, and it is not hard to check that it is isomorphic to Z/2Z×Z/2Z (under

x̄ 7→ (1, 0), ȳ 7→ (0, 1), say).

Example 6.2.3. Abelianization of the unipotent group. Let F be a field and n ≥ 2 an integer. Con-
sider the unipotent group N in GLn(F) comprised all upper-triangular matrices with 1’s along
the diagonal. Let H be the collection of matrices in N that have 0’s in all the (i, i + 1) entries. For
example, for n = 4 we are talking about the groups

1 ∗ ∗ ∗

1 ∗ ∗

1 ∗

1

 and


1 0 ∗ ∗

1 0 ∗

1 0

1


We claim that H = N′. First we check that H is normal in N. This is easily checked because, for
instance, 

1 a ∗ ∗

1 b ∗

1 c

1




1 a′ ∗ ∗

1 b′ ∗

1 c′

1

 =


1 a + a′ ∗ ∗

1 b + b′ ∗

1 c + c′

1

 ,

from which we deduce that also
1 a ∗ ∗

1 b ∗

1 c

1



−1

=


1 −a ∗ ∗

1 −b ∗

1 −c

1

 .

Then, we quickly see that H is normal and even that each commutator lies in H. To show that
H = N′ more work is needed. I leave it as a (somewhat challenging) exercise. At the very least,
I suggest you verify that for n = 3 (and that’s not hard).

5For now think of “isomorphic” as “can be identified with”.
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6.3. Some lemmas about product and intersection of subgroups.

Lemma 6.3.1. Let B and N be subgroups of G, NCG.
(1) B ∩ N is a normal subgroup of B.
(2) BN := {bn : b ∈ B, n ∈ N} is a subgroup of G. Also, NB is a subgroup of G. In fact,

BN = NB.
(3) If BCG then BNCG and B ∩ NCG.
(4) If B and N are finite then |BN| = |B||N|/|B ∩ N|. The same holds for NB.

Proof. (1) B ∩ N is a normal subgroup of B: First B ∩ N is a subgroup of G, hence of B. Let
b ∈ B and n ∈ B ∩ N. Then bnb−1 ∈ B because b, n ∈ B and bnb−1 ∈ N because NCG.

(2) BN := {bn : b ∈ B, n ∈ N} is a subgroup of G: Note that ee = e ∈ BN. If bn, b′n′ ∈ BN
then bnb′n′ = (bb′) · ((b′)−1nb′)n′ ∈ BN. Finally, if bn ∈ BN then (bn)−1 = n−1b−1 =
b−1 · bn−1b−1 ∈ BN.

Note that BN = ∪b∈BbN = ∪b∈BNb = NB.
(3) If BCG then BNCG: We saw that BN is a subgroup. Let g ∈ G and bn ∈ BN then

gbng−1 = (gbg−1)(gng−1) ∈ BN, using the normality of both B and N. If x ∈ B ∩ N, g ∈
G then gxg−1 ∈ B and gxg−1 ∈ N, because both are normal. Thus, gxg−1 ∈ B∩N, which
shows B ∩ N is a normal subgroup of G.

(4) If B and N are finite then |BN| = |B||N|/|B ∩ N|: Define a map of sets,

f : B× N → BN, (b, n)
f7→ bn.

to prove the assertion it is enough to prove that the fibre f−1(x) of any element x ∈ BN
has cardinality |B ∩ N|.

Suppose that x = bn, then for every y ∈ B ∩ N we have (by)(y−1n) = bn. This shows
that f−1(x) ⊇ {(by, y−1n) : y ∈ B ∩ N}, a set of |B ∩ N| elements. On the other hand, if
bn = b1n1 then y := b−1b1 = nn−1

1 is in B ∩ N. Note that b1 = by and n1 = y−1n. Thus,
f−1(x) = {(by, y−1n) : y ∈ B ∩ N}. 6

�

Remark 6.3.2. In general, if B, N are subgroups of G (that are not normal) then BN need not
be a subgroup of G. Indeed, consider the case of G = S3, B = {1, (12)}, N = {1, (13)} then
BN = {1, (12), (13), (132)} which is not a subgroup of S3. Thus, in general 〈B, N〉 ⊃ BN and
equality does not hold. We can deduce though that

|〈B, N〉| ≥ |B| · |N||B ∩ N| .

This is a very useful formula. Suppose, for example, that (|B|, |N|) = 1 then |B∩N| = 1 because
B∩N is a subgroup of both B and N and so by Lagrange’s theorem |B∩N| divides both |B| and
|N|. In this case then |〈B, N〉| ≥ |B| · |N|. For example, we can conclude, with no computations
at all, that any subgroup of order 3 of A4 together with the Klein group V generates A4.

Recall that a group G is called simple if it has no non-trivial normal subgroups. It follows
from Lagrange’s theorem that every group of prime order is simple. A group of odd order,
which is not prime, is not simple (a very difficult theorem of Feit and Thompson). We shall later
prove that the alternating group An is a simple group for n ≥ 5.

The classification of all finite simple groups is known. Most simple groups fall into a rather
small number of families (such as the groups An for n ≥ 5). Outside those families there are
finitely many simple groups, called the sporadic groups. John Conway, famous for the discovery
of the game of life, and who passed away in 2020 from COVID-19 complications, discovered

6Note that we do not need to assume BN is a subgroup. In particular, we do not need to assume that B or N are
normal subgroups, only that they are subgroups.
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several of them. The examples he found were obtained from symmetry groups of lattices in
24-dimensional space.

Another family of simple groups is the following: Let F be a finite field and let SLn(F) be the
group of n× n matrices with determinant 1. Let T be the diagonal matrices with all elements on
the diagonal being equal (hence the elements of T are in bijection with solutions of xn = 1 in F);
T is the center of SLn(F). Let PSLn(F) = SLn(F)/T. This is almost always a simple group for
n ≥ 2 and any F, the only exceptions being n = 2 and F ∼= Z/2Z, Z/3Z. (See Rotman, op. cit.,
§8).

One can gain some understanding of the structure of a group from its normal subgroups. If
NCG then we have a short exact sequence

1→ N → G → G/N → 1.

(That means that all the arrows are group homomorphisms and the image of an arrow is exactly
the kernel of the next one.) Thus, one might hope that the knowledge of N and G/N allows one
to find the properties of G. This works best when the map G → G/N has a section, i.e., there
is a homomorphism f : G/N → N such that πN ◦ f = Id. Then G is a semi-direct product. We
will come back to these ideas later on in the course.
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Part 2. The Isomorphism Theorems

7. HOMOMORPHISMS

It is a general principle in mathematics that when studying a particular class of objects one also
considers maps between the objects and one requires the maps to respect the main properties
of the objects. For example, maps between vector spaces are required to be linear – to respect
addition of vectors and multiplication by scalars, two properties that are directly linked to the
definition of vector spaces. Similarly, when studying posets (partially ordered sets) it is natural
to look at maps f : S→ T such that s1 < s2 implies f (s1) < f (s2). And so on. As said, this is a
general principle that is respected when studying rings, fields, modules, differential manifolds,
graphs, etc.

7.1. Basic definitions. Let G and H be two groups. A homomorphism

f : G → H

is a function satisfying
f (ab) = f (a) f (b), ∀a, b ∈ G.

It is a consequence of the definition that f (eG) = eH and that f (a−1) = f (a)−1.
A homomorphism is called an isomorphism if it is 1 : 1 and surjective. In that case, the set

theoretic inverse function f−1 is automatically a homomorphism too. Thus, f is an isomorphism
if and only if there exists a homomorphism g : H → G such that h ◦ g = idG, g ◦ h = idH.

Two groups, G and H, are called isomorphic if there exists an isomorphism f : G → H. We
use the notation G ∼= H. For all practical purposes two isomorphic groups should be considered
as the same group. Being isomorphic is an equivalence relation on groups.

Example 7.1.1. Let n ≥ 2. The sign map sgn : Sn → {±1} is a surjective group homomorphism.

Example 7.1.2. Let G be a cyclic group of order n, say G = 〈g〉. The group G is isomorphic
to Z/nZ: Indeed, define a function f : G → Z/nZ by f (ga) = a. Note that f is well defined
because if ga = gb then n|(b− a). It is a homomorphism: gagb = ga+b. It is easy to check that f is
surjective. It is injective, because f (ga) = 0 implies that n|a and so ga = g0 = e in the group G.

Example 7.1.3. We have an isomorphism S3 ∼= D3 coming from the fact that a symmetry of a
triangle (an element of D3) is completely determined by its action on the vertices.

Example 7.1.4. The Klein four group K = {1, (12)(34), (13)(24), (14)(23)} is isomorphic to
Z/2Z×Z/2Z by (12)(34) 7→ (0, 1), (13)(24) 7→ (1, 0), (14)(23) 7→ (1, 1).

The kernel Ker( f ) of a homomorphism f : G → H is by definition the set

Ker( f ) = {g ∈ G : f (g) = eH}.
For example, the kernel of the sign homomorphism Sn → {±1} is the alternating group An.

Lemma 7.1.5. The set Ker( f ) is a normal subgroup of G; f is injective if and only if Ker( f ) = {e}. For
every h ∈ H, in the image of f , the preimage f−1(h) := {g ∈ G : f (g) = h} is a coset of Ker( f ).

Proof. First, since f (e) = e we have e ∈ Ker( f ). If x, y ∈ Ker( f ) then f (xy) = f (x) f (y) = ee = e
so xy ∈ Ker( f ) and f (x−1) = f (x)−1 = e−1 = e so x−1 ∈ Ker( f ). That shows that Ker( f ) is
a subgroup. If g ∈ G, x ∈ Ker( f ) then f (gxg−1) = f (g) f (x) f (g−1) = f (g)e f (g)−1 = e. Thus,
Ker( f )CG.

If f is injective then there is a unique element x such that f (x) = e. Thus, Ker( f ) = {e}.
Suppose that Ker( f ) = {e} and f (x) = f (y). Then e = f (x) f (y)−1 = f (xy−1) so xy−1 = e. That
is x = y and f is injective.
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More generally, note that f (x) = f (y) iff f (x−1y) = e iff x−1y ∈ Ker( f ) iff y ∈ x Ker( f ). Thus,
if h ∈ H and f (x) = h then the fibre f−1(h) is precisely x Ker( f ). �

Lemma 7.1.6. If NCG then the canonical map πN : G → G/N, given by πN(a) = aN, is a surjective
homomorphism with kernel N.

Proof. We first check that π = πN is a homomorphism: π(ab) = abN = aNbN = π(a)π(b).
Since every element of G/N is of the form aN for some a ∈ G, π is surjective. Finally, a ∈ Ker(π)
iff π(a) = aN = N (the identity element of G/N), iff a ∈ N. �

The following Corollary is perhaps the best motivation for the introduction of the concept of
normal groups. In light of it, we can say that this is a natural concept.

Corollary 7.1.7. A subgroup N < G is normal if and only if it is the kernel of a homomorphism.

Example 7.1.8. Let F be a field and n ≥ 1 an integer. The determinant map

det : GLn(F)→ F×,

is a surjective homomorphism. Its kernel, called SLn(F) (GL stands for General Linear and SL
for Special Linear), namely the matrices of determinant 1, is a normal subgroup.

Example 7.1.9. We construct a surjective homomorphism

f : S4 → S3.

Let T = {(12)(34), (13)(24), (14)(23)}. For every permutation σ ∈ S4 we have the identity

σ (ij)(kl) σ−1 = (σ(i) σ(j))(σ(k) σ(l)),

and so S4 acts on T by conjugation. As such, every σ induces a permutation of the elements in T.
As T has three elements, we therefore get a homomorphism

f : S4 → S3.

We claim that this homomorphism is surjective. For this, test the effect of permutations of the
form (abc) on T, as well as permutations of the form (ab), to see that we get all the permutations
in S3. The kernel Ker( f ) of this homomorphism consists of permutations σ such that

σ(ij)(kl)σ−1 = (σ(i) σ(j))(σ(k) σ(l)) = (ij)(kl).

One can check by hand that the Klein group K = {1} ∪ T acts trivially on the elements of T and
so K ⊂ Ker( f ). It will follow from the first isomorphism theorem that Ker( f ) has 4 elements
and so one concludes that K = Ker( f ).

7.2. Behaviour of subgroups under homomorphisms. The following proposition describes the
behaviour of subgroups under homomorphisms.

Proposition 7.2.1. Let
f : G → H

be a group homomorphism. The following holds
(1) If A < G then f (A) < H, in particular f (G) < H.
(2) If B < H then f−1(B) < G. Furthermore, if BCH then f−1(B)CG.
(3) If, moreover, f is surjective, then ACG implies f (A)CH.
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Proof. Since f (e) = e we have e ∈ f (A). Furthermore, the identities f (x) f (y) = f (xy), f (x)−1 =
f (x−1) show that f (A) is closed under multiplication and inverses. Thus, f (A) is a subgroup.

Let B < H. Since f (e) = e we see that e ∈ f−1(B). Let x, y ∈ f−1(B) then f (xy) = f (x) f (y) ∈
B because both f (x) and f (y) are in B. Thus, xy ∈ f−1(B). Also, f (x−1) = f (x)−1 ∈ B and so
x−1 ∈ f−1(B). This shows that f−1(B) < G.

Suppose now that BCH. Let x ∈ f−1(B), g ∈ G. Then f (gxg−1) = f (g) f (x) f (g)−1. Since
f (x) ∈ B and BCH it follows that f (g) f (x) f (g)−1 ∈ B and so gxg−1 ∈ f−1(B). Thus, f−1(B)CG.

The last claim follows with similar arguments. �

Remark 7.2.2. It is not necessarily true that if ACG then f (A)CH. For example, consider G =
{1, (12)} with its embedding into S3.

8. THE FIRST ISOMORPHISM THEOREM

There are several isomorphism theorems, but a better way to understand this material is to
understand really well the First Isomorphism Theorem and think about the other isomorphism
theorems as applications, or consequences.

8.1.

Theorem 8.1.1. (The First Isomorphism Theorem) Let f : G → H be a homomorphism of groups.
Let N be the kernel of f and K a normal subgroup of G that is contained in N.

There is a unique homomorphism F : G/K → H such that the following diagram commutes:7

G
f

//

πK !!D
DD

DD
DD

D H

G/K
F

<<zzzzzzzz

.

Furthermore, Ker(F) = N/K.

Proof. Define
F : G/K → H, F(bK) = f (b).

This is a well-defined function: If bK = cK then b = ck for some k ∈ K ⊂ N = Ker( f ) and so
f (b) = f (ck) = f (c) f (k) = f (c). The map F is a homomorphism as F(bK · dK) = F(bdK) =
f (bd) = f (b) f (d) = F(bK)F(dK). By construction, we have

F(πK(b)) = F(bK) = f (b),

and the diagram is therefore commutative. Note, that since the map πK is surjective, there is a
unique function F that could make the diagram commutative; that is, F is a unique.

Finally, bK ∈ Ker(F) if and only if f (b) = 1H; namely, if and only if b ∈ N. Thus, the kernel
are cosets of the form bK, where b ∈ N; otherwise said, Ker(F) = N/K. �

Corollary 8.1.2. Let f : G → H be a surjective homomorphism of groups. Then

G/Ker( f ) ∼= H.

Proof. Indeed, from the commutativity of the diagram we conclude that F : G/Ker( f )→ H is
surjective. On the other hand, its kernel is Ker( f )/Ker( f ), which is just the identity element of
G/Ker( f ). Thus, F is a bijective homomorphism. �

7That means that F ◦ πK = f .
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Example 8.1.3. Let m, n be positive integers such that (m, n) = 1. Consider the homomorphism

f : Z→ Z/mZ×Z/nZ, f (x) = (x mod m, x mod n).

The kernel of f is mnZ and by the first isomorphism theorem we get an injective map

F : Z/mnZ→ Z/mZ×Z/nZ.

As both sides have cardinality mn, the homomorphism F is also surjective. We get the familiar
Chinese Remainder Theorem:

Z/mnZ ∼= Z/mZ×Z/nZ, if (m, n) = 1.

Example 8.1.4. Let F be a field and consider the 3× 3 unipotent group

N =




1 a c

0 1 b

0 0 1

 : a, b, c ∈ F

 .

The function
f : N → F×F,

where F × F is considered as an abelian group with coordinate-wise addition, is a surjective
homomorphism whose kernel are the matrices

K =




1 0 c

0 1 0

0 0 1

 : c ∈ F

 .

In fact K is the commutator subgroup of N (cf. Example 6.2.3). At any rate, we find that

N/K ∼= F×F.

Example 8.1.5. We complete Example 7.1.9. As the homomorphism f constructed there is sur-
jective, we have S4/Ker( f ) ∼= S3. As S3 has 6 elements, it follows that Ker( f ) has 4 elements
and, as we have already observed, it contains the Klein group K. Thus, Ker( f ) = K.

Example 8.1.6. Let us construct two homomorphisms

fi : D4 → S2.

We get the first homomorphism f1 by looking at the action of the symmetries coming from

b

B

A

a

D4 on the axes {a, b}. Thus, f1(x) = (ab), f1(y) = 1 (x permutes the axes, while y fixes the
axes – though not point-wise). Similarly, if we let A, B be the lines indicated in the diagram,
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then D4 acts as permutations on {A, B} and we get a homomorphism f2 : D4 → S2 such that
f2(x) = (AB), f2(y) = (AB).

The homomorphism fi, for i = 1, 2, is surjective and therefore the kernel Ni = Ker( fi) has 4
elements. We find that N1 = {1, x2, y, x2y} and N2 = {1, x2, xy, x3y}. By the first isomorphism
theorem we have D4/Ni

∼= S2.
Now, quite generally, if gi : G → Hi are group homomorphisms then g : G → H1×H2, defined

by g(r) = (g1(r), g2(r)) is a group homomorphism with kernel Ker(g1) ∩Ker(g2). One uses the
notation g = (g1, g2). Applying this to our situation, we get a homomorphism

f = ( f1, f2) : D4 → S2 × S2,

whose kernel is {1, x2}. It follows that the image of f has 4 elements and hence f is surjective.
That is,

D4/〈x2〉 ∼= S2 × S2.

Example 8.1.7. A homomorphism, especially if it is injective, could serve to realize more con-
cretely a group that is initially defined rather abstractly. We have already done so, without
making a big deal of it. Recall that Dn was defined as the group of symmetries of a regular
n-gon. By enumerating the vertices we realized Dn as a subgroup of Sn. In effect, we have
constructed an injective homomorphism Dn → Sn under which

y 7→ (1)(2 n)(3 n− 1) · · · , x 7→ (1 2 3 · · · n).

Example 8.1.8. Consider the group G = GL3(F2), a group with 168 = (8− 1)(8− 2)(8− 4)
elements. This is a famous group in fact, being the only simple group (namely a group with
no non-trivial normal subgroups) of order 168; All other simple groups of order less than 168
are either the cyclic abelian groups of prime order or the alternating group A5 of order 60. By
considering the action of G on F3

2 – the vector space of dimension 3 over F2 – or more precisely,
just its action on the 7 non-zero vectors F3

2 − {0} we get an injective group homomorphism
GL3(F2) ↪→ S7, where S7 is interpreted as the permutations of F3

2 − {0}.
Now, the only element of order 7 of S7 up to conjugation is a cycle of length 7 and, clearly, it

acts transitively on F3
2 − {0}. It will follow from theorems we shall prove later that since 7|168

the group G must have an element of order 7. We can therefore conclude that there is a matrix
in GL3(F2) of order 7 and that matrix permutes cyclically the non-zero vectors of the space. Can
you find such a matrix??

Example 8.1.9. Let G be an abelian group and fix an integer n. Consider the two sets

G[n] := {g ∈ G : gn = 1G}, G[n] := {gn : g ∈ G}.
Making use of the fact that G is abelian one easily checks that these are subgroups. If G is
not abelian this need not be true. For example, take G = S3 and n = 2. Then S3[2] =

{1, (12), (13), (23)} which is not a subgroup. In this case, S[2]
3 = {(1), (123), (132)} is a sub-

group, but if we take n = 3 we find that S[3]
3 = {1, (12), (13), (23)}, which is not a subgroup.

Getting back to the case where G is abelian, we notice that we have a surjective homomor-
phism:

[n] : G → G[n], [n](g) := gn.
The kernel of this homomorphism is G[n] and so, using the first isomorphism theorem, we
conclude

G/G[n] ∼= G[n].
Here is a simple application. Suppose that p ≡ 2 (mod 3) then the equation x3− a ≡ 0 (mod p)
has a unique solution for every non-zero congruence class a. Indeed, since 3 - (p− 1), there are
no elements of order 3 in the group Z/pZ×. Thus, (Z/pZ×)[3] = Z/pZ×, that is, every element
is a cube. But more is true; since the kernel of the homomorphism [3] : Z/pZ× → Z/pZ×, g 7→
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g3 is trivial in this case, every a is obtained from a unique g as a = g3. That is, we have a unique
solution.

Proposition 8.1.10. Let G be a group and let A be an abelian group. Any group homomorphism
f : G → A factors uniquely through Gab. If π : G → Gab is the quotient map then there is a bijection
between Hom(Gab, A) and Hom(G, A) provided by F 7→ F ◦ π.

Proof. Let f : G → A. Since A is abelian, for any x, y ∈ G we have f ([x, y]) = [ f (x), f (y)] = 1.
Thus, every commutator is in the kernel of f and it follows that G′ ⊆ Ker( f ). By the First
Isomorphism Theorem, f factors uniquely as

G
f

//

π %%KK
KKK

KKK
KK A

G/G′ = Gab
F

99ssssssssss

.

And, conversely, any F : Gab → A, where A is an abelian group induces a homomorphism
f : G → A by f = F ◦ π.

As the factorization and composition are inverse constructions, we get the bijection between
Hom(Gab, A) and Hom(G, A). �

9. THE SECOND ISOMORPHISM THEOREM

Theorem 9.0.1. Let G be a group. Let B < G, NCG. Then

BN/N ∼= B/(B ∩ N).

Proof. Recall from Lemma 6.3.1 that BN is a group and N is a normal subgroup in it. Define
a homomorphism B→ BN/N as the composition of the homomorphisms B ↪→ BN → BN/N.
That is, we have a homomorphism

f : B→ BN/N, f (b) = bN.

Every element x of BN/N is of the form bnN with some b ∈ B, n ∈ N. As bnN = bN we find
that f (b) = x and therefore f is surjective. We also have f (b) = bN = eBN/N if and only if
b ∈ N. But then clearly b ∈ B ∩ N. Thus, Ker( f ) = B ∩ N and the first isomorphism theorem
gives the isomorphism B/B ∩ N ∼= BN/N. �

Remark 9.0.2. This is often used as follows: Let f : G → H be a group homomorphism with
kernel N. Let B < G. What can we say about the image of B under f ? Well f (B) = f (BN) and
f : BN → H has kernel N. We conclude that f (B) ∼= BN/N ∼= B/(B ∩ N).

As a concrete example, consider B = S3 ⊂ S4 (realized as the permutations fixing 4) and the
homomorphism f : S4 → S3 constructed in Examples 7.1.9, 8.1.5. We have f (S3) ∼= S3/K ∩ S3
where K is the Klein group and equal to the kernel of f . As every non-trivial element of K moves
4, we have S3 ∩ K = {1}. We conclude that under the isomorphism f we have f (S3) ∼= S3.

10. THE THIRD ISOMORPHISM THEOREM

In the following theorem we have put together statements that are sometimes divided into
two theorems, called the Third Isomorphism Theorem and the Correspondence Theorem.

Theorem 10.0.1. Let f : G → H be a surjective homomorphism of groups.
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(1) f induces a bijection:

{subgroups of G containing Ker( f )} ←→ {subgroups of H}.

Given by G1 7→ f (G1), G1 < G, and in the other direction by H1 7→ f−1(H1), H1 < H.
(2) Suppose that Ker( f ) < G1 < G2. Then G1CG2 if and only if f (G1)C f (G2). Moreover, in that

case,

G2/G1
∼= f (G2)/ f (G1).

(3) Let N < K < G be groups, such that NCG, KCG. Then

(G/N)/(K/N) ∼= G/K.

G

G/N

N

K

K/N

Proof. We proved in general (Proposition 7.2.1) that if G1 < G then f (G1) < H and if H1 < H
then f−1(H1) < G. Since f is a surjective map we have f ( f−1(H1)) = H1. We need to show
that if Ker( f ) < G1 then f−1( f (G1)) = G1. Clearly f−1( f (G1)) ⊇ G1. Let x ∈ f−1( f (G1)) then
f (x) ∈ f (G1). Choose then g ∈ G1 such that f (g) = f (x) and write x = g(g−1x). Note that
f (g−1x) = eH and so g−1x ∈ Ker( f ) ⊆ G1. Thus, x = g(g−1x) ∈ G1.

Consider the restriction of f to G2 as a surjective group homomorphism f : G2 → f (G2). We
proved under those conditions that if G1CG2 then f (G1)C f (G2). If f (G1)C f (G2) then we also
proved that f−1( f (G1))CG2. Since G1 ⊃ Ker( f ) we have f−1( f (G1)) = G1.

It remains to show that if Ker( f ) < G1CG2 then G2/G1
∼= f (G2)/ f (G1). The homomorphism

obtained by composition

G2 → f (G2)→ f (G2)/ f (G1),

is surjective and has kernel f−1( f (G1)) = G1. The claim now follows from the First Isomor-
phism Theorem.

Finally, we apply the previous results in the case where H = G/N and f : G → G/N is
the canonical map. We consider the case G1 = K, G2 = G. Then G/K ∼= f (G)/ f (K) =
(G/N)/(K/N). �

Example 10.0.2. Consider again the group homomorphism f : D4 → S2 × S2 constructed in Ex-
ample 8.1.6. Using the Third Isomorphism Theorem we conclude that the graph of the sub-
groups of D4 containing < x2 > is exactly that of S2× S2 (analyzed in Example 2.6.1). Hence we
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have:
D4

{{
{{
{{
{{

DD
DD

DD
DD

K1

CC
CC

CC
CC

K2 K3

{{
{{
{{
{{

〈x2〉

{1}

S2 × S2

vv
vv
vv
vv
v

HH
HH

HH
HH

H

H1

GG
GG

GG
GG

G H2 H3

ww
ww
ww
ww
w

{e}

We will see later that this does not exhaust the list of subgroups of D4. Here we have
K1 = 〈x〉,
K2 = 〈y, x2〉,
K3 = 〈xy, x2〉

and
H1 = f (K1) = {(1, 1), ((ab), (AB))},
H2 = f (K2) = {(1, 1), (1, (AB))},
H3 = f (K3) = {(1, 1), ((ab), 1)}.

Example 10.0.3. Let F be a field and let N = {diag[ f , f , . . . , f ] : f ∈ F×} be the set of diagonal
matrices with the same non-zero element in each diagonal entry. In fact, N = Z(GLn(F)) and is
therefore a normal subgroup. The quotient group

PGLn(F) := GLn(F)/N

is called the projective linear group.
Let Pn−1(F) be the set of equivalence classes of non-zero vectors in Fn under the equivalence

v ∼ w if there is f ∈ F∗ such that f v = w; that is, the set of lines through the origin. The
set Pn−1(F) is called the (n− 1)−dimensional projective space. The importance of the group
PGLn(F) is that it acts as automorphisms on the projective space Pn−1(F): If we denote the class
of a matrix A in PGLn(F) by [A], say, and the class of vector v in Pn−1(F) by [v] then the action
is given by [A][v] = [Av]. (Check this is well-defined!).

Let
π : GLn(F)→ PGLn(F)

be the canonical homomorphism. The function

det : GLn(F)→ F∗

is a group homomorphism, whose kernel, the matrices with determinant one, is denoted SLn(F).
Consider the image of SLn(F) in PGLn(F); it is denoted PSLn(F). We want to analyze it and the
quotient PGLn(F)/PSLn(F).

The group PSLn(F) is equal to π(SLn(F)) = π(SLn(F)N) and is therefore isomorphic to
SLn(F)N/N ∼= SLn(F)/SLn(F) ∩ N = SLn(F)/µn(F), where by µn(F) we mean the group
{ f ∈ F× : f n = 1} (where we identify f with diag[ f , f , . . . , f ]). Therefore,

PSLn(F) ∼= SLn(F)/µn(F).

We have PGLn(F)/PSLn(F) ∼= (GLn(F)/N)/(SLn(F)N/N) ∼= GLn(F)/SLn(F)N. Let F×[n]

be the subgroup of F× consisting of the elements { f n : f ∈ F×}. Under the isomorphism
GLn(F)/SLn(F) ∼= F× the subgroup SLn(F)N corresponds to F×[n]. We conclude that

PGLn(F)/PSLn(F) ∼= F×/F×[n].
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Example 10.0.4. We return to Example 8.1.4. We constructed a surjective homomorphism

f : N → F×F,

with kernel

K =




1 0 c

0 1 0

0 0 1

 : c ∈ F

 .

Assume that F = Z/pZ. What are the subgroups of N that contain K?
By the Third Isomorphism Theorem, they are in bijection with the subgroups of F×F. Besides

the trivial subgroups {(0, 0)} and F× F, which correspond to K and N, respectively, there are
many other subgroups.

Every proper subgroup W of F× F is abelian. We have a definition of nw for n ∈ Z, w ∈ W
(this is gn in multiplicative notation and is familiar to us). Since pw = 0, we conclude that we
may view W as an F-vector space, where for n̄ ∈ F, represented by an integer n, we let n̄w = nw
and this is well-defined! The conclusion is that every subgroup of F× F is an F-subspace, and
the proper subgroups correspond to 1-dimensional subspace of F × F. The converse is true
too. Thus, the proper subgroups of N that strictly contain K are in bijection with lines in F×F.
To describe these lines we use linear functionals: For every (x, y) 6= 0 we have the subgroup
{(a, b) : a, b ∈ F, xa + yb = 0} corresponding to the subgroup of N given by

B(x,y) :=




1 a c

0 1 b

0 0 1

 : a, b, c ∈ F, xa + yb = 0

 .

In fact, B(x,y) depends on (x, y) up to proportion only. Namely, it depends only on the point
(x : y) ∈ P1(F), the one-dimensional projective space (cf. Example 10.0.3). There are p + 1
points (x : y) in this space (they are represented for example by (1, a) for a ∈ F and (0, 1)) and
so there are p + 1 subgroups of N lying strictly in between N and K.

11. THE LATTICE OF SUBGROUPS OF A GROUP

Let G be a group. Consider the set Λ(G) of all subgroups of G. Define an order on this set by
A ≤ B if A is a subgroup of B. This relation is transitive and A ≤ B ≤ A implies A = B. That is,
the relation is really an order.

The set Λ(G) is a combinatorical lattice: Every two elements A, B have a minimum A ∩ B
(that is if C ≤ A, C ≤ B then C ≤ A ∩ B) and a maximum 〈A, B〉 - the subgroup generated by
A and B (that is C ≥ A, C ≥ B then C ≥ 〈A, B〉). If A ∈ Λ(G) then let ΛA(G) to be the set of
all elements in Λ(G) that are greater or equal to A. It is a lattice in its own right. By the Third
Isomorphism Theorem, we have

If NCG then ΛN(G) ∼= Λ(G/N) as lattices.

Here is the lattice of subgroups of D4. Normal subgroup are boxed.
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eee subgroups of order 2

{e}

How to prove that these are all the subgroups of D4? Note that every proper subgroup has
order 2 or 4 by Lagrange’s theorem. If it is cyclic then it must be one of the above, because the
diagram certainly contains all cyclic subgroups. Else, it can only be of order 4 and every element
of it different from e has order 2. It is easy to verify that any two distinct elements of order 2
generate one of the subgroups we have listed.

There are at least two ways in which one uses this concept:
• To examine whether two groups could possibly be isomorphic. Isomorphic groups have iso-

morphic lattices of subgroups. For example, the groups D4 and Q both have 8 elements.
The lattice of subgroups of Q is the following:

Q

zz
zz
zz
zz
z

EE
EE

EE
EE

E

〈i〉

DD
DD

DD
DD

〈j〉 〈k〉

zz
zz
zz
zz

〈−1〉

{1}

We conclude that Q and D4 are not isomorphic.
• To recognize quotients. Consider for example D4/〈x2〉. This is a group of 4 elements. Let

us give ourselves that there are only two groups of order 4 up to isomorphism and those
are (Z/2Z)2 and Z/4Z. The lattice of subgroups for them are

(Z/2Z)2

mmm
mmm

mmm
mmm

m

QQQ
QQQ

QQQ
QQQ

Q

{(0, 0), (0, 1)}

QQQ
QQQ

QQQ
QQQ

Q
{(0, 0), (1, 1)} {(0, 0), (1, 0)}

mmm
mmm

mmm
mmm

m

{(0, 0)}

Z/4Z

{0, 2}

{0}

We conclude that D4/〈x2〉 ∼= (Z/2Z)2.
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Part 3. Group Actions on Sets

Group actions on sets will be revealed to be an extremely powerful method to gain information
about the structure of groups.

12. BASIC DEFINITIONS

Let G be a group and let S be a non-empty set. We say that G acts on S if we are given a function

G× S→ S, (g, s) 7−→ g ∗ s,

such that;
(i) e ∗ s = s for all s ∈ S;
(ii) (g1g2) ∗ s = g1 ∗ (g2 ∗ s) for all g1, g2 ∈ G and s ∈ S.

Given an action of G on S we can define the following sets. Let s ∈ S. Define the orbit of s

Orb(s) = {g ∗ s : g ∈ G}.
Note that Orb(s) is a subset of S, equal to all the images of the element s under the action of the
elements of the group G. We also define the stabilizer of s to be

Stab(s) = {g ∈ G : g ∗ s = s}.
Note that Stab(s) is a subset of G. In fact, it is a subgroup, as the next Lemma states.

One should think of every element of the group as becoming a symmetry of the set S. We will
make that more precise later. For now, we just note that every element g ∈ G defines a function
S→ S by s 7→ gs. This function will turn out to be bijective.

13. BASIC PROPERTIES

Lemma 13.0.1. (1) Let s1, s2 ∈ S. We say that s1 is related to s2, i.e., s1 ∼ s2, if there exists g ∈ G
such that

g ∗ s1 = s2.
This is an equivalence relation. The equivalence class of s1 is its orbit Orb(s1).

(2) Let s ∈ S. The set Stab(s) is a subgroup of G.
(3) Suppose that both G and S have finitely many elements. Then

|Orb(s)| = |G|
|Stab(s)| .

Proof. (1) We need to show reflexive, symmetric and transitive. First, we have e ∗ s = s and
hence s ∼ s, meaning the relation is reflexive. Second, if s1 ∼ s2 then for a suitable
g ∈ G we have g ∗ s1 = s2. But then, s1 = g−1 ∗ (g ∗ s1) = g−1 ∗ s2 and so the relation is
symmetric.

It remains to show transitive. If s1 ∼ s2 and s2 ∼ s3 then for suitable g1, g2 ∈ G we
have

g1 ∗ s1 = s2, g2 ∗ s2 = s3.
Therefore,

(g2g1) ∗ s1 = g2 ∗ (g1 ∗ s1) = g2 ∗ s2 = s3,
and hence s1 ∼ s3.
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Moreover, by the very definition, the equivalence class of an element s1 of S is all the
elements of the form g ∗ s1 for some g ∈ G, namely, Orb(s1).

(2) Let H = Stab(s). We have to show that: (i) e ∈ H; (ii) If g1, g2 ∈ H then g1g2 ∈ H; (iii) If
g ∈ H then g−1 ∈ H.

First, by definition of group action we have e ∗ s = s. Therefore e ∈ H. Next suppose
that g1, g2 ∈ H, i.e., g1 ∗ s = s and g2 ∗ s = s. Then, (g1g2) ∗ s = g1 ∗ (g2 ∗ s) = g1 ∗ s = s.
Thus, g1g2 ∈ H. Finally, if g ∈ H then g ∗ s = s and so g−1 ∗ g ∗ s = g−1 ∗ s. But,
g−1 ∗ g ∗ s = e ∗ s = s, and therefore g−1 ∈ H.

(3) We claim that there exists a bijection between the left cosets of H and the orbit of s. If we
show that, then by Lagrange’s theorem,

|Orb(s)| = no. of left cosets of H = index of H = |G|/|H|.
Define a function

G/H := {left cosets of H} φ→ Orb(s),
by

φ(gH) = g ∗ s.
We claim that φ is a well defined bijection. First

Well-defined: Suppose that g1H = g2H. We need to show that the rule φ would give the same
result whether we take the representative g1 of the coset or the representative g2 of the coset.
That is, we need to show

g1 ∗ s = g2 ∗ s.
Note that g−1

1 g2 ∈ H, i.e., (g−1
1 g2) ∗ s = s. We get

g1 ∗ s = g1 ∗ ((g−1
1 g2) ∗ s)

= (g1(g−1
1 g2)) ∗ s

= g2 ∗ s.

φ is surjective: Let t ∈ Orb(s) then t = g ∗ s for some g ∈ G. Thus,

φ(gH) = g ∗ s = t,

and we get that φ is surjective.

φ is injective: Suppose that φ(g1H) = φ(g2H). We need to show that g1H = g2H. Indeed,

φ(g1H) = φ(g2H)

⇒ g1 ∗ s = g2 ∗ s

⇒ g−1
2 ∗ (g1 ∗ s) = g−1

2 ∗ (g2 ∗ s)

⇒ (g−1
2 g1) ∗ s = (g−1

2 g2) ∗ s = s

⇒ g−1
2 g1 ∈ Stab(s) = H

⇒ g1H = g2H.

�

Corollary 13.0.2. The set S is a disjoint union of orbits.

Proof. The orbits are the equivalence classes of the equivalence relation∼ defined in Lemma 13.0.1.
Any equivalence relation on a set partitions the set into disjoint equivalence classes. �

We have in fact seen that every orbit is in bijection with the cosets of some group. If H is any
subgroup of G let us use the notation G/H for its cosets (note though that if H is not normal this
is not a group, but just a set). We saw that if s ∈ S then there is a natural bijection G/Stab(s)↔
Orb(s). Thus, the picture of S is as follows
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 S

Orb(a) = G/Stab(a)

Orb(b) = G/Stab(b)

Orb(c) = G/Stab(c)

a

b c

FIGURE 3. S decomposes into disjoint orbits.

Remark 13.0.3. Let G act on a set S and let s ∈ S. Then, for any element g ∈ G,

StabG(gs) = gStabG(s)g−1.

In words, the stabilizers of two elements in S that lie in the same orbit are conjugate subgroups
of G. In particular they all have the same cardinality (the function StabG(gs)→ Stab(s) given
by h 7→ g−1hg is a bijection).

Remark 13.0.4. We say that G acts transtively on S, or that the action is transitive if G has one
orbit in S. Namely, if for all s1, s2 in S there is some g ∈ G such that g ∗ s1 = s2. In this case the
number of elements of S is given by ]G/]Stab(s) (for any choice of element s ∈ S).

14. SOME EXAMPLES

Example 14.0.1. The symmetric group Sn acts on the set {1, 2, . . . , n}. The action is transitive,
i.e., there is only one orbit. The stabilizer of i is S{1,2,...,i−1,i+1,...,n} ∼= Sn−1.

Example 14.0.2. The group GLn(F) acts on Fn, and also on Fn − {0}. The action is transitive on
Fn − {0} and has two orbits on Fn. The stabilizer of 0 is, of course, GLn(F); the stabilizer of a
non-zero vector v1 can be written in a basis w1, w2, . . . , wn with w1 = v1 as the matrices of the
shape 

1 ∗ . . . ∗

0 ∗ . . . ∗
...

... . . .
...

0 ∗ . . . ∗

 .

Example 14.0.3. Let H be a subgroup of G then we have an action

H × G → G, (h, g) 7→ hg.

In this example, H is the “group” and G is the “set”. Here the orbits are right cosets of H (that
is, subsets of G of the form Hg) and the stabilizers are trivial.

Since G = ä Orb(gi) = ä Hgi, where the union is over representatives for the orbits, we
conclude that |G| = ∑i |Orb(gi)| = ∑i |H|/|Stab(gi)| = ∑i |H|. Therefore, |H| | |G| and that
[G : H], the number of cosets, is |G|/|H|. We have recovered Lagrange’s theorem.
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Example 14.0.4. Let H be a subgroup of G. Let G/H = {gH : g ∈ G} be the set of left cosets
of H in G. Then we have an action

G× G/H → G/H, (a, bH) 7→ abH.

Here there is a unique orbit – G acts transitively. The stabilizer of gH is the subgroup gHg−1.
We will come back to this important example. It will yield the coset representation of a group.

Example 14.0.5. Let G = R/2πZ. It acts on the sphere by rotations: an element θ ∈ G rotates the
sphere by angle θ around the north-south axis. The orbits are latitude lines and the stabilizers
of every point is trivial, except for the poles whose stabilizer is G. See Figure 4.

θ

FIGURE 4. Action on the sphere by rotation.

Example 14.0.6. Recall that D8 is the group of symmetries of a regular octagon in the plane.

D8 = {e, x, x2, . . . , x7, y, yx, yx2, . . . , yx7},

where x is the rotation clockwise by angle 2π/8 and y is the reflection through the y-axis. We
have the relations

x8 = y2 = e, yxy = x−1.

We let S be the set of colourings of the vertices of the octagon having 4 red vertices and 4 green
vertices. We may think about S as the set of necklaces with 8 gems, where four gems are rubies
and 4 are sapphires. The cardinality of S is (8

4) = 70. The group D8 acts on S by its action on the
octagon.

For example, the colouring s0 in Figure 5 (where the two colours are represented by squares
and circles) is certainly preserved under x2 and under y. Therefore, the stabilizer of s0 contains
at least the set of eight elements

(1) {e, x2, x4, x6, y, yx2, yx4, yx6}.

Remember that the stabilizer is a subgroup and, by Lagrange’s theorem, of order dividing
16 = |D8|. On the other hand, Stab(s0) 6= D8 because x 6∈ Stab(s0). It follows that the stabilizer
has exactly 8 elements and is equal to the set in (1).

According to Lemma 13.0.1 the orbit of s0 is in bijection with the left cosets of Stab(s0) =
{e, x2, x4, x6, y, yx2, yx4, yx6}. By Lagrange’s theorem there are two cosets. For example, Stab(s0)
and xStab(s0) are distinct cosets. The proof of Lemma 13.0.1 tells us how to find the orbit: it is
the set

{s0, xs0},
portrayed in Figure 6.
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y

x

FIGURE 5. A necklace with 4 rubies and 4 sapphires.

FIGURE 6. The orbit of the necklace.

Example 14.0.7. Let Γ be the group of symmetries of the cube obtained by rigid motions (so
reflections are not allowed). The action of Γ on the 8 vertices gives an injective homomorphism
Γ ↪→ S8. But, as we shall see, there are much more useful realizations of Γ.

Let’s see a clever way to count the number of elements in Γ: It is easy to see that Γ acts
transitively on the 6 faces of the cube. The stabilizer of a face is made of the rotations that
keep the face but rotate it around its middle point. The orbit-stabilizer formula then gives that
]Γ = 24.

The action of Γ on the 6 faces of the cube gives a homomorphism Γ→ S6. By considering
the action of Γ on two adjacent faces we see that the homomorphism Γ→ S6 must be injective,
because if a symmetry preserves two adjacent faces, it must be the trivial symmetry.

We obtain that Γ can be realized as a transitive subgroup of S6 (namely, a subgroup that acts
transitively on {1, 2 . . . , 6}. This is an improvement, but still ]S6 = 6! = 720 and ]Γ = 24 which
means that Γ is a “tiny” subgroup of S6. So consider the action of Γ on the 4 long diagonals of
the cube which we number {1, 2, 3, 4}. This gives a homomorphism f : Γ→ S4.

It is not a priori clear whether f is injective. Since both sides have 24 elements, if we show f
is surjective then f is also injective and hence an isomorphism. Here is an argument showing
that:

A rotation keeping the front face has the effect (1243), while a rotation keeping the right-
facing face has the effect (2314). The cyclic subgroups generated by those two cycles are {1, a =
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(1243), b = (14)(23), (3421)} and {1, c = (2314), d = (21)(34), (4132)}. We see that the sub-
group they generate contains the Klein group (calculate bd), and a short calculation shows that
it in facts contains a subgroup of order 8 (for instance the subgroup generated by the Klein group
and (1243)). Thus, the order of the subgroup they generate is divisible by 8. On the other hand,
its order is also divisible by 3 because it contains ac = (132). Therefore, the image of f is S4 and
we conclude that

Γ ∼= S4.

15. CAYLEY’S THEOREM

Theorem 15.0.1. Every finite group of order n is isomorphic to a subgroup of Sn.

We first prove a lemma that puts group actions in a different context. Let A be a finite set.
Recall the group of permutations of A, ΣA; it is the set of bijective functions A→ A. If we let
s1, . . . , sn be the elements of A, we can identify bijective functions A→ A with permutations of
{1, . . . , n} and we see that ΣA

∼= Sn.

Lemma 15.0.2. Giving an action of a group G on a set A is equivalent to giving a homomorphism
G → ΣA. The kernel of this homomorphism is ∩a∈AStab(a).

Proof. An element g defines a function φg : A→ A by φg(a) = ga. We have φe being the identity
function. Note that φhφg(a) = φh(ga) = hga = φhg(a) for every a and hence φhφg = φhg. In
particular, φgφg−1 = φg−1 φg = Id. This shows that every φg is a bijection and the map

φ : G → ΣA, g 7→ φg,

is a homomorphism. (Conversely, given such a homomorphism φ, define a group action by
g ∗ a := φg(a).)

The kernel of this homomorphism consists of the elements g such that φg is the identity, i.e.,
φg(a) = a for all a ∈ A. That is, g ∈ Stab(a) for every a ∈ A. The set of such elements g is just
∩a∈AStab(a). �

Proof. (Cayley’s Theorem) Consider the action of G on itself by multiplication (Example 14.0.3),
(g, g′) 7→ gg′. Recall that all stabilizers are trivial. Thus this action gives an injective homomor-
phism

G ↪→ ΣG
∼= Sn,

where n = |G|. �

16. THE COSET REPRESENTATION

Let G be a group and H a subgroup of finite index n. Consider the action of G on the set of
cosets G/H of H (Example 14.0.4) and the resulting homomorphism

φ : G → ΣG/H
∼= Sn,

where n = [G : H]. We shall refer to it as the coset representation of G. The kernel K of φ is

K = ∩a∈G/HStab(a) = ∩g∈GStab(gH) = ∩g∈G gHg−1.

Being a kernel of a homomorphism, K is normal in G. K is also contained in H. Furthermore,
since the resulting homomorphism G/K → Sn is injective we get that |G/K| = [G : K] divides
|Sn| = n!. In particular, we conclude that every subgroup H of G contains a subgroup K which
is normal in G and of index at most [G : H]!. Thus, for example, a simple infinite group has no
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subgroups of finite index – I am not sure if this has a simple proof that doesn’t use one way or
another group actions.

In fact, the formula K = ∩g∈G gHg−1 shows that K is the maximal subgroup of H which is
normal in G. Indeed, if K′CG, K′ < H then for any g ∈ G we have K′ = gK′g−1 ⊆ gHg−1 and
we see that K′ ⊆ K.

The coset representation reveals an important principle. To give a subgroup of finite index n of a
group G is to give a transitive action of G on a set of n elements.

Indeed, if G acts transitively on a set T of n-elements, pick an element t ∈ T and let H =
Stab(t). Then, the bijection G/H ↔ T shows that H is of index n. Conversely, if H is a subgroup
of G of index n, the coset representation of G on G/H is a transitive action on a set of n elements.

Example 16.0.1. We construct a surjective homomorphism S4 → S3 in a different way than that
of Example 8.1.5. Recall that D4 < S4 is a subgroup of index 3. The coset representation therefore
gives a homomorphism

S4 → S3.
The image is a transitive subgroup of S3 and there are only two such: A3 and S3. Take the
element (12) which is not in D4. Then the three cosets of D4 can be written as

D4, (12)D4, xD4,

for some x whose precise form will not matter to us. As (12) takes D4 to (12)D4 and (12)D4 to
D4, it must fix xD4 and therefore the image of (12) in S3 is a transposition. It follows that the
image of S4 must be S3. The kernel is a normal subgroup of S4 contained in D4 of cardinality 4.
It must therefore be the Klein group K.

17. THE CAUCHY-FROBENIUS FORMULA

The Cauchy-Frobenius formula (CFF), sometimes called Burnside’s lemma, is a very useful
formula for combinatorial problems.

17.1. A formula for the number of orbits.

Theorem 17.1.1. (CFF) Let G be a finite group acting on a finite set S. Let N be the number of orbits of
G in S. Define

I(g) = |{s ∈ S : g ∗ s = s}|
(the number of elements of S fixed by the action of g). Then

(2) N =
1
|G| ∑

g∈G
I(g).

Remark 17.1.2. To say N = 1 is to say that G acts transitively on S. It means exactly that: For
every s1, s2 ∈ S there exists g ∈ G such that g ∗ s1 = s2.

Proof. We define a function

T : G× S→ {0, 1}, T(g, s) =

{
1 g ∗ s = s
0 g ∗ s 6= s

.

Note that for a fixed g ∈ G we have

I(g) = ∑
s∈S

T(g, s),
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and that for a fixed s ∈ S we have

|Stab(s)| = ∑
g∈G

T(g, s).

Let us fix representatives s1, . . . , sN for the N disjoint orbits of G in S. Now,

∑
g∈G

I(g) = ∑
g∈G

(
∑
s∈S

T(g, s)

)
= ∑

s∈S

(
∑
g∈G

T(g, s)

)

= ∑
s∈S
|Stab(s)| = ∑

s∈S

|G|
|Orb(s)|

=
N

∑
i=1

∑
s∈Orb(si)

|G|
|Orb(s)| =

N

∑
i=1

∑
s∈Orb(si)

|G|
|Orb(si)|

=
N

∑
i=1

|G|
|Orb(si)|

· |Orb(si)| =
N

∑
i=1
|G|

= N · |G|.
�

Corollary 17.1.3. Let G be a finite group acting transitively on a finite S. Suppose that |S| > 1. Then
there exists g ∈ G without fixed points.

Proof. By contradiction. Suppose that every g ∈ G has a fixed point in S. That is, suppose that
for every g ∈ G we have

I(g) ≥ 1.
Since I(e) = |S| > 1 we have that

∑
g∈G

I(g) > |G|.

By Cauchy-Frobenius formula, the number of orbits N is greater than 1. Contradiction. �

Example 17.1.4. The symmetry group Γ of the cube acts transitively on the 6 faces. It follows
that there is a symmetry of the cube leaving no face fixed (there are many, in fact). Can you find
one?

Example 17.1.5. A subgroup G of Sn is called transitive if its action on {1, 2, . . . , n} is transitive.
If n > 1, the corollary says that such a subgroup contains a permutation with no fixed points.
Moreover, by the orbit-stabilizer formula, G has a subgroup of index n and so n|]G. Such results
are used in the classification of transitive subgroups of Sn for small values of n – a classification
important to Galois theory because the Galois group of an irreducible separable polynomial of
degree n is a transitive subgroup of Sn. For example, for S3 we find that A3 and S3 are the only
transitive subgroups. For S4 we are looking for subgroups of order divisible by 4 (so 4, 8, 12 and
24) that act transitively and also contain a permutation with no fixed point. After conjugation,
we may therefore assume that either (1234) or (12)(34) belongs to the subgroup. Continuing
the analysis, one finds that up to conjugation the transitive subgroups are K, 〈(1234)〉, D4, A4, S4.

17.2. Applications to combinatorics. In the following examples we will consider roulettes and
necklaces. When we are asking about the number of colourings of a roulette with n wedges sat-
isfying some restrictions, we allow rotational symmetries only. When we talk about colourings
of necklaces, we allow in addition symmetries obtained from turning the necklace over so that
its back side becomes its front side. Thus, for a roulette with n wedges the symmetry group is
Z/nZ, while for a necklace with n stones the symmetry group is Dn.
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Example 17.2.1. How many roulettes with 11 wedges, painted 2 blue, 2 green and 7 red, are
there when we allow rotations?

Let S be the set of painted roulettes. Let us enumerate the sectors of a roulette by the numbers
1, . . . , 11. The set S is a set of (11

2 )(
9
2) = 1980 elements (choose which 2 wedges are blue, and then

choose out of the remaining 9 wedges which 2 are green).
Let G be the group Z/11Z. It acts on S by rotations. The element 1 rotates a painted roulette

by angle 2π/11 clockwise. The element n rotates a painted roulette by angle 2nπ/11 clockwise.
We are interested in N – the number of orbits for this action. We use CFF.

The identity element always fixes the whole set. Thus I(0) = 1980. We claim that if 1 ≤ i ≤ 10
then i doesn’t fix any element of S. Indeed, suppose that 1 ≤ i ≤ 10 and i fixes s. Then so does
〈i〉 = Z/11Z (the stabilizer is a subgroup). But any colouring fixed under rotation by 1 must be
single coloured! Contradiction.

Applying CFF we get

N =
1
11

10

∑
n=0

I(n) =
1
11
· 1980 = 180.

Example 17.2.2. How many roulettes with 12 wedges, painted 2 blue, 2 green and 8 red, are
there when we allow rotations?

Let S be the set of painted roulettes. Let us enumerate the sectors of a roulette by the numbers
1, . . . , 12. The set S is a set of (12

2 )(
10
2 ) = 2970 elements (choose which 2 are blue, and then choose

out of the 10 that are left which 2 are green).
Let G be the group Z/12Z. It acts on S by rotations. The element 1 rotates a painted roulette

by angle 2π/12 clockwise. The element n rotates a painted roulette by angle 2nπ/12 clockwise.
We are interested in N – the number of orbits for this action. We use CFF.

The identity element always fixes the whole set. Thus I(0) = 2970. We claim that if 1 ≤ i ≤ 11
and i 6= 6 then i doesn’t fix any element of S. Indeed, suppose that i fixes a painted roulette. Say
in that roulette the r-th sector is blue. Then so must be the i + r sector (because the r-th sector
goes under the action of i to the r + i-th sector). Therefore, so must be the r + 2i sector. But there
are only 2 blue sectors! The only possibility is that the r + 2i sector is the same as the r sector,
namely, i = 6.

If i is equal to 6 and we enumerate the sectors of a roulette by the numbers 1, . . . , 12 we may
write i as the permutation

(1 7)(2 8)(3 9)(4 10)(5 11)(6 12).
In any colouring fixed by i = 6 the colours of the elements that belong to one of the pairs
(1 7), (2 8), (3 9), (4 10), (5 11) and (6 12) must be the same. We may choose one pair for blue
and one pair for green. The rest would be red. Thus there are 30 = 6 · 5 possible choices. We
summarize:

element g I(g)

0 2970

i 6= 6 0

i = 6 30

Applying CFF we get that there are

N =
1
12

(2970 + 30) = 250

different coloured roulettes.
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Example 17.2.3. In this example S is the set of necklaces made of four rubies and four sapphires
laid on the table (or red and blue). We ask how many necklaces there are when we allow rota-
tions and flipping-over.

We may think of S as the colourings of a regular octagon, such that four vertices are green
and four are red. The group G = D8 acts on S and we are interested in the number of orbits for
the group G. The results are the following

element g I(g)

e 70

x, x3, x5, x7 0

x2, x6 2

x4 6

yxi for i = 0, . . . , 7 6

We explain how the entries in the table are obtained:

• The identity always fixes the whole set S. The number of elements in S is (8
4) = 70

(choosing which 4 would be blue).
• The element x cannot fix any colouring, because any colouring fixed by x must have all

sections of the same colour (because x = (1 2 3 4 5 6 7 8)). If xr fixes a colouring s0

so does any power of xr, in particular (xr)r = x(r
2), because the stabilizer is a subgroup.

Apply that for r = 3, 5, 7 to see that if xr fixes a colouring so does x , which is impossible.
(For instance, x(3

2) = x9 = x, because x8 = e.)
• x2 written as a permutation is (1 3 5 7)(2 4 6 8). We see that if 1 is blue, say, so are

3, 5, 7 and the rest must be red. That is, all the freedom we have is to choose whether the
cycle (1 3 5 7) is blue or red. This gives us two colourings fixed by x2. The same rational
applies to x6 = (8 6 4 2)(7 5 3 1).
• Consider now x4. It may written in permutation notation as (1 5)(2 6)(3 7)(4 8). In any

colouring fixed by x4 each of the cycles (1 5)(2 6)(3 7) and (4 8) must be single coloured.
There are thus (4

2) = 6 possibilities (Choosing which 2 out of the four cycles would be
blue).
• It remains to deal with the elements yxi. We recall that these are all reflections. There are

two kinds of reflections. One may be written using permutation notation as

(i1 i2)(i3 i4)(i5 i6).

That is, these are reflections with two fixed vertices. For example y = (2 8)(3 7)(4 6) is
of this form). The other kind is of the form

(i1 i2)(i3 i4)(i5 i6)(i7 i8).

These are reflections that do not fix any vertex. For example yx = (1 8)(2 7)(3 6)(4 5) is
of this sort. Whatever is the case, one uses similar reasoning to deduce that there are 6
colourings preserved by a reflection.

One needs only apply CFF to get that the number of distinct necklaces is

N =
1
16

(70 + 2 · 2 + 6 + 8 · 6) = 8.
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It is possible to develop general formulas for the number of roulettes of n wedges coloured
according to some specifications. The starting point in developing such formula is the following
principle that we used in the calculation above. Every element of the dihedral group Dn has a
composition into disjoint cycles according to the following cases:

• If n = 2r + 1 is odd, any reflection has a unique fixed vertex and so can be written as a
product of disjoint transpositions

(i1 i2) · · · (i2r−1 i2r).

• If n = 2r is even, there are n/2 = r reflections that don’t have any fixed vertex and they
can be written as a product of disjoint transpositions

(i1 i2) · · · (i2r−1 i2r).

There are also n/2 = r reflections that have precisely two fixed vertices and they can be
written as a product of disjoint transpositions

(i1 i2) · · · (i2r−3 i2r−2).

• The element xa, 1 ≤ a ≤ n − 1, has order d := n/ gcd(a, n). It is a product of n/d =
gcd(a, n) disjoint cycles, each of length d:

(i1 · · · id)(id+1 · · · i2d) · · · (in−d+1 · · · in).

• Every element of Dn falls into one of the cases above. The analysis also applies to Z/nZ

thought of as the cyclic group 〈x〉 ⊂ Dn.
• In any colouring that is fixed by an element z ∈ Dn each cycle in the decomposition of z

into disjoint cycles is assigned a single colour.

Example 17.2.4. For example, suppose that we want to know the number of necklaces with n
wedges where 3 are painted red and the rest are blue. Let us suppose for simplicity that n is odd.
Such a colouring is fixed by a reflection only if its fixed vertex is assigned the colour red and
then we can choose which of the (n− 1)/2 pairs of vertices are red. Thus, each reflection fixes
(n− 1)/2 colourings.

If a colouring is fixed by xa, 1 ≤ a ≤ n− 1 then each cycle in xa has length 3. Such a power
of x exists if and only if 3|n, and then there are precisely two such powers of x in 〈x〉 (recall
our discussion in §4 of cyclic groups – the number of elements of order d|n is ϕ(d)). Every such
element xa will have precisely one of its n/3 cycles coloured red and we may choose which.
Namely, such xa fixes n/3 distinct colourings.

To summarize, if 3 - n, the number of such necklaces is 1
2n ((

n
3) + n n−1

2 ) = n2−1
12 . You may

perform a check that such a number is always an integer! On the other hand, if 3|n then the
number of such necklaces is 1

2n ((
n
3) + n n−1

2 + 2 n
3 ) =

n2+3
12 .

17.3. Rubik’s cube. 8

In the case of the Rubik cube there is a group G acting on the cube. The group G is generated
by 6 basic moves a, b, c, d, e, f (each is a rotation of a certain “third of the cube”) and could be
thought of as a subgroup of the symmetric group on 54 = 9× 6 letters. It is called the cube
group. The structure of this group is known. It is isomorphic to

(Z/3Z7 ×Z/2Z11)o ((A8 × A12)o Z/2Z)

8Also known as the Hungarian cube.
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FIGURE 7. The Rubik Cube.

(the notation will make sense once we have defined semi-direct products). The order of the cube
group is

227 · 314 · 53 · 72 · 11 = 43, 252, 003, 274, 489, 856, 000,
while the order of S54 is

230843697339241380472092742683027581083278564571807941132288000000000000.

One is usually interested in solving the cube. Namely, reverting it to its original position.
Since the current position was gotten by applying an element τ of G, in group theoretic terms we
attempt to find an algorithm of writing every G in terms of the generators a, b, c, d, e, f since then
also τ−1 will have such an expression, which is nothing else than a series of moves that returns
the cube to its original position. It is natural do deal with the set of generators a±1, b±1, . . . , f±1

(why do 3 times a when you can do a−1??). A common question is what is the maximal number
of basic operations that may be required to return a cube to its original position. Otherwise
said, what is the diameter of the Cayley graph of G – see below – relative to the generators
{a±1, b±1, c±1, d±1, e±1, f±1}? But more than that, is there a simple algorithm of finding for every
element of G an expression in terms of the generators? The speed at which some people are able
so solve the cube certainly suggests that the answer is yes! The current world record (June 2020)
is 3.47 seconds, achieved by Yusheng Du from China in 2018.

The cube group is a rather complicated subgroup of S54. For example, it has an element of
order 1260 = 22 · 32 · 5 · 7. Usually, one denotes the moves not as we did, but by the letters
u, d, l, r, f , b for up, down, left, right, front, back. The letter u signifies then rotating the upper
face 900 clockwise if one looks straight at the face. Similarly, r means rotating the right face
900 clockwise if one looks straight at the face. In this notation, the element of order 1260 is
ru2d−1bd−1. Note that if we enumerated the 54 faces and performed this element we could
encode it as a permutation and by decomposing it into a product of disjoint cycles easily check
its order.

The Cayley graph.
Suppose that {gα : α ∈ I} are generators for G. We define an oriented graph taking as vertices
the elements of G and taking for every g ∈ G an oriented edge from g to ggα. If we forget the
orientation, the property of {gα : α ∈ I} being a set of generators is equivalent to the graph
being connected.

Suppose that the set of generators consists of n elements. Then, by definition, from every
vertex we have n vertices emanating and also n arriving. We see therefore that all Cayley graphs
are regular graphs. This gives, in turn, a systematic way of constructing regular graphs.

Suppose we take as a group the symmetric group (see below) Sn and the transpositions as
generators. One can think of a permutation as being performed in practice by successively
swapping the places of two elements. Thus, in the Cayley graph, the distance between a permu-
tation and the identity (the distance is defined as the minimal length of a path between the two
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vertices) is the minimal way to write a permutation as a product of transpositions, and could be
thought of as a certain measure of the complexity of a permutation.

The figure below gives the Cayley graph of S3 with respect to the generating set of transposi-
tions. It is a 3-regular oriented graph and a 6 regular graph.
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Now, since the Cayley graph of the cube group G has 12 edges emanating from each vertex
(and is a connected graph, by definition of the cube group) it follows that to reach all positions
one is forced to allow at least log12 |G| ∼ 18.2, thus at least 19, moves.9 The actual number is
surprisingly close to this simple estimate. It was found that the cube can always be solved by at
most 26 moves.

If one adds as generators also a2, b2, c2, d2, e2, f 2 (corresponding to twisting a “third of the
cube” by 180o) then one can solve every position of the cube by at most 20 moves and, as there
are positions that require 20 moves to be solved, this is optimal.

9There is a subtle point we are glossing over here as we must distinguish between the symmetries of the cube
provided by G and the effect they have on the colouring of its pieces. Thus, we must ask if there are operations
that move the cube but leave the overall colouring fixed – we move the pieces but in the end it “looks the same”.
That is, is the stabilizer of every position of the cube trivial? It seems that the answer is yes; note that it is enough
to prove that for the original position (as stabilizers of elements in the same orbit are conjugate subgroups). Here, it
seems that the key point is to consider the corner pieces and then the edge pieces.
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Part 4. The Symmetric Group

18. CONJUGACY CLASSES

Let σ ∈ Sn. We write σ as a product of disjoint cycles:

σ = σ1σ2 · · · σr.

Since disjoint cycles commute, the order does not matter and we may assume that the length of
the cycles is non-increasing. Namely, if we let |(i1i2 . . . it)| = t (we shall call it the length of the
cycle; it is equal to its order as an element of Sn), then

|σ1| ≥ |σ2| ≥ · · · ≥ |σr|.
We may also allow cycles of length 1 (they simple stand for the identity permutation) and then
we find that

n = |σ1|+ |σ2|+ · · ·+ |σr|.
We therefore get a partition p(σ)10 of the number n, that is, a set of non-increasing positive
integers a1 ≥ a2 ≥ · · · ≥ ar ≥ 1 such that n = a1 + a2 + · · ·+ ar. Note that every partition is
obtained from a suitable σ.

Lemma 18.0.1. Two permutations, σ and ρ, are conjugate (namely there is a τ such that τστ−1 = ρ) if
and only if p(σ) = p(ρ).

Proof. Recall the formula we used before, if σ(i) = j then (τστ−1)(τ(i)) = τ(j). This implies
that for every cycle (i1 i2 . . . it) we have

τ(i1 i2 . . . it)τ
−1 = (τ(i1) τ(i2) . . . τ(it)).

In particular, since τστ−1 = (τσ1τ−1)(τσ2τ−1) · · · (τσrτ−1), a product of disjoint cycles, we get
that p(σ) = p(τστ−1).

Conversely, suppose that p(σ) = p(ρ). Say

σ = σ1σ2 . . . σr

= (i1
1 . . . i1

t(1))(i
2
1 . . . i2

t(2)) . . . (ir
1 . . . ir

t(r)),

and
ρ = ρ1ρ2 . . . ρr

= (j11 . . . j1t(1))(j21 . . . j2t(2)) . . . (jr
1 . . . jr

t(r)).

Define τ by
τ(ia

b) = ja
b .

Then τστ−1 = ρ. �

Corollary 18.0.2. Let p(n) be the number of partitions of n.11 There are p(n) conjugacy classes in Sn.

Next, we discuss conjugacy classes in An. Note that if σ ∈ An then since AnCSn also τστ−1 ∈
An. That is, all the Sn-conjugacy classes of elements of An are in An. However, we would like to
consider the An-conjugacy classes of elements of An.

10Another common notation is λ(σ).
11Since 2 = 2 = 1 + 1, 3 = 3 = 2 + 1 = 1 + 1 + 1, 4 = 4 = 2 + 2 = 3 + 1 = 2 + 1 + 1 = 1 + 1 + 1 + 1, 5 = 5 =
3 + 2 = 4 + 1 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 . . . we get p(1) = 1, p(2) = 2, p(3) =

3, p(4) = 5, p(5) = 7, p(6) = 11, . . . . The function p(n) is asymptotic to eπ
√

2n/3

4n
√

3
.
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Lemma 18.0.3. The Sn-conjugacy class of an element σ ∈ An is a disjoint union of [Sn : AnCentSn(σ)]
An-conjugacy classes. In particular, it is a single An-conjugacy class if there is an odd permutation com-
muting with σ and it decomposes into two An-conjugacy class if there is no odd permutation commuting
with σ. In the latter case, the Sn-conjugacy class of σ is the disjoint union of the An-conjugacy class of σ
and the An-conjugacy class of τστ−1, where τ can be chosen to be any odd permutation, and these two
conjugacy classes have the same size.

Proof. Let A be the Sn-conjugacy class of σ. Write A = äα∈J Aα, a disjoint union of An-conjugacy
classes. We first note that Sn acts on the set B = {Aα : α ∈ J}. Indeed, if Aα is the An-conjugacy
class of σα, and ρ ∈ Sn then define ρAαρ−1 to be the An-conjugacy class of ρσαρ−1. This is well
defined: if σ′α is another representative for the An-conjugacy class of σα then σ′α = τσατ−1 for
some τ ∈ An. It follows that ρσ′αρ−1 = ρτσατ−1ρ−1 = (ρτρ−1)(ρσαρ−1)(ρτρ−1)−1 is in the
An-conjugacy class of ρσαρ−1 (because ρτρ−1 ∈ An). The action of Sn is clearly transitive on B.

Consider the An-conjugacy class of σ and denote it by A0. The stabilizer of A0 in Sn is just
AnCentSn(σ). Indeed, ρA0ρ−1 = A0 if and only if ρσρ−1 is in the same An-conjugacy class as σ.
Namely, if and only if ρσρ−1 = τστ−1 for some τ ∈ An, equivalently, (τ−1ρ)σ = σ(τ−1ρ), that
is (τ−1ρ) ∈ CentSn(σ) which is to say that ρ ∈ AnCentSn(σ).

We conclude that the size of B is the length of the orbit of A0 under the action of Sn and hence
is of size [Sn : AnCentSn(σ)]. Since [Sn : An] = 2, we get that [Sn : AnCentSn(σ)] = 1 or 2, with
the latter happening if and only if An ⊇ CentSn(σ). That is, if and only if σ does not commute
with any odd permutation. Moreover, the orbit consists of the An-conjugacy classes of the ele-
ments gσg−1, g running over a complete set of representatives for the cosets of AnCentSn(σ) in
Sn.

Finally, if there are two An orbits, say ConjAn
(σ) and ConjAn

(gσg−1), then the function from
ConjAn

(σ) to ConjAn
(gσg−1) taking hσh−1 to ghσh−1g−1 is a well-defined (check!) bijection as

its inverse is given by conjugating by g−1. �

In the case we need this lemma, that is in the case of A5, one can decide the situation “by
inspection”. However, it is interesting to understand in general when does the centralizer of a
permuation contain an odd permutation.

Lemma 18.0.4. Let σ be a permutation and write σ as a product of disjoint cycles of non-increasing
length:

σ = c1c2 · · · ca = (i1
1, i1

2, . . . , i1
r1
)(i2

1, . . . , i2
r2
) · · · (ia

1, . . . , ia
ra
).

Thus, r1 ≥ r2 ≥ · · · ≥ ra where we have also listed cycles of length 1, if any. The centralizer of σ contains
an odd permutation unless each cycle has odd length and all the lengths are different, that is, unless each
ri is odd and r1 > r2 > · · · > ra. In that case, the centralizer of σ consists of even permutations only.

Proof. Suppose first that there is a cycle cj of even length, which is thus an odd permutation.
Since disjoint cycles commute cjcic−1

j = ci and so

cjσc−1
j = (cjc1c−1

j )(cjc2c−1
j ) · · · (cjcac−1

j ) = c1 · · · ca = σ.

Thus, the centralizer of σ contains the odd permutation cj.
Suppose now that there are two cycles of the same length. To ease notation, let’s assume these

are c1 and c2, but the same argument works in general. We may assume that they are both of
odd length, otherwise we have already shown that the centralizer contains an odd permutation.
Then, let τ = (i1

1i2
1)(i

1
2i2

2) · · · (i1
r1

i2
r1
). Then τ is an odd permutation and we find τστ−1 = σ.
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The case left at this point is when σ is a product of disjoint cycles, all of odd lengths and
strictly decreasing order: r1 > r2 > · · · > ra. In this case, if τστ−1 = σ – that is, if

(τ(i1
1), τ(i1

2), . . . , τ((i1
r1
))(τ(i2

1), . . . , τ((i2
r2
)) · · · (τ(ia

1), . . . , τ(ia
ra
))

= (i1
1, i1

2, . . . , i1
r1
)(i2

1, . . . , i2
r2
) · · · (ia

1, . . . , ia
ra
),

then, by comparing sizes of cycles, we see that τciτ
−1 = ci. But that means that τ = cb1

1 cb2
2 · · · c

ba
a

for some integers bi and so τ is even. �

19. THE SIMPLICITY OF An

In this section we prove that An is a simple group for n 6= 4. The cases where n < 4 are trivial;
for n = 4 we have seen it fails (the Klein 4-group is normal). We shall focus on the case n ≥ 5
and prove the theorem inductively. We therefore first consider the case n = 5.

We make the following general observation:

Lemma 19.0.1. Let NCG then N is a disjoint union of G-conjugacy classes.

Proof. Distinct conjugacy classes, being orbits for a group action, are always disjoint. If N is
normal and n ∈ N then its conjugacy class {gng−1 : g ∈ G} is contained in N. �

Let us list the conjugacy classes of S5 and their sizes.

Conjugacy classes in S5

cycle type representative size of conjugacy class order even?

5 (12345) 24 5 X

1+4 (1234) 30 4 ×

1+1+3 (123) 20 3 X

1+ 2+ 2 (12)(34) 15 2 X

1 + 1 + 1 + 2 (12) 10 2 ×

1 + 1+ 1+ 1+ 1 1 1 1 X

2+ 3 (12)(345) 20 6 ×

Let τ be a permutation commuting with (12345). Then

(12345) = τ(12345)τ−1 = (τ(1) τ(2) τ(3) τ(4) τ(5))

and so τ is the permutation i 7→ i + n for n = τ(1) − 1. In particular, τ = (12345)n−1 and
so is an even permutation. We conclude that the S5-conjugacy class of (12345) breaks into two
A5-conjugacy classes, with representatives (12345), (21345).

One checks that (123) commutes with the odd permutation (45). Therefore, the S5-conjugacy
class of (123) is also an A5-conjugacy class. Similarly, the permutation (12)(34) commutes with
the odd permutation (12). Therefore, the S5-conjugacy class of (12)(34) is also an A5-conjugacy
class. We get the following table for conjugacy classes in A5.
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Conjugacy classes in A5

cycle type representative size of conjugacy class

5 (12345) 12

5 (21345) 12

1+1+3 (123) 20

1+ 2+ 2 (12)(34) 15

1 + 1+ 1+ 1+ 1 1 1

If NCA5 then |N| divides 60 and is the sum of 1 and some of the numbers in (12, 12, 20, 15). One
checks that this is impossible unless N = A5. We deduce

Lemma 19.0.2. The group A5 is simple.

The family of cyclic groups of prime order are an infinite family of simple group, but this is a
rather elementary fact. We are now in a position to exhibit an infinite family of simple groups
that is much more interesting.

Theorem 19.0.3. The group An is simple for n ≥ 5.

Proof. The proof is by induction on n. We may assume that n ≥ 6. Let N be a normal subgroup
of An and assume N 6= {1}.

First step: There is a permutation ρ ∈ N, ρ 6= 1, and some i, 1 ≤ i ≤ n, such that ρ(i) = i.
Indeed, let σ ∈ N be a non-trivial permutation and write it as a product of disjoint non-trivial

cycles, σ = σ1σ2 . . . σs, say in decreasing length. Suppose that σ1 is (i1i2 . . . ir), where r ≥ 3. We
write σ2 = (ir+1 · · · ) and so on.

Then, conjugating by the transposition τ = (i1i2)(i5i6), we get that τστ−1σ ∈ N, τστ−1σ(i1) =
i1 and if r > 3 τστ−1σ(i2) = i4 6= i2.

If r = 3 then σ = (i1i2i3)(i4 . . . ) . . . and we choose instead τ = (i1i2)(i3i4). Then τστ−1σ(i1) =
i1 and τστ−1σ(i2) = τσ(i4) ∈ {i3, i5}, depending on whether σ2 = (i4) or is a cycle of length
greater than 1. Thus, τστ−1σ is a permutation of the kind we were seeking.

It still remains to consider the case where each σi is a transposition. Then, if σ = (i1i2)(i3i4)
then σ moves only 4 elements out of N, and thus fixes some element and we are done. Other-
wise, σ = (i1i2)(i3i4)(i5i6) . . . . Let τ = (i1i2)(i3i5) then

[τστ−1]σ = [(i2i1)(i5i4)(i3i6) . . . ](i1i2)(i3i4)(i5i6) · · · = (i3i5)(i4i6) . . .

and so is a permutation of the sort we were seeking.

Second step: N = An.
Consider the subgroups Gi = {σ ∈ An : σ(i) = i}. We note that each Gi is isomorphic to An−1

and hence, by the induction hypothesis, is simple. By the preceding step, for some i we have
that N ∩ Gi is a non-trivial normal subgroup of Gi, hence equal to Gi.

Next, note that (12)(34)G1(12)(34) = G2 and, similarly, all the groups Gi are conjugate in
An to each other. It follows that N ⊇ 〈G1, G2, . . . , Gn〉. Now, every element in Sn is a product
of (usually not disjoint) transpositions and so every element σ in An is a product of an even
number of transpositions, σ = λ1µ1 . . . λrµr (λi, µi transpositions). Since n > 4 every product
λiµi belongs to some Gj and we conclude that 〈G1, G2, . . . , Gn〉 = An, therefore also N = An. �
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Part 5. p-groups, Cauchy’s and Sylow’s Theorems

20. THE CLASS EQUATION

Let G be a finite group. G acts on itself by conjugation: g ∗ h = ghg−1. The orbits are called
in this case conjugacy classes. The number of conjugacy classes is called the class number of G
and will be denoted h(G). The class equation follows from the partitioning of G into orbits
obtained this way. Since G is partitioned into disjoint conjugacy classes, its cardinality is the
sum of the cardinalities of its conjugacy classes. We shall denote a conjugacy class of an element
x by Conj(x). Thus,

Conj(x) = {gxg−1 : g ∈ G}.
The stabilizer of x ∈ G is CentG(x) := {g ∈ G : gxg−1 = x} and so the orbit of x has length
[G : CentG(x)]. That is,

|Conj(x)| = [G : CentG(x)].
Note that the elements with orbit of length 1 are precisely the elements in the center Z(G) of G.
We thus get the class equation

(3) |G| = |Z(G)|+ ∑
reps.x 6∈Z(G)

|G|
|CentG(x)| .

Theorem 20.0.1. Let N ≥ 1 be a positive integer. Up to isomorphism there are finitely many finite
groups with N conjugacy classes.

Proof. We will need the following easy lemma:

Lemma 20.0.2. Fix an integer M. There are finitely many groups, up to isomorphism, of order M.

Proof. We may assume that such a group is always specified by providing a group law on some
fixed set with M elements. Say, X = {x1, . . . , xM}. A group law on this set is specified by a
function

m : X× X → X.
But there are finitely many such functions m. �

We can of course strengthen the Lemma as follows

Corollary 20.0.3. Fix an integer M. There are finitely many groups, up to isomorphism, of order at most
M.

It would therefore suffice to prove that the size of a finite group with N conjugacy classes is
bounded in terms of N alone. We require the following:

Lemma 20.0.4. Let q be a positive rational number and N a fixed integer. There are finitely many tuples
of positive integers (n1, . . . , nN) such that

q =
1
n1

+ · · ·+ 1
nN

.

Proof. We argue by induction on N. The case N = 1 is clear. Assume for N − 1. To prove
finiteness we may assume that n1 ≥ n2 ≥ · · · ≥ nN (as every tuple can be rearranged to sat-
isfy this condition and at most N! tuples will give a given tuple (n1, . . . , nN) that satisfies the
inequalities). Now,

q =
1
n1

+ · · ·+ 1
nN
≤ N

nN
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and consequently

nN ≤
N
q

.

Thus, there are finitely many possibilities for the integer nN . For each such possibility consider

q′ := q− 1
nN

=
1
n1

+ · · ·+ 1
nN−1

.

By induction, there are finitely many tuples (n1, . . . , nN−1) that satisfy this equality. �

We now come back to the proof of the theorem. We saw that it is enough to prove that if G
has N conjugacy classes then the order of G is bounded.

Use the class equation to write

1 =
1
|G| + · · ·+

1
|G|︸ ︷︷ ︸

|Z(G)|−times

+ ∑
reps.x 6∈Z(G)

1
|CentG(x)| .

There are N summands in this equation. By the Lemma, there are finitely many ways to write 1
as the sum of such N summands and so the maximal denominator appearing in all these equa-
tions is bounded by some constant M. But in each such expression the maximal denominator is
the order of the group. Thus, the order of each group with N conjugacy classes is bounded by
M. �

Example 20.0.5. Let us consider some simple cases of the theorem.
(1) N = 1. Then we have 1 = 1

1 and there is one group with one conjugacy class which is
{1}.

(2) N = 2. The only possibility is 1 = 1
2 + 1

2 . The order of the group is thus 2 and there is
one group of order 2 up to isomorphism: Z/2Z.

(3) N = 3. Here we find three possibilities: 1 = 1
3 +

1
3 +

1
3 = 1

6 +
1
3 +

1
2 = 1

4 +
1
4 +

1
2 . The first

possibility should be associated to a group of order 3 and there is one such group up to
isomorphism (3 is prime): Z/3Z. It indeed has 3 conjugacy classes.

The next possibility should be associated with a group of order 6. The group S3 has
order 6 and 3 conjugacy classes of orders 1, 2 and 3 and gives the class equation 1 =
1
6 +

1
3 +

1
2 .

The third possibility should be associated to a group of order 4. But all groups of
order 4 are abelian (using the Table on page 10) and thus have 4 conjugacy classes. So
the expression 1 = 1

4 +
1
4 +

1
2 doesn’t actually come from a group.

21. p-GROUPS

Let p be a prime. A finite group G is called a p-group if its order is a positive power of p. Thus,
we talk about a 2-group, a 3-group, etc.

Lemma 21.0.1. Let G be a finite p-group. Then the center of G is not trivial.

Proof. We use the Class Equation (3). Note that if x 6∈ Z(G) then CentG(x) 6= G and so the
integer |G|

|CentG(x)| is divisible by p. Thus, the left hand side of

|G| − ∑
reps.x 6∈Z(G)

|G|
|CentG(x)| = |Z(G)|

is divisible by p, hence so is the right hand side. In particular |Z(G)| ≥ p. �
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Theorem 21.0.2. Let G be a finite p-group, |G| = pn.
(1) For every normal subgroup HCG, H 6= G, there is a subgroup KCG such that H < K < G and

[K : H] = p.
(2) There is a chain of subgroups H0 = {1} < H1 < · · · < Hn = G, such that each HiCG and
|Hi| = pi.

Proof. (1) The group G/H is a p-group and hence its center is a non-trivial group. Take an
element e 6= x ∈ Z(G/H); its order is pr for some r. Then y = xpr−1

has exact order p.
Let K′ =< y >. It is a normal subgroup of G/H of order p (y commutes with any other
element). Let K = π−1

H (K′). By the Third Isomorphism Theorem, K is a normal subgroup
of G, K/H ∼= K′ so [K : H] = p.

(2) The proof just given shows that every p-group has a normal subgroup of p elements.
Now apply repeatedly the first part.

�

A variant of the theorem above is the following, slightly harder, proposition.

Proposition 21.0.3. Let G be a p-group and let H be a proper subgroup of G, then there is a subgroup
H+ ⊃ H such that [H+ : H] = p and, if H is not the identity subgroup, there is a subgroup H− ⊂ H
such that [H : H−] = p.

Proof. We argue by induction on the order of G. If |G| = p, the Proposition is clear. Assume the
result for groups of order pr and let G have order pr+1 with r ≥ 1. From the Theorem applied to
H = {1}, we know that G has a normal subgroup with p elements, say J. If J is not contained
in H let H+ = JH. As J is normal, H+ is a subgroup and |H+| = |J| · |H|/|J ∩ H| = p · |H|.

If J ⊆ H, consider G/J that has order pr and the proper subgroup H/J. By induction, there
is a subgroup K of G/J in which H/J is contained with index p. Let H+ be the pre-image of K
under the natural homomorphism G → G/J. Then H+ ⊃ H and [H+ : H] = |H+|

|H| = |H+|/|J|
|H|/|J| =

|K|
|H/J| = [K : (H/J)] = p. This finishes the first part of the Proposition.

As to the second part, this follows easily from the Theorem: H is itself a p-group and so it has
a series of subgroups as in part (2) of the theorem, in particular a subgroup of index p. �

21.1. Examples of p-groups.

21.1.1. Groups of order p. We proved in the assignments that every such group is cyclic, thus
isomorphic to Z/pZ.

21.1.2. Groups of order p2. We first prove a general result.

Lemma 21.1.1. Let G be a group and H ⊂ Z(G) a subgroup. Suppose that G/H is cyclic. Then G is
abelian.

Proof. First note that H is normal, because it consists of elements in the centre. Let g ∈ G be an
element such that 〈ḡ〉 = G/H, where ḡ denotes the image of g in G/H. Then every element of
G is of the form gih for some integer i ∈ Z and h ∈ H.

Given x, y ∈ G write them in this form as x = gih, y = gjh′. Then, as h and h′ commute with
any element we find that xy = gihgjh′ = gjgihh′ = gjh′gih = yx. �

Let G be a group of p2 elements, then Z(G) 6= {1} and so there is an element g ∈ Z(G) of
order p. Let H = 〈g〉, a subgroup of order p. Then G/H has p-elements and hence is cyclic. The
Lemma applies and we conclude G is abelian. We pass to additive notation.

We now distinguish two cases.
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(1) There is an element of order p2 in G. Then G is cyclic and so isomorphic to Z/p2Z.
(2) Every element of G, different from {0} is of order p. That is, pg = 0 for all g ∈ G. Recall

first that for every n ∈ Z we have the element ng (gn in multiplicative notation) and the
following holds

(n + m)g = ng + mg, n(gh) = ng + nh.

In our case, also
(n + p)g = ng + pg = ng.

Therefore, we an make G into a vector space over the field Fp = Z/pZ, where we define

n̄g := ng,

where n is any representative of the congruence class n̄.
As such, G is isomorphic to F2

p as a vector space, in particular as a group. That is,
G is the group (Z/pZ)2 and, in fact, up to isomorphism, these are the only groups of
order p2.

That completes the classification of groups of order p2.

21.1.3. Groups of order p3. First, there are the abelian groups Z/p3Z, Z/p2Z × Z/pZ and
(Z/pZ)3.

We have seen in Lemma 21.1.1 that if G is not abelian then G/Z(G) cannot be cyclic. It follows
that Z(G) ∼= Z/pZ and G/Z(G) ∼= (Z/pZ)2. One example of such a group is provided by the
matrices 

1 a b

0 1 c

0 0 1

 ,

where a, b, c ∈ Fp. Note that if p ≥ 3 then every element in this group is of order p (use (I +
N)p = I + Np), yet the group is non-abelian. (This group, using a terminology to be introduced
later, is a semi-direct product (Z/pZ)2 oZ/pZ.) More generally the upper unipotent matrices
in GLn(Fp) are a group of order pn(n−1)/2 in which every element has order p if p ≥ n. Notice
that these groups are non-abelian.

Getting back to the issue of non-abelian groups of order p3, one can prove that there is pre-
cisely one additional non-abelian group of order p3. It is generated by two elements x, y satisfy-
ing: xp = yp2

= 1, xyx−1 = y1+p. (This group is a semi-direct product (Z/p2Z)o Z/pZ.)

21.2. The Frattini subgroup. Let G be a group. Define the Frattini subgroup Φ(G) of G to
be the intersection of all maximal subgroups of G, where by a maximal subgroup we mean a
subgroup of G, not equal to G and not strictly contained in any proper subgroup of G. If G
has no such subgroup (for example, if G = {1}, or if G = Q with addition) then we define
Φ(G) = G.

Proposition 21.2.1. Let G be a finite p-group. The Frattini subgroup of G is a normal subgroup of G
and has the following properties:

(1) G/Φ(G) is a non-trivial abelian group and every non-zero element in it has order p. It is the
largest quotient of G with this property.

(2) Φ(G) = GpG′, where G′ is the commutator subgroup of G and Gp is the subgroup of G generated
by the set {gp : g ∈ G}.

Proof. Any automorphism f : G → G takes maximal subgroups to maximal subgroups, in par-
ticular, conjugation does. Therefore, Φ(G) is a normal subgroup.
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Since any maximal subgroup H has index p (by our previous results), it follows from Exer-
cise 52 that H is normal because p is the minimal prime dividing the order of G. Thus, G/H
is a group with p elements and thus abelian. Therefore, H ⊇ G′. It follows that Φ(G) ⊃ G′
and therefore G/Φ(G) is abelian. Further, let g ∈ G then gH has order 1 or p in G/H and, in
particular gpH = (gH)p = H. That is, H ⊃ Gp and so Φ(G) ⊇ GpG′ and every non-trivial
element of G/Φ(G) has order p.

Let N be a normal subgroup of G and suppose G/N is abelian and killed by p. The same
argument as above shows that N ⊇ GpG′. Therefore, once we show Φ(G) = GpG′ we will get
the first part of the Theorem too.

It remains to show that Φ(G) ⊆ GpG′. First, note that since G′ is normal in G, indeed GpG′
is a subgroup of G and in fact a normal subgroup of G as Gp is a normal subgroup too (since
gxpg−1 = (gxg−1)p, the set of generators of Gp, hence Gp itself, is stable under conjugation). Let
us also note that G/GpG′ is an abelian group in which every element has order p. Therefore,
similar to what we have done for groups of order p2, we may view G/GpG′ as a vector space
over Fp.

If G/GpG′ is cyclic it has a unique maximal subgroup {0} and its preimage GpG′ is a maximal
subgroup of G, in particular containing Φ(G). Suppose then that G/GpG′ is not cyclic. Suppose
there is an element g ∈ Φ(G) \ GpG′. Pass to G/GpG′ and to the image ḡ of g in it. Then ḡ 6= 0
and G/GpG′ is isomorphic to Fr

p for some r > 1, where Fp is the field of p elements Z/pZ. In
this perspective ḡ is viewed as a non-zero vector. In that case, we can find a hyperplane W of
codimension 1, such that ḡ 6∈ W. The pre-image of W in G is a maximal subgroup that doesn’t
contain g and that’s a contradiction. �

22. CAUCHY’S THEOREM

One application of group actions is to provide a simple proof of an important theorem in the
theory of finite groups – Cauchy’s theorem. We remark that Cauchy’s theorem will not be used
in the proof of Sylow’s theorem below, and, in fact, is an easy consequence of Sylow’s theorem.
The reason we prove it here is simply to illustrate an ingenious use of group actions.

Theorem 22.0.1. (Cauchy) Let G be a finite group of order n and let p be a prime dividing n. Then G
has an element of order p.

Proof. Let S be the set consisting of p-tuples (g1, . . . , gp) of elements of G, considered up to cyclic
permutations. Thus, if T is the set of p-tuples (g1, . . . , gp) of elements of G, S is the set of orbits
for the action of Z/pZ on T by cyclic shifts . One may therefore apply CFF and get

|S| = np − n
p

+ n.

Note that n - |S| .
Now define an action of G on S. Given g ∈ G and (g1, . . . , gp) ∈ S we define

g(g1, . . . , gp) = (gg1, . . . , ggp).

This is a well-defined action .
Since the order of G is n, since n - |S|, and since S is a disjoint union of orbits of G, there must

be an orbit Orb(s) whose size is not n. However, the size of an orbit is |G|/|Stab(s)|, and we
conclude that there must an element (g1, . . . , gp) in S with a non-trivial stabilizer. This means
that for some g ∈ G, such that g 6= e, we have

(gg1, . . . , ggp) is equal to (g1, . . . , gp) up to a cyclic shift.
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This means that for some i we have

(gg1, . . . , ggp) = (gi+1, gi+2, gi+3, . . . , gp, g1, g2, . . . , gi).

Therefore, gg1 = gi+1, g2g1 = ggi+1 = g2i+1, . . . , gpg1 = · · · = gpi+1 = g1 (we always read the
indices mod p). That is, there exists g 6= e with

gp = e.

�

23. SYLOW’S THEOREM

Sylow’s theorem is one of the main results proven in this course. It states that a finite group G
always has p-subgroups that are as large as is possible given Lagrange’s theorem. It is easy to
see that G is generated by these groups. At the same time, we have gained some understanding
into the structure of p-groups above, and additional properties appear in the exercises. Thus,
at a (somewhat vague) conceptual level, the combination of the two – Sylow’s theorem and the
theory of p-groups – gives us a better understanding of all finite groups.

23.1. Sylow’s theorem: statement and proof. Let G be a finite group and let p be a prime divid-
ing its order. Write |G| = prm, where (p, m) = 1. By a p-subgroup of G we mean a subgroup of G
whose order is a positive power of p. By a maximal p-subgroup of G we mean a p-subgroup
of G not contained in a strictly larger p-subgroup.

Theorem 23.1.1. Let G be a finite group and let p be a prime dividing its order. Write |G| = prm, where
(p, m) = 1.

(1) Every maximal p-subgroup of G has order pr (such a subgroup is called a Sylow p-subgroup)
and such a subgroup exists.

(2) All Sylow p-subgroups are conjugate to one another.
(3) The number np of Sylow p-subgroups satisfies:

(a) np|m;
(b) np ≡ 1 (mod p).

Remark 23.1.2. To say that a subgroup P is conjugate to a subgroup Q means that there is a g ∈ G
such that gPg−1 = Q. Recall that the map x 7→ gxg−1 is an automorphism of G. This implies
that P and Q are isomorphic as groups.

Another consequence is that saying that there is a unique p-Sylow subgroup is the same as
saying that a p-Sylow is normal. This is often used this way: given a finite group G the first
question in ascertaining whether it is simple or not is to ask whether a p-Sylow subgroup is
unique for some p dividing the order of G. Often one engages in combinatorics of counting
p-Sylow subgroups, trying to conclude there can be only one for a given p, and hence getting a
normal subgroup.

We first prove a lemma that is a special case of Cauchy’s Theorem 22.0.1, but much easier. Hence,
we supply a self-contained proof that doesn’t use Cauchy’s theorem.

Lemma 23.1.3. Let A be a finite abelian group, let p be a prime dividing the order of A. Then A has an
element of order p.

Proof. We prove the result by induction on |A|. The base case |A| = p is clear, of course. In the
general case, let N be a maximal subgroup of A, distinct from A. If p divides the order of N we
are done by induction. Otherwise, let x 6∈ N and let B = 〈x〉. By maximality, the subgroup BN
is equal to A. On the other hand |BN| = |B| · |N|/|B ∩ N|. Thus, p divides the order of B. That
is, the order of x is pa for some a and so the order of xa is precisely p. �
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Proposition 23.1.4. There is a p-subgroup of G of order pr.

Proof. We prove the result by induction on the order of G, where the case |G| = p is clear.
Assume first that p divides the order of Z(G). Let x be an element of Z(G) of order p and let
N = 〈x〉, a normal subgroup. The order of G/N is pr−1m and by induction it has a p-subgroup
H′ of order pr−1 (if r− 1 = 0 this still works by taking H′ = {1}.) Let H be the preimage of H′
in G. It is a subgroup of G such that H/N ∼= H′ and thus H has order |H′| · |N| = pr.

Consider now the case where p does not divide the order of Z(G). Consider the class equation

|G| = |Z(G)|+ ∑
reps.x 6∈Z(G)

|G|
|CentG(x)| .

As p divides |G| and not |Z(G)|, we see that for some x 6∈ Z(G) we have that p does not divide
|G|

|CentG(x)| . Thus, pr divides CentG(x). The subgroup CentG(x) is a proper subgroup of G because
x 6∈ Z(G). Thus, by induction, CentG(x), and hence G, has a p-subgroup of order pr. �

This result already has interesting consequences.

Corollary 23.1.5. Let pa1
1 · · · p

at
t be the prime factorization of |G|. Let Pi be a subgroup of G of order pai

i ,
then

G = 〈P1, . . . , Pt〉.

Proof. Indeed, the right hand side is a subgroup of G containing each Pi, thus its order is divisible
by pa1

1 · · · p
at
t . It must therefore be equal to G. �

Corollary 23.1.6. (Cauchy’s theorem) Let G be a finite group and p a prime dividing the order of G, then
G has an element of order p.

Proof. If we write |G| = prm with (m, p) = 1 then we know that G has a subgroup P of order pr.
Let x ∈ P be an element different than the identity. Then, by Lagrange, ord(x) = pb for some
positive integer b ≤ r. The element xpb−1

then has order p. �

The next ingredient we will need to prove Sylow’s theorem is a technical lemma about nor-
malizers. It will make more sense when we see it in action in the proof of the theorem.

Lemma 23.1.7. Let P be a maximal p-subgroup and Q any p-subgroup then

Q ∩ P = Q ∩ NG(P).

Proof. Let H = Q∩NG(P). Since PCNG(P) we have that HP is a subgroup of NG(P). Its order is
|H| · |P|/|H ∩ P| and so is a power of p. Since P is a maximal p-subgroup we must have HP = P
and thus H ⊂ P. This means that Q ∩ NG(P) = Q ∩ NG(P) ∩ P = Q ∩ P. �

Proof. (of Sylow’s Theorem) Let P be a Sylow subgroup of G. Such exists by Proposition 23.1.4.
Let

S = {P1, . . . , Pa}
be the set of conjugates of P = P1. That is, the subgroups gPg−1 one gets by letting g vary over G.
Note that for a fixed g the map P→ gPg−1, x 7→ gxg−1 is a group isomorphism. Thus, every Pi
is a p-Sylow subgroup. Our task is to show that every maximal p-subgroup is an element of S
and find properties of a.

Let Q be any p-subgroup of G. The subgroup Q acts by conjugation on S. The size of Orb(Pi)
under Q is |Q|/|StabQ(Pi)|. Now StabQ(Pi) = Q ∩ NG(Pi) = Q ∩ Pi by Lemma 23.1.7. Thus, the
orbit consists of one element if Q ⊂ Pi and is a proper power of p otherwise.

Take first Q to be P1. Then, the orbit of P1 has size 1. Since P1 is a maximal p-subgroup it
is not contained in any other p-subgroup, thus the size of every other orbit is a power of p. It
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follows, using that S is a disjoint union of orbits, that a = 1 + tp for some t. Note also that
a = |G|/|NG(P)| and thus divides |G|.

We now show that all maximal p-subgroups are conjugate. Suppose, to the contrary, that Q
is a maximal p-subgroup which is not conjugate to P. Thus, for all i, Q 6= Pi and so Q ∩ Pi is a
proper subgroup of Q. It follows then that S is a union of disjoint orbits under Q all having size
a proper power of p. Thus, p|a. This is a contradiction. �

23.2. Sylow’s theorem: examples and applications.

23.2.1. p-groups. Every finite p-group is of course the only p-Sylow subgroup (trivial case).

23.2.2. Z/6Z. In every abelian group the p-Sylow subgroups are normal and unique. The 2-
Sylow subgroup is < 3 > and the 3-Sylow subgroup is < 2 >.

23.2.3. S3. Consider the symmetric group S3. Its 2-Sylow subgroups are given by {1, (12)},
{1, (13)}, {1, (23)}. There are thus three of them and note that indeed 3|m = 3!/2 = 3 in this
case, and 3 ≡ 1 (mod 2). The group S3 has a unique 3-Sylow subgroup {1, (123), (132)}. This
is expected since n3|2 = 3!/3 and n3 ≡ 1 (mod 3) implies n3 = 1.

23.2.4. S4. We want to find the 2-Sylow subgroups. Their number is given by n2|3 = 24/8 and
is congruent to 1 modulo 2. It is thus either 1 or 3. Using the expression of a permutation as a
product of disjoint cycles, we see that every element of S4 has order 1, 2, 3 or 4. The number of
elements of order 3 is 8 (the 3-cycles) and so there are 16 elements of order 1, 2 or 4. Thus, we
cannot have a unique subgroup of order 8 (it will need to contain any element of order 1, 2 or 4).
We conclude that n2 = 3. One such subgroup is D8 ⊂ S4; the rest are conjugates of it.

Further, n3|24/3 and n3 ≡ 1 (mod 3). If n3 = 1 then that unique 3-Sylow would need to
contain all 8 element of order 3 but is itself of order 3. Thus, n3 = 4.

Remark 23.2.1. A group of order 24 is never simple, though that does not mean that one of the
Sylow subgroups is normal, as the example of S4 shows. However, consider the representation
of S4 on the cosets of P, where P is its 2-Sylow subgroup. As we have seen in Example 16.0.1,
this coset representation is surjective onto S3 and its kernel is the Klein group K. We will use
that to understand in a different way what are the 2-Sylow subgroups of S4.

The group K is contained in P and is normal in S4. Thus, it is also contained in all the conju-
gates of P; namely, in all the 2-Sylow subgroups. We therefore have the following picture that
relates the 2-Sylow subgroups of S4 to the 2-Sylow subgroups of S3:

S4

|||
|| DD

DD

P
CC

CC
C P′ P′′

yy
yy
y

K

{1}

S3

KKK
KKK

sss
sss

〈(12)〉
KK

KK
K
〈(13)〉 〈(23)〉

ss
ss
s

{1}

As S4/K ∼= S3, the subgroups P, P′, P′′ are in bijection with the 2-Sylow subgroups of S3 of which
there are 3.
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23.2.5. Groups of order pq. Let p < q be primes. Let G be a group of order pq. Then nq|p, nq ≡ 1
(mod q). Since p < q we have nq = 1 and the q-Sylow subgroup is normal (in particular, G
is never simple). Also, np|q, np ≡ 1 (mod p). Thus, either np = 1, or np = q and the last
possibility can happen only for q ≡ 1 (mod p).

We conclude that if p - (q− 1) then both the p-Sylow subgroup P, and the q-Sylow subgroup
Q, are normal. Note that the order of P ∩ Q divides both p and q and so is equal to 1. Let
x ∈ P, y ∈ Q then [x, y] = (xyx−1)y−1 = x(yx−1y−1) ∈ P ∩ Q = {1}. Thus, PQ, which is equal
to G, is abelian. And it is not hard to prove it is cyclic. As this is often used, we record this result.

Corollary 23.2.2. Let p < q be primes such that p - (q− 1). Any group of order pq is cyclic and so
there is a unique such group up to isomorphism.

We shall later see that whenever p|(q − 1) there is a non-abelian group of order pq (in fact,
unique up to isomorphism). The case of S3 falls under this.

23.2.6. Groups of order p2q. Let G be a group of order p2q, where p and q are distinct primes. We
prove that G is not simple:

If q < p then np ≡ 1 (mod p) and np|q < p, which implies that np = 1 and the p-Sylow
subgroup is normal.

Suppose that p < q, then nq ≡ 1 (mod q) and nq|p2, which implies that nq = 1 or nq = p2. If
nq = 1 then the q-Sylow subgroup is normal and we are done.

Assume that nq = p2. Each pair of the q-Sylow subgroups, and there are p2 of them, intersects
only at the identity (since q is prime). Hence, together with the identity element, they account
for 1 + p2(q− 1) elements of the group. Suppose that there were 2 p-Sylow subgroups. They
intersect at most at a subgroup of order p (and they intersect any of the q-Sylow subgroups at
the identity alone). Thus, they contribute at least 2p2 − p new elements to our previous count.
Altogether we got at least 1 + p2(q− 1) + 2p2 − p = p2q + p2 − p + 1 > p2q elements. That’s a
contradiction, and so if nq 6= 1 we must have np = 1; that is, the p-Sylow subgroup is normal.

Remark 23.2.3. A theorem of Burnside states that a group of order paqb with a + b > 1 is not
simple. We leave it as an exercise that groups of order pqr (p < q < r primes) are not simple.
Note that |A5| = 60 = 22 · 3 · 5 and A5 is simple.

However, a theorem of Feit and Thompson – among the hardest theorems in mathematics –
says that a finite simple group is either of prime order, or of even order. We can also state it as
saying that a non-commutative finite simple group has even order.

23.2.7. GLn(F). Let F be a finite field with q elements. The order of GLn(F) is
(qn − 1)(qn − q) · · · (qn − qn−1) = q(n−1)n/2(qn − 1)(qn−1 − 1) · · · (q− 1). Thus, a p-Sylow sub-
group has order q(n−1)n/2. One such subgroup consists of the upper triangular matrices with 1
on the diagonal (the unipotent group):

1 ∗ . . . ∗

0 1 · · · ∗
. . .

0 0 . . . 1

 .

Note that it follows from Sylow’s theorem that any p-group of GLn(F) can be conjugated into
the unipotent subgroup. See the Exercise 48 for an alternative proof and Exercise 79 for a further
discussion of this example.

Let us look at the particular case of G = GL2(F3), a group with (32− 1)(32− 3) = 48 elements.
As 48 = 243, we are looking for 2-Sylow subgroups and for 3-Sylow subgroups, one of which
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we already know. The stabilizer of the unipotent subgroup under conjugation can be checked
to be the upper triangular matrices. And so, the number of 3-Sylow subgroups is 48/12 = 4.

How does a 2-Sylow subgroup Q of G looks like? To give a subgroup Q of index 3 is to give a
transitive action of G on 3 elements, Q being the stabilizer of one of the elements in this action.
Can we find a set of 3 elements on which G acts? I don’t have a good idea for doing this, but we
can find Q in a different way.

Consider the dihedral group of 8 elements. As this is the group of symmetries of a square in
the plane, we can realize it as matrices in GL2(R); as such, it is generated by the matrices y =( −1

1

)
and x =

(
1

−1
)
. We can view these matrices as having entries in F3 and that way D4 is

realized as a subgroup of GL2(F3) consisting of the matrices
{( ±1

±1

)
,
( ±1
±1

)}
. Now consider

the matrix t =
( −1 1

1 1

)
. It is invertible and t2 =

( −1
−1

)
. So t has order 4, t2 ∈ D4. It is therefore

a good guess that Q = 〈t, D4〉. To check 〈t, D4〉 is a subgroup we need to check that t normalizes
D4. We find that tyt−1 = xy and txt−1 = (txyt−1)(tyt−1) = (t2yt−2)(xy) = yxy = x−1 and that’s
enough to show that t normalizes D4. Now |〈t, D4〉| = |〈t〉| · |D4|/|〈t〉 ∩ D4| = 4 · 8/2 = 16 and
so we may take Q to be 〈t, D4〉.

The number of 2-Sylow subgroups is either 1 or 3. In fact, there are 3, but that requires some
additional work (calculate the conjugate of Q by

(
1 1
0 1

)
to see that there is more than one 2-Sylow

subgroup).

23.2.8. More examples.

Example 23.2.4. We look now at groups of order 12. We would need to use a surprising amount
of theory to gain insight into their structure and, in fact, we will only be able to complete our
discussion later in §28.5, making use of the theory of semi-direct products.

One can wonder why is the determination of groups of order 12 so complicated. Perhaps the
following will help: a group is determined by its multiplication table and for a group of order
12 this table has 144 cells. A priori in each cell there could be any element of the group and so
we have 12144 possibilities. We can of course improve on this estimate, but not by much: for
example, the column and row of multiplying by the identity are determined, so we really have
121 cells. Further, each row, or column contains every element of G and exactly once. That is,
the multiplication table is a Latin Square, with one predetermined row and one predetermined
column – a so-called reduced Latin square. According to Wikipedia (June 2020) the number of
reduced Latin squares of size 12 is about 1.62× 1044. On the other hand, there are precisely 5
groups of order 12 up to isomorphism, so we may conclude that the number of Latin squares
arising as multiplication tables is tiny in comparison to 1.62× 1044 (even taking into account that
there are 11! ways to name the elements of a group G of order 12 as G = {g0 = 1, g1, . . . , g11}).
This suggest that there is a lot of structure for groups of order 12 which dramatically cuts down
the number of possibilities for multiplication tables.

Suppose then that G is a group of order 12. If G is abelian, it is a consequence of Theo-
rem 26.2.1 that either G ∼= Z/4Z × Z/3Z, which by CRT is also isomorphic to Z/12Z, or
G ∼= (Z/2Z)2 × Z/3Z, which is also isomorphic to Z/2Z × Z/6Z (again by CRT). The p-
Sylow subgroups are unique because G is abelian. In the first case they are Z/4Z× {0} and
{0} ×Z/3Z and in the second case they are (Z/2Z)2 × {0} and {0} ×Z/3Z.

Assume now that G is not abelian. Let P be some 2-Sylow of G and Q some 3-Sylow of G.
We claim that we cannot have that both P and Q are normal. If they are, let x ∈ P, y ∈ Q then
xyx−1y−1 ∈ P ∩ Q (read it first as (xyx−1)y−1 to see it is in Q, and then as x(yx−1y−1) to see it
is in P). But P ∩ Q = {1}. Thus, elements of P commute with elements of Q. However, both P
and Q are commutative so we deduce that the subgroup PQ is commutative. But this subgroup
has 12 elements, so G itself is commutative and that is a contradiction. Thus, either P or Q are
not normal.
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On the other hand, if Q is not normal, then n3 > 1. As n3|4, n3 ≡ 1 (mod 3), it follows that
n3 = 4. So there are four 3-Sylow subgroups, say Q = Q1, . . . , Q4. Note that any pair of which
intersects at {1} only. Thus, ∪Qi contains 9 elements. On the other hand, as P doesn’t have an
element of order 3, P∩ (∪iQi) = {1}. As G−∪Qi has 3 elements and P has 4 elements, we must
have

P = {1} ∪ (G−∪iQi).
Thus, P is uniquely determined and so is normal.

The situation therefore is as follows: either P is normal, or Q is normal, but not both.

Suppose that P is normal. There is another piece of information here that is completely gen-
eral so we state it as a lemma. We denote by Aut(G) the automorphism group of a group G.
This is the group whose elements are bijective homomorphisms f : G → G, where the group law
is composition. Cf. Exercise 43.

Lemma 23.2.5. Let G be a group and P a normal subgroup of G. There is a homomorphism:

τ : G → Aut(P), g 7→ τg,

where
τg(x) = gxg−1.

If P is abelian, τ induces a homomorphism

τ : G/P→ Aut(P).

Proof. We will be brief here, as part of it is Exercise 43. In general, we have a homomorphism

τ : G → Aut(G),

provided by the same formula. If P is normal, τg(P) = P and so the τ of the lemma is really τg|P
(the restriction of τg to P). If P is abelian and g ∈ P then conjugating by g elements of P is trivial:
gxg−1 = x, ∀g, x ∈ P. That is τg|P is the identity. Hence, by the First Isomorphism Theorem, we
may factor τ through G/P and get a homomorphism τ : G/P→ Aut(P). �

To apply it to our study of groups of order 12 we need another fact, left as an exercise.

Example 23.2.6. Let d, n be positive integers.

Aut((Z/nZ)d) ∼= GLd(Z/nZ) = {(aij)
d
i,j=1 : aij ∈ Z/nZ, det(aij) ∈ Z/nZ×}.

Let’s return now to the situation where G is a non-abelian group of order 12 and assume
that P, the 2-Sylow subgroup, is normal. If P = Z/4Z then Aut(P) = GL1(Z/4Z) = (Z/4Z)× =
{1, 3} is a group of 2 elements.

However, by the lemma, we have a homomorphism

G/P→ (Z/4Z)×.

As G/P is a group of order 3, this homomorphism is trivial. That means that P is contained in
the centre of G and in particular Q and P commute. We saw this is not possible. Thus, if P is
normal, we must have P ∼= (Z/2Z)2.

So, to summarize, for non-abelian groups of order 12, we have one of the following situations:
(1) P is normal and Q is not, and P ∼= (Z/2Z)2. (The group A4 has this property where

P = K is the Klein group and Q = 〈(123)〉.)
(2) Q is normal and P is not, and P ∼= (Z/2Z)2. (The group D6 has this property where

P = 〈y, x3〉 and Q = 〈x2〉.)
(3) Q is normal and P is not, and P ∼= Z/4Z. (There is a group with this property. We

denote it T; we will later construct it using the theory of semi-direct product.)
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Example 23.2.7. Let G be a group of order 231 = 3 · 7 · 11. As n11|21 and n11 ≡ 1 (mod 11)
we must have that n11 = 1. Let R be the unique 11-Sylow subgroup. R is normal. As R has a
prime order R ∼= Z/11Z, is abelian, and Aut(R) ∼= (Z/11Z)× is a group of 10 elements. The
homomorphism

G/R→ Aut(R),
must therefore be trivial (the l.h.s. is a group of order 21). Thus, G has a non-trivial centre; in
fact, R ⊆ Z(G). We leave it as an exercise to show that if G is non-abelian then R = Z(G).

23.3. Being a product of Sylow subgroups.

Proposition 23.3.1. Let G be a finite group of order pa1
1 pa2

2 · · · p
ar
r , where the pi are distinct primes and

the ai > 0. Choose for every prime pi a Sylow subgroup Pi. Then

G ∼= P1 × P2 × · · · × Pr ⇐⇒ PiCG, ∀i.

Before the proof we need to collect a few more facts. The proofs are easy; in fact, in one way
or another we have seen them in the previous examples, and we leave them as exercises.

Lemma 23.3.2. Let G be a finite group, p 6= q primes dividing the order of G and P, Q corresponding
Sylow subgroups then P ∩Q = {1}.

Lemma 23.3.3. Let G be a group with normal subgroups A, B. If A ∩ B = {1} then the elements of A
commute with those of B, namely, for all a ∈ A, b ∈ B,

ab = ba.

We now prove the Proposition 23.3.1. Suppose that each Pi is normal. Define a function

f : P1 × · · · Pr → G, f (x1, . . . , xr) = x1x2 · · · xr.

Using the lemmas above, we see that Pi and Pj commutes for all i 6= j. A direct verification now
gives that f is a homomorphism. The homomorphism f is surjective because the image contains
f ({1} × · · · × Pi × · · · {1}) = Pi and 〈P1, . . . , Pr〉 is a group whose order is divisible by pai

i for
all i, hence equal to G. As the source has the same number of elements, f is bijective.

Conversely, if G ∼= P1 × P2 × · · · × Pr, then, on the left hand side, each group {1} × · · · × Pi ×
· · · × {1} is a normal pi-Sylow subgroup. Thus, also, on the right hand side, each pi-Sylow is
normal.

Definition 23.3.4. A finite group is called nilpotent if it is a product of its p-Sylow subgroups.

We remark that one usually defines the property of nilpotent completely differently, but it is
a theorem that the other (more common) definition is equivalent to the one given here.
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Part 6. Composition series, the Jordan-Hölder theorem and solvable groups

24. COMPOSITION SERIES

24.1. Two philosophies. In the study of finite groups one can sketch two broad philosophies:
The first one, that we may call the “Sylow philosophy” (though such was not made by Sy-

low, I believe), is given a finite group to study its p-subgroups and then study how they fit
together. Sylow’s theorems guarantee that the size of p-subgroup is as big as one can hope for,
guaranteeing the first step can be taken. The theory of p-groups, the second step, is a beautiful
and powerful theory, which is quite successful. I know little about a theory that tells us how
p-groups fit together.12

The second philosophy, that one may call the “Jordan-Hölder philosophy”, suggests given a
group G to find a non-trivial normal subgroup N in G and study the possibilities for G given N
and G/N. The first step then is to hope for the classification of all finite simple groups. Quite
astonishingly, this is possible and was completed towards the end of the last (20th) century.

The second step is figuring out how to create groups G from two given subgroups N and H
such that N will be a normal subgroup of G and G/N will be isomorphic to H. There is a lot
known here. We will shortly study one machinery for that: the semi-direct product N o H. For
illustration, one has the following remarkable theorem:

Theorem 24.1.1 (Schur-Zassenhaus Theorem). Let G be a finite group with a normal subgroup N
such that ]N and ]G/N are coprime. Then the extension G splits over N ; i.e. there is a subgroup H
of G with G = NH and N ∩ H = {1}. Moreover if either N or G/N is a solvable group, then all
complements to N in G are G-conjugate.

The subgroup H is called a complement of N; note that it maps isomorphically onto G/N. Using
terminology to be introduced later, we conclude that G is a semi-direct product of N and H.

The theorem illustrates well how the Jordan-Hölder philosophy can be realized in practice.
Under favourable situations, such as in the theorem above, we can write G = NH, where
NCG and H ∩ N = {1}. Conjugation by elements of H provide automorphisms of N and
they determine G: every element of G has the form hn, h ∈ H, n ∈ N, and (h1n1)(h2n2) =
(h1h2)((h−1

2 n2h2)n1). Thus, giving G is equivalent to giving a homomorphism H → Aut(N).
Those, can be classified once H and N are known.

For example, suppose that the order of G is 420 and we know that the normal subgroup N
has 7 elements and that its complement H is simple. From the classification of simple groups
(just of order 60, which is not too hard!) we have H ∼= A5. Any homomorphism H → Aut(N) =
(Z/7Z)× must be trivial (consider the kernel and use simplicity). Thus, every such group is
isomorphic to Z/7Z× A5.

25. THE JORDAN-HÖLDER THEOREM AND SOLVABLE GROUPS

25.1. Composition series and composition factors. Let G be a group. A normal series for G is
a series of subgroups

G = G0 B G1 B · · · B Gn = {1}.
Unless stated otherwise, we will assume that normal series are strictly descending. A compo-
sition series for G is a series of subgroups

G = G0 B G1 B · · · B Gn = {1},

12The class of nilpotent groups turns out to be the same as the class of groups that are a direct product of their
p-Sylow subgroups.
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such that Gi−1/Gi is a nontrivial simple group for all i = 1, . . . , n. The composition factors
are the quotients {Gi−1/Gi : i = 1, 2, . . . , n}. The quotients are considered up to isomorphism,
where the order of the quotients doesn’t matter, but we do take the quotients with multiplicity.
For example, the group D4 has a composition series

D4 B 〈x〉 B 〈x2〉 B {1}.
The composition factors are {Z/2Z, Z/2Z, Z/2Z}. More generally, from our results on p-
groups, we know that any finite p-group has a composition series with quotients Z/pZ.

A group G is called solvable if it has a normal series in which all the composition factors are
abelian groups.

Lemma 25.1.1. Let G be a finite group. Any strictly descending normal series

G = G0 B G1 B · · · B Gn = {1},
for G can be refined to a composition series. Moreover, if the quotients Gi−1/Gi are abelian, then the
quotients for the composition series are groups isomorphic to Z/pZ for some prime p.

Proof. Note that since the series is strictly descending the quotients Gi−1/Gi are non-trivial and
their order divides the order of the group. In fact, |G| = ∏n

i=1 |Gi−1/Gi|. Thus, any strictly
descending normal series has bounded length. As a result, it is enough to show that a strictly
descending normal series that is not a composition series can be refined to a longer series.

Let
G = G0 B G1 B · · · B Gn = {1}

be a strictly descending normal series that is not a composition series. Choose i such that
Gi−1/Gi is not simple. Let H′ be a non-trivial normal subgroup of Gi−1/Gi and let H ⊃ Gi
be the subgroup of Gi−1 that corresponds to it. We then have

G = G0 B G1 B · · ·Gi−1 B H B Gi B · · · B Gn = {1}.
Note that, indeed, by the correspondence theorem, since in Gi−1/Gi we have (Gi−1/Gi) B H′ B
{1}, it holds that Gi−1 B H B Gi, and

Gi−1/H ∼= (Gi−1/Gi)/H′, H/Gi
∼= H′.

Thus, we have a longer strictly descending normal series. If the original quotients were abelian
then the new series also has abelian quotients, because (Gi−1/Gi)/H′ is a quotient of the abelian
group Gi−1/Gi (hence, abelian) and H′ is a subgroup of an abelian group (hence, abelian).

Thus, as explained, by repeating this refinement process finitely many times, we obtain a
composition series. If the original series had abelian quotients, so does the composition series.
The only thing remaining to show that is that a simple finite abelian group must have prime
order.

Let A be a simple finite abelian group. Choose x ∈ A such that x 6= 1. Since 〈x〉 is a non-trivial
subgroup of A, automatically normal, we have 〈x〉 = A. Let p be a prime dividing the order of
x. Then also 〈xp〉 is a normal subgroup and is a proper subgroup of 〈x〉. Thus, we must have
〈xp〉 = {1}. It follows that A has order p. �

Corollary 25.1.2. Let G be a finite group. G is solvable if and only if it has a composition series whose
composition factors are cyclic groups of prime order.

25.2. Jordan-Hölder Theorem. The Jordan-Hölder theorem clarifies greatly the yoga behind
the concept of composition series.

Theorem 25.2.1. Let G be a finite group. Any two composition series for G have the same composition
factors (considered with multiplicity).
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Note that a consequence of the theorem is that any two composition series have the same
length, since the length determines the number of composition factors.

The proof of the theorem is quite technical, unfortunately. It rests on the following lemma.13

Lemma 25.2.2. (Zassenhaus) Let ACA∗, BCB∗ be subgroups of a group G. Then

A(A∗ ∩ B)CA(A∗ ∩ B∗), B(B∗ ∩ A)CB(B∗ ∩ A∗),

and
A(A∗ ∩ B∗)
A(A∗ ∩ B)

∼=
B(B∗ ∩ A∗)
B(B∗ ∩ A)

.

Before the proof, recall the following facts: (i) Let SCG, T < G be subgroups of a group G. Then
ST is a subgroup of G (and ST = TS). (ii) If also TCG then STCG.

Proof. Let D be the following set:

D = (A∗ ∩ B)(A ∩ B∗).

We show that D is a normal subgroup of A∗ ∩ B∗, D = (A ∩ B∗)(A∗ ∩ B) and

B(B∗ ∩ A∗)
B(B∗ ∩ A)

∼=
A∗ ∩ B∗

D
.

The lemma then follows from the symmetric role played by A and B.
It is easy to check directly from the definitions that (A∗ ∩ B)CA∗ ∩ B∗ and that, similarly,

(A ∩ B∗)CA∗ ∩ B∗. It follows that DCA∗ ∩ B∗ and that D = (A ∩ B∗)(A∗ ∩ B). The subtle point
of the proof is to construct a homomorphism

f : B(B∗ ∩ A∗)→ A∗ ∩ B∗

D
.

Let x ∈ B(B∗ ∩ A∗), say x = bc for b ∈ B, c ∈ (B∗ ∩ A∗). Let

f (x) = cD

(which is an element of A∗∩B∗
D .)

First, f is well defined. If x = b1c1 then c1c−1 = b−1
1 b ∈ (B∗ ∩ A∗) ∩ B ⊂ D. As DC(B∗ ∩ A∗)

and c1 ∈ (B∗ ∩ A∗) also c−1c1 ∈ D, and so cD = c1D. Next, f is a homomorphism. Suppose that
x = bc, y = b1c1 and so xy = bcb1c1. Note that cb1c−1 ∈ B (as B is normal in B∗ and c ∈ B∗) and
so xy = bb′cc1 for some b′ ∈ B. It now follows that f (xy) = f (x) f (y).

It is clear from the definition that f is a surjective homomorphism. When is x = bc ∈ Ker( f )?
This happens if and only if c ∈ D, that is x ∈ B(A∗ ∩ B)(A ∩ B∗) = B(A ∩ B∗). This shows that
B(A ∩ B∗)CB(A∗ ∩ B∗) and the desired isomorphism. �

Theorem 25.2.3. Let G be a group. Any two finite composition series for G are equivalent; namely, have
the same composition factors.

Proof. More generally, we prove that any two normal series for G have refinements that are
equivalent; namely, have the same quotients (with the same multiplicities). This holds also for
infinite groups that may not have composition series, and so is useful in other situations. In
the case of composition series, since they cannot be refined in a non-trivial way because the
quotients are simple groups, we get that any two composition series for G (if they exist at all)
are equivalent.

Thus, consider two normal series of G,

G = G0 B G1 B · · · B Gn = {1},
13Our proof follows Rotman’s in An introduction to the theory of groups.
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and
G = H0 B H1 B · · · B Hm = {1}.

First, use the second series to refine the first. Define:

Gij = Gi+1(Gi ∩ Hj).

For fixed i, this is a descending series of sets, beginning at Gi0 = Gi+1Gi = Gi and ending at
Gim = Gi+1. Taking in the Zassenhaus lemma A = Gi+1, A∗ = Gi, B = Hj+1, B∗ = Hj gives us
that Gi,j+1 = A(A∗ ∩ B)CGij = A(A∗ ∩ B∗) (and, in particular, that these are all subgroups).

Similarly, use the first series to refine the second by defining

Hij = Hj+1(Hj ∩ Gi).

As above, the series Hj = H0j ⊃ H1j ⊃ · · · ⊃ Hnj = Hj+1 is a series of subgroups, each normal
in the former. Finally, applying the Zassenhaus lemma again, we find that

Gij

Gi,j+1
=

A(A∗ ∩ B∗)
A(A∗ ∩ B)

∼=
B(B∗ ∩ A∗)
B(B∗ ∩ A)

=
Hij

Hi+1,j
.

This gives a precise matching of the factors. �

Note that every finite group G has a composition series. While the composition series itself is
not unique, the composition factors are. So, in a sense, the Jordan-Hölder theorem is a unique
factorization theorem for groups. From this point of view, the simplest groups are the so-called
solvable groups; these are the groups with the simplest factors - cyclic groups of prime order.
We therefore now focus our attention on solvable groups for a while.

25.3. Solvable groups. Recall that a group G is called solvable if there is a finite normal series
for G,

G = G0 B G1 B · · · B Gn = {1},
with abelian quotients.

Example 25.3.1. Every abelian group is solvable.

Example 25.3.2. It follows from our results on p-groups that every p-group is solvable.

Example 25.3.3. Any group of order pq, where p < q are primes, is solvable as the q-Sylow is
always normal and cyclic, and the quotient is a group of order p, hence cyclic.

Example 25.3.4. Groups of order p2q are solvable. Indeed, as we have seen, either the p-Sylow
or the q-Sylow is normal. Whatever is the case, note that automatically groups of order p2 and
of order q are abelian.

Example 25.3.5. By Exercise 103, a group of order pqr, where p, q, r are distinct primes, is solv-
able.

Example 25.3.6. A product of solvable groups is solvable.

Of course, not every group is solvable. Any non-abelian simple group (such as An for n ≥ 5,
and PSLn(Fq) for n ≥ 2 and (n, q) 6= (2, 2) or (2, 3)) is non-solvable.

The class of solvable groups is closed under basic operations. More precisely we have the
following results.

Proposition 25.3.7. Let G be a solvable group and K < G a subgroup. Then K is solvable.
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Proof. Let
G = G0 B G1 B · · · B Gn = {1},

be a normal series with abelian quotients. Consider the normal series

K = K ∩ G0 B K ∩ G1 B · · · B K ∩ Gn = {1}.
It need not be strictly descending but that is not a problem. It is enough to show that K ∩
Gi−1/K ∩ Gi is abelian. Consider the homomorphism which is the composition

K ∩ Gi−1 → Gi−1 → Gi−1/Gi.

The image is an abelian group and the kernel is K∩Gi. Thus, by the First Isomorphism Theorem,
K ∩ Gi−1/K ∩ Gi is isomorphic to a subgroup of the abelian group Gi−1/Gi, hence abelian. �

Before continuing, it will convenient to introduce some terminology. A sequence of groups
and homomorphisms

· · · // Ga
fa // Ga+1

fa+1 // Ga+2
fa+2 // · · ·

is called exact, if for every a, Im( fa) = Ker( fa+1). If the sequence terminates at Ga there is no
condition on Im( fa), and if it begins with Ga there is no condition on Ker( fa). A short exact
sequence (or ses, for short) is an exact sequence of the sort

1 // G1
f
// G2

g
// G3 // 1 ,

where 1 stands for the group of 1 element. Note that the maps 1→ G1 and G3 → 1 are uniquely
determined, hence we do not specify them. Thus, this sequence is short exact if f is injective, g
is surjective and Im( f ) = Ker(g).

Proposition 25.3.8. Let

1→ K
f→ G

g→ H → 1
be a short exact sequence of groups. Then G is solvable if and only if both K and H are solvable.

Proof. Assume that G is solvable. We already proved that f (K) < G is solvable. As f : K → f (K)
is an isomorphism, K is solvable too. Let

G = G0 B G1 B · · · B Gn = {1},
be a normal series with abelian quotients. Let

Hi = g(Gi).

The series of subgroups H = H0 > H1 > · · · > Hn = {1} is a series of normal subgroups.
Indeed, for every i, g : Gi−1 → Hi−1 is a surjective homomorphism and so, as Gi is normal in
Gi−1, Hi is normal in Hi−1. We therefore have a normal series

H = H0 B H1 B · · · B Hn = {1}.
We prove that its quotients are abelian. Consider the surjective homomorphism obtained as the
composition

Gi−1 → Hi−1 → Hi−1/Hi.
The kernel contains Gi. Thus, by the first isomorphism theorem we get a surjective homomor-
phism

Gi−1/Gi → Hi−1/Hi.
Therefore, Hi−1/Hi is a quotient of an abelian group and so is abelian too.

Now suppose that K and H are solvable. Thus, we have normal series

H = H0 B H1 B · · · B Hn = {1},
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and
K = K0 B K1 B · · · B Km = {1},

with abelian quotients. Let

Ji =

{
g−1(Hi), 0 ≤ i ≤ n
f (Ki−n), n ≤ i ≤ m + n.

.

(Note that f (K0) = f (K) = Ker(g) = g−1(Hn) and so Jn is well defined.) Then Ji is a normal
series with abelian quotients:

Ji−1/Ji
∼=
{

Hi−1/Hi, 0 ≤ i ≤ n
Ki−n−1/Ki−n, n < i ≤ m + n.

.

�

Example 25.3.9. Let G be a group of order paqb, where p, q is are distinct primes, a, b positive integers,
and pa! < paqb. Then G has a non-trivial normal subgroup. Indeed, let Q be the q-Sylow subgroup
and let G act on its cosets by the coset representation. Since the index of Q is pa we get a
homomorphism:

f : G → Spa .
As |G| > pa! the kernel of f is not trivial. On the other hand Ker( f ) < Q. Thus, Ker( f ) is a
non-trivial normal subgroup of G.

Theorem 25.3.10. Every group of order less than 60 is solvable.

Proof. First note that the following integers are prime:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59.

The following are prime powers:

4, 8, 9, 16, 25, 27, 32, 49.

The following are a product of two distinct primes:

6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58.

The following are of the form p2q, where p and q are distinct primes:

12, 18, 20, 28, 44, 45, 50, 52.

And, the following are for the form pqr for distinct primes p, q, r:

30, 42.

We already know that groups of the order listed are solvable. The orders left to consider are

24, 36, 40, 48, 54, 56

Of those, 24 = 3 · 23, 36 = 22 · 32, 48 = 3 · 24 and 54 = 2 · 33 are of the form paqb, where p, q is are
distinct primes and pa! < paqb, so they have a non-trivial normal subgroup K. By induction on
the order of the group, both K and G/K are solvable. Hence, by Proposition 25.3.8, G is solvable.
It remains to consider groups of order 40 = 23 · 5 and 56 = 23 · 7.

Let G be a group of order 40. Let P be the 5-Sylow subgroup. As n5|8 and n5 ≡ 1 (mod 5)
we must have n5 = 1 and so P is normal. By induction, the groups P and G/P are solvable and
therefore so is G.

Let G be a group of order 56. Suppose that the 7-Sylow of G is not normal. Then there are eight
7-Sylow subgroups. These already account for a set S consisting of 1 + (7− 1)× 8 = 49 distinct
elements of G. If P is a 2-Sylow subgroup then P ∩ S = {e} and it follows that P = G \ S ∪ {e}.
Since this holds for any 2-Sylow subgroup, we conclude that P is the unique 2-Sylow subgroup
and hence is normal. As above, using induction we find that G is solvable. �
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The motivation for the study of solvable groups comes from Galois theory. Let f (x) = xn +
an1 xn−1 + · · ·+ a0 be an irreducible polynomial with rational coefficients. In Galois theory one
associates to f a finite group G f ⊆ Sn, called the Galois group of f . It is a transitive subgroup
of Sn whose exact structure depends on the polynomial. It may be Sn and it may be 〈(1 2 · · · n)〉,
or many other subgroups of Sn. One of Évariste Galois’s main achievements was to prove that
one can solve f in radicals – meaning, express the solutions of f using operations such as taking
roots (of any order), adding and multiplying – if and only if G f is a solvable group. This explains
the origin of the terminology “solvable”.

It follows that there are formulas in radicals to solve equations of degree ≤ 4; every group
that can possibly arise as G f has order less than 60, hence is solvable. On the other hand, one
can easily produce an equation f of degree 5 such that G f = S5, which is not a solvable group.
Indeed, if S5 is solvable, so is A5. But A5 is a non-abelian simple group hence not solvable.

Remark 25.3.11. Here are two theorems concerning solvable groups. The first is hard, but can be
done in a graduate course in algebra; the proof relies on the theory of representation of groups
we will begin developing in the last part of the course. The second theorem is among the most
difficult proofs in algebra ever written. (Please do not use these theorems in the assignments.)

Theorem 25.3.12 (Burnside). Let p, q be primes. A finite group of order paqb is solvable.

Theorem 25.3.13 (Feit-Thompson). Every finite group of odd order is solvable.

As an easy consequence of the Feit-Thompson theorem, and a nice application of Cayley’s the-
orem, we prove the following.

Theorem 25.3.14. Let G be a group whose order is either m, or 2m, where m is an odd integer. Then G
is a solvable group.

Proof. The Feit-Thompson theorem gives that when the order of G is m. In general, arguing by
induction on the order of the group G, it is enough to prove that if G is a simple non-abelian
group of even order then 4|]G. Indeed, this implies that the group G in the theorem statement
is not simple and so has a non-trivial normal subgroup K such that the order of K and of G/K
are of the same form: either odd integers or twice an odd integer. By induction, K and G/K are
solvable, hence so is G.

Suppose then that the order of G is 2m. We will actually prove that G has a normal subgroup
of index 2. Consider the homomorphism

f : G ↪→ S2m = ΣG,

provided by the action of G on itself by left multiplication. Let x ∈ G be an element of order 2.
We claim that f (x) is an odd permutation. Indeed, f (x) is a product of m transpositions and m
is odd. To ease notation, identify G with f (G).

The sign homomorphism sgn : G → {±1} is non-trivial because x ∈ G is odd. Thus, its kernel
G ∩ A2m is a normal subgroup of G of index 2. �
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Part 7. Finitely Generated Abelian Groups, Semi-direct Products and Groups of Low Order

26. THE STRUCTURE THEOREM FOR FINITELY GENERATED ABELIAN GROUPS

26.1. Generators. A group G is called finitely generated if there are elements g1, g2, . . . , gn in G
such that G = 〈g1, . . . , gn〉. We saw two interpretations of this: (i) G is the minimal subgroup
of G that contains all the elements g1, . . . , gn (namely, no proper subgroup of G will contain all
these elements). (ii) Every element of G can be written in the form x1x2 · · · xN , where each xi is
either gj or g−1

j for some j.
It is sometimes easier to use the first, seemingly more abstract, definition. For example, con-

sider the elements {(1234), (13), (123), (12345)} of S5. S5 is generated by them. Indeed, the first
two elements generate a copy of D4 and so it follows that every subgroup containing these ele-
ments will have order divisible by 8, 3 and 5 and so will have order divisible by 120, thus equal
to S5. On the other hand, it is a rather unpleasant exercise to explicitly write every one of the
120 permutations in S5 as a product of these generators.

Let G be an abelian group and use additive notation. Then G is finitely generated if and only if
there exist elements g1, g2, . . . , gn of G such that

G =

{
n

∑
i=1

aigi : ai ∈ Z

}
.

Lemma 26.1.1. An abelian group G is finitely generated if and only if for some positive integer n there
is a surjective homomorphism

Zn → G.

Proof. Suppose that G is finitely generated by elements {g1, g2, . . . , gn}. Define a homomor-
phism

Zn → G, (a1, . . . , an) 7→
n

∑
i=1

aigi.

This is a surjective homomorphism.
Conversely, given a surjective homomorphism f : Zn → G, let

gi = f (ei) = f (0, . . . , 1, . . . , 0) (1 in the i-th place).

Every element of G is of the form f (a1, . . . , an) for some ai ∈ Z. But, f (a1, . . . , an) = ∑n
i=1 ai f (ei) =

∑n
i=1 aigi and so G is generated by {g1, g2, . . . , gn}. �

26.2. The structure theorem. The structure theorem for finitely generated abelian groups will
be proven in the next course as a corollary of the structure theorem for modules over a principal
ideal domain. That same theorem will also yield the Jordan canonical form of a matrix, which
we have already studied in the course in Linear Algebra. It is really the “correct way” to prove
both these theorems, hence we defer the proof to that later time.

Theorem 26.2.1. Let G be a finitely generated abelian group. Then there exists a unique data consisting
of a non-negative integer r, and integers 1 < n1|n2| . . . |nt (t ≥ 0) such that

G ∼= Zr ×Z/n1Z× · · · ×Z/ntZ.

Remark 26.2.2. The integer r is called the rank of G. The subgroup in G that corresponds to
Z/n1Z × · · · ×Z/ntZ under such an isomorphism is canonical (independent of the isomor-
phism). It is the subgroup of G consisting of all elements of finite order; it is called the torsion
subgroup of G and sometimes denoted Gtor. On the other hand, the subgroup corresponding to
Zr is not canonical and depends very much on the isomorphism.
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A group is called free abelian group if it is isomorphic to Zr for some r (the case t = 0 in the
theorem above). In this case, elements x1, . . . , xr of G that correspond to a basis of Zr are called a
basis of G; every element of G then has the form a1x1 + · · ·+ arxr for unique integers a1, . . . , ar.

The Chinese Remainder Theorem gives that if n = pa1
1 · · · p

as
s , pi distinct primes, then

Z/nZ ∼= Z/pa1
1 Z× · · · ×Z/pas

s Z.

Thus, one could also write an isomorphism G ∼= Zr ×∏i Z/pbi
i Z for suitable primes and expo-

nents. More precisely, we have the following variant of the structure theorem:

Theorem 26.2.3. Let G be a finitely generated abelian group. There exists a unique data consisting of a
non-negative integer r, unique distinct primes p1, . . . , ps (s ≥ 0), and for each prime pa unique integers
0 < ba,1 ≤ · · · ≤ ba,na , such that

G ∼= Zr ×
s

∏
a=1

Z/pba,1
a × · · · ×Z/pba,na

a .

We shall also prove the following corollary in greater generality next semester.

Corollary 26.2.4. Let G, H be two free abelian groups of rank r. Let f : H → G be a homomorphism
such that G/ f (H) is a finite group. There are bases, x1, . . . , xr of G and y1, . . . , yr of H, and integers
1 ≤ n1| . . . |nr such that f (yi) = nixi.

Example 26.2.5. Let G be a finite abelian p-group, |G| = pn. Then G ∼= Z/pa1
1 Z× · · · ×Z/pas

s Z

for unique ai satisfying 1 ≤ a1 ≤ · · · ≤ as and a1 + · · ·+ as = n. It follows that the number of
isomorphism classes of finite abelian groups of order pn is p(n) (the partition function of n).

27. SEMI-DIRECT PRODUCTS

Semi-direct products are a powerful method to create new groups, or to describe very pre-
cisely the structure of certain groups. They often appear in applications.

Given two groups B, N we have formed their direct product G = N × B. Identifying B, N with
their images {1} × B, N × {1} in G, we find that: (i) G = NB, (ii) NCG, BCG, (iii) N ∩ B = {1}.
Conversely, one can easily prove that if G is a group with subgroups B, N, such that: (i) G = NB,
(ii) NCG, BCG, (iii) N ∩ B = {1}, then G ∼= N × B. The definition of a semi-direct product
relaxes the conditions a little.

Definition 27.0.1. Let G be a group and let B, N be subgroups of G such that:
(1) NCG;
(2) G = NB;
(3) N ∩ B = {1}.

Then we say that G is a semi-direct product of N and B.

Note that the conditions imply that every element of G can be written in the form nb, n ∈
N, b ∈ B in a unique way. Indeed, if nb = n1b1 then n−1

1 = b1b−1 ∈ N ∩ B. So n−1
1 = b1b−1 = 1,

giving us n = n−1, b = b−1.

Let N be any group. Let Aut(N) be the set of automorphisms of the group N. It is a group in its
own right under composition of functions.

Let B be another group and φ : B→ Aut(N), b 7→ φb be a homomorphism (so φb1b2 = φb1 ◦
φb2). Define a group G, called the semi-direct product of N and B relative to φ and denoted

G = N oφ B,
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as follows: as a set G = N × B, but the group law is defined as

(n1, b1)(n2, b2) = (n1 · φb1(n2), b1b2).

We check associativity:

[(n1, b1)(n2, b2)](n3, b3) = (n1 · φb1(n2), b1b2)(n3, b3)

= (n1 · φb1(n2) · φb1b2(n3), b1b2b3)

= (n1 · φb1(n2 · φb2(n3)), b1b2b3)

= (n1, b1)(n2 · φb2(n3), b2b3)

= (n1, b1)[(n2, b2)(n3, b3)].

The identity is clearly (1N , 1B). The inverse of (n2, b2) is (φb−1
2
(n−1

2 ), b−1
2 ). Thus, G is a group.

The two bijections

N → G, n 7→ (n, 1); B→ G, b 7→ (1, b),

are easily checked to be group isomorphisms onto their images. We identify N and B with their
images N × {1}, {1} × B in G. We claim that G is indeed a semi-direct product of N and B:
Clearly the last two properties of the definition hold. It remains to check that N is normal and
it’s enough to verify that B ⊂ NG(N). According to the calculation above:

(1, b)(n, 1)(1, b−1) = (φb(n), 1).

The last formula is interesting: the construction of the semi-direct product G = N oφ B transforms
the abstract action of B on N provided by φ : B→ Aut(N), into conjugation inside the group G.

We now claim that every semi-direct product is obtained this way: Let G be a semi-direct prod-
uct of N and B. Let φb : N → N be the map n 7→ bnb−1. That is, φb(n) = bnb−1. This is an
automorphism of N and the map

φ : B→ Aut(N)

is a group homomorphism. We claim that N oφ B ∼= G. Indeed, define a map

(n, b) 7→ nb.

It follows from the definition that the map is surjective. It is a group homomorphism, because
(n1 · φb1(n2), b1b2) 7→ n1φb1(n2)b1b2 = n1b1n2b−1

1 b1b2 = (n1b1)(n2b2). It is also injective since
nb = 1 implies that n = b−1 ∈ N ∩ B, hence n = 1.

The construction of direct product also follows into this paradigm. To be precise:

Proposition 27.0.2. A semi-direct product N oφ B is the direct product N × B if and only if the homo-
morphism φ : B→ Aut(N) is the trivial homomorphism.

Proof. Indeed, we get the direct product if and only if for all pairs (n1, b1), (n2, b2) we have
(n1φb1(n2), b1b2) = (n1n2, b1b2). That is, iff for all b1, n2 we have φb1(n2) = n2, which implies
φb1 = id for all b1. That is, φ is the trivial homomorphism. �

Example 27.0.3. The Dihedral group D2n is a semi-direct product. Take N = 〈x〉 ∼= Z/nZ and
B = 〈y〉 ∼= Z/2Z. Then D2n ∼= Z/nZ oφ Z/2Z with φ1 = −1, where by −1 we mean the
automorphism of N given by xa 7→ (xa)−1 = x−a.
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27.1. Application to groups of order pq. We have seen in § 23.2.5 that if p < q and p - (q− 1)
then every group of order pq is abelian. Assume therefore that p|(q− 1).

Proposition 27.1.1. If p|(q− 1) there is a unique non-abelian group of order pq, up to isomorphism.

Proof. Let G be a non-abelian group of order pq. We have seen that in every such group G the q-
Sylow subgroup Q is normal. Let P be any p-Sylow subgroup. Then P ∩Q = {1} and G = QP.
Thus, G is a semi-direct product of Q and P.

It is thus enough to show then that there is a non-abelian semi-direct product and that any
two such products are isomorphic. We may assume Q = Z/qZ, P = Z/pZ. We prove a lemma
that is a bit more general than what we need.

Lemma 27.1.2. Aut(Z/NZ) = (Z/NZ)×.

Proof. Let a ∈ (Z/NZ)×. Define a function

fa : Z/NZ→ Z/NZ, fa(x) = ax.

It is easy to check that f is a homomorphism whose image is the cyclic group 〈a〉, which is equal
to Z/NZ, because a is a generator of Z/NZ. Since the source and target have the same number
of elements, it follow that fa is injective too, hence fa ∈ Aut(Z/NZ). Moreover, fa ◦ fb = fab,
because the value on any x is fa( fb(x)) = fa(bx) = abx = fab(x). That is, we have a group
homomorphism

f : (Z/NZ)× → Aut(Z/NZ), a 7→ fa.
As fa(1) = a, we can recover a from fa, showing that f is an injective homomorphism. We claim
that f is surjective too, and hence (Z/NZ)× ∼= Aut(Z/NZ).

Let ψ ∈ Aut(Z/NZ). Let a = ψ(1). Then ψ(b) = ψ(b · 1) = bψ(1) = ab, for any integer b.
That is, Im(ψ) = 〈a〉. Since ψ is surjective, a must be a generator of Z/NZ, meaning a ∈
(Z/NZ)×. Now, for every b,

fa(b) = ab = ψ(b),
and so ψ = fa. �

We apply the lemma to the group Q = Z/qZ. Since (Z/qZ)× is a cyclic group of order q− 1
(Corollary 4.2.3), and since by assumption p|(q − 1), there is an element h of exact order p in
(Z/qZ)×. We denote, as above, the matching element in Aut(Z/qZ) by fh.

Let φ : Z/pZ→ Aut(Z/qZ) be the homomorphism determined by φ1 = fh (thus, φa = fah)
and let

G = Q oφ P.
We claim that G is not abelian. Note that

(n, 0)(0, b) = (n, b), (0, b)(n, 0) = (φb(n), b).

The two are always equal only if φb(n) = n for all b and n, i.e., φb = Id for all b, but choosing
b = 1 we get φ1 = fh, which is not the identity map. Contradiction. Therefore, we constructed a
non-abelian group of order pq.

We now show that G is unique up to isomorphism. If H is another such semi-direct product
then H = Z/qZ oψ Z/pZ, where ψ : Z/pZ→ Aut(Z/qZ) is a non-trivial homomorphism,
else H = Z/qZ×Z/pZ and H is abelian. In particular ψ1 must be an element of order p in
(Z/qZ)× and, making use of our knowledge of cyclic groups, we conclude that ψ1 = φr

1 = φr
for some r prime to p. This implies the more general relation

ψa = φar.

Define a map

Z/qZ oψ Z/pZ→ Z/qZ oφ Z/pZ, (n, b) 7→ (n, rb).
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This function is easily checked to be injective, hence bijective. We check it is a group homomor-
phism:

In G we have (n1, rb1)(n2, rb2) = (n1 + φrb1(n2), r(b1 + b2)) = (n1 + ψb1(n2), r(b1 + b2)). This
is the image of the element t := (n1 + ψb1(n2), b1 + b2) of H; but t is the product (n1, b1)(n2, b2)
in H and the homomorphism property follows. The finishes the proof of the Proposition. �

Example 27.1.3. Is there a non-abelian group of order 165 = 3 · 5 · 11 containing Z/55Z?
In such a group G, the subgroup Z/55Z would be normal (because, say, its index is the

minimal prime dividing the order of G – see Exercise 52). Since there is always a 3-Sylow,
we conclude that G is a semi-direct product Z/55Z o Z/3Z and is therefore determined by a
homomorphism Z/3Z → Aut(Z/55Z) ∼= (Z/55Z)×. The right hand side has order ϕ(55) =
4 · 10, which is prime to 3 and so the homomorphism homomorphism Z/3Z→ Aut(Z/55Z) ∼=
(Z/55Z)× must be trivial (Exercise 36), and G is a direct product. It follows that G must be
commutative.

Suppose that G is non-commutative of order 165. The 11-Sylow P is normal because n11|15, n11 ≡
1 (mod 11) and G has some 5-Sylow Q. Let N = PQ, a subgroup of G with 55 elements. It is
not abelian, because if it were it would be cyclic and we saw this implies that G is abelian. But
such N has order of type pq and so it is unique up to isomorphism.

Since the index of N is the minimal prime dividing the order of the group N is normal. Let B
be a 3-Sylow subgroup. Then G is the semidirect product G = N oφ B for some φ : B→ Aut(N).

We claim that φ must be trivial. Suppose not, then α = φ1 is an automorphism of N of order 3.
N, being non-abelian has 11 5-Sylow subgroups. If Q is one of them, the α(Q) is another. Thus,
α acts on the set of 11 5-Sylow subgroups. By the orbit stabiizer formula, orbits for α have size 1,
or 3, and since 11 is not divisible by 3, there is some 11-Sylow subgroup Q′ such that α(Q′) = Q′.
Since Q′ ∼= Z/5Z has an automorphism group of size 4 and α3 = Id, α : Q′ → Q′ is trivial. Since
P is the unique 11-Sylow subgroup of N, also α(P) = P and for similar reasons α : P→ P is
trivial. Now, every element in N can be written as xy, x ∈ Q′, y ∈ P and α(xy) = α(x)α(y) = xy.
Thus, α is trivial. It follows that

G ∼= Z/3Z× N,

where N is the unique up-to-isomorphism non-abelian group of order 55. In particular, G is
uniquely determined by its order and being non-commutative. Any commutative group of
order 165 will be cyclic, by CRT. We conclude that there are exactly two groups of order 165
up-to-isomorphism.

27.2. Cases where two semi-direct products are isomorphic. It is useful to generalize the ar-
guments showing that all non-trivial semi-direct products Z/qZ oφ Z/pZ are isomorphic.

Let φ : B→ Aut(N), b 7→ φb, be a homomorphism and consider the group

G = N oφ B.

Consider two automorphisms of groups

f : N → N, g : B→ B.

Let S be G, considered merely as a set, and consider the bijective self map h defined by

h : S→ S, (n, b) h7→ ( f (n), g(b)).
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We may define a new group law on S by “transport of structure”; that is, let

(n1, b1) ∗ (n2, b2) = h
[

h−1(n1, b1) · h−1(n2, b2)
]

= h
[
( f−1(n1), g−1(b1)) · ( f−1(n2), g−1(b2))

]
= h

[
( f−1(n1) · φg−1(b1)

( f−1(n2)), g−1(b1) · g−1(b2))
]

= (n1 · ( f ◦ φg−1(b1)
◦ f−1)(n2), b1b2)

Clearly, S with the new group law is isomorphic as a group to G; the isomorphism is provided
by h : G → S. Let

ψ : B→ Aut(N), ψb := f ◦ φg−1(b) ◦ f−1.

We may view ψ as the composition

B
g−1
// B

φ
// Aut(N)

τf // Aut(N),

where τf is the conjugation by f automorphism of the group Aut(N). Thus, ψ is a group homo-
morphism, and we have the isomorphism

G = N oφ B ∼= N oψ B,

where the isomorphism is
(n, b) 7→ ( f (n), g(b)).

It is sometimes convenient to replace g by g−1 and conclude the following

Summary: Let f ∈ Aut(N), g ∈ Aut(B) and

ψ : B→ Aut(N), ψb := f ◦ φg(b) ◦ f−1.

Then ψ is a group homomorphism, and we have the isomorphism

N oφ B ∼= N oψ B.

To illustrate, in the case of groups of order pq we took f = id and we let g vary over all possible
automorphisms of Z/pZ to see that as g varies the maps ψ that we get are all the non-zero
homomorphisms Z/pZ→ (Z/qZ)×, thereby proving the uniqueness of non-abelian groups of
order pq.

28. GROUPS OF LOW, OR SIMPLE, ORDER

28.1. Groups of prime order. Let p be a prime and G a group of order p. We have seen that all
such groups are cyclic. By Example 7.1.2, the unique cyclic group of order p up to isomorphism
is Z/pZ.

28.2. Groups of order p2. Every such group is abelian. By the structure theorem it is either
isomorphic to Z/p2Z or to Z/pZ×Z/pZ.

28.3. Groups of order pq, p < q primes. This case was discussed in § 27.1 above. We summarize
the results: there is a unique abelian group of order pq and it is cyclic. If p - (q− 1) then every
group of order pq is abelian. If p|(q− 1) there is a unique non-abelian group up to isomorphism;
it can be taken as any non trivial semi-direct product Z/qZ o Z/pZ.
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28.3.1. Groups of order 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15. The results about groups of prime order
and of order pq, p ≤ q, allow us to determine the following are the only possibilities for the
specified orders:

order abelian groups non-abelian groups

1 {1}
2 Z/2Z

3 Z/3Z

4 Z/2Z×Z/2Z, Z/4Z

5 Z/5Z

6 Z/6Z S3

7 Z/7Z

9 Z/3Z×Z/3Z, Z/9Z

10 Z/10Z D5

11 Z/11Z

13 Z/13Z

14 Z/14Z D7

15 Z/15Z

Groups of order 8 and 12 require additional analysis.

28.4. Groups of order 8. We know already the structure of abelian groups of order 8: (Z/2Z)3,
Z/2Z×Z/4Z, Z/8Z. We also know two non-isomorphic non-abelian groups of order 8: the
dihedral group D4 and the quaternion group Q (in Q there are six elements of order 4, while in
D4 there are two).

We prove that every non-abelian group G of order 8 is isomorphic to either D4 or Q. Suppose
that G has a non-normal subgroup of order 2. Then the kernel of the coset representation G → S4
is trivial. Thus, G is a 2-Sylow subgroup of S4, but so is D4. Since all 2-Sylow subgroups are
conjugate, hence isomorphic, we conclude that G ∼= D4.

Thus, assume that G doesn’t have a non-normal subgroup of order 2. Consider the center
Z(G) of G. We claim that the center has order 2. Indeed, otherwise G/Z(G) is of order 2 hence
cyclic. But G/Z(G) can never be a non-trivial cyclic group (see Lemma 21.1.1).

We now claim that Z(G) = {1, z} is the unique subgroup of G of order 2. Indeed, if {1, h} =
H < G is a subgroup of order 2 it must be normal by hypothesis. Then, for every g ∈ G,
ghg−1 = h, i.e. h ∈ Z(G) and so H = Z(G).

It follows that every element x in G apart from 1 or z has order 4, and so every such x satisfies
x2 = z. Rename z to−1 and the rest of the elements (which are of order 4, so come in pairs) may
then denoted by i, i−1, j, j−1, k, k−1. Since i2 = j2 = k2 = −1 we can write i−1 = −i, etc.

Note that the subgroup 〈i, j〉 must be equal to G and so i and j do not commute. Thus, ij 6=
1,−1, i,−i, j,−j (for example, ij = −i implies that j = (−i)ij = (−i)2 = −1 and so commutes
with i). Without loss of generality ij = k and then ji = −k (because the only other possibility is
ji = k which gives ij = ji). We therefore get the relations (the new ones are easy consequences):

G = {±1,±i,±j,±k}, i2 = j2 = k2 = −1, ij = −ji = k.

This determines completely the multiplication table of G which is identical to that of Q. Thus,
G ∼= Q.
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28.5. Groups of order 12. We continue our discussion from Example 23.2.4. We know that the
abelian groups are Z/12Z and Z/2Z×Z/6Z. We are also familiar with the groups A4 and D6.
One checks that in A4 there are no elements of order 6 so these two groups are not isomorphic.

Note that in A4 a 3-Sylow is not normal, but the 2-Sylow subgroup is normal (it is the Klein
group K = {1, (12)(34), (13)(24), (14)(23)}). Note that in D6 the 3-Sylow is normal. It is given
by {1, x2, x4}. To see it is normal one can note that the rest of the elements of D6 are the 6
reflections and the rotations x, x3, x5, none of which is an element of order 3. As conjugation
preserves order, the conclusion follows.

As we have already seen, in a non-abelian group of order 12 = 223, either the 3-Sylow is
normal or the 2-Sylow is normal, but not both.

We conclude that a non-abelian group of order 12 is the semi-direct product of a group of
order 4 and a group of order 3. For example, one checks that

A4 = (Z/2Z×Z/2Z)o Z/3Z,

and
D6 = (Z/2Z×Z/2Z)n Z/3Z.

We have already explained that every semi-direct product Z/4Z o Z/3Z is actually a direct
product and so is commutative. Let us then consider a semi-direct product Z/4ZnZ/3Z Here
1 ∈ Z/4Z acts on Z/3Z as multiplication by −1. This gives a non-abelian group with a cyclic
group of order 4 that is therefore not isomorphic to the previous groups. Call it T:

T = Z/4Z n Z/3Z.

The proof that these are all the non-abelian groups of order 12 is easy given the results of
§27.2. We already know that every such group is a non-trivial semi-direct product (Z/2Z×
Z/2Z)o Z/3Z, (Z/2Z×Z/2Z)n Z/3Z or Z/4Z n Z/3Z.

A non-trivial homomorphism Z/3Z→ Aut(Z/2Z×Z/2Z) = GL2(F2) ∼= S3 corresponds
to an element of order 3 in S3. All those elements are conjugate and by § 27.2 all these semi-direct
products are isomorphic.

A non-trivial homomorphism Z/2Z×Z/2Z→ Aut(Z/3Z) ∼= Z/2Z is determined by its
kernel which is a subgroup of order 2 = line in the 2-dimensional vector space Z/2Z×Z/2Z

over Z/2Z. The automorphism group of Z/2Z×Z/2Z acts transitively on lines and by § 27.2
all these semi-direct products are isomorphic.

A non-trivial homomorphism Z/4Z→ Aut(Z/3Z) ∼= Z/2Z is uniquely determined.

29. FREE GROUPS, GENERATORS AND RELATIONS

Let X be a set. It will be called the alphabet. A word ω in the alphabet X is a finite string
ω = ω1ω2 . . . ωn, where each ωi is equal to either x ∈ X or x−1 for x ∈ X. Here x−1 is a formal
symbol. So, for example, if X = {x} then words in X are x, xxx−1x, ∅, etc. If X = {x, y} we
have as examples x, y, x−1yyxy, x−1y−1y, and so on. We say that two words ω, σ are equivalent
words if one can get from one word to the other performing the following basic operations:

Replace ω1 . . . ωixx−1ωi+1 . . . ωn and ω1 . . . ωix−1xωi+1 . . . ωn by ω1 . . . ωiωi+1 . . . ωn, and the op-
posite of those operations (i.e., inserting xx−1 or x−1x at some point in the word).

We denote this equivalence relation by ω ∼ σ. For example, for X = {x, y} we have

x ∼ xyy−1 ∼ xyxx−1y−1 ∼ xyy−1yxx−1y−1.

A word is called reduced if it does not contain a string of the form xx−1 or x−1x for some x ∈ X.
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We now construct a group F (X) called the free group on X as follows. The elements of the
group F (X) are equivalence classes

[ω] = {σ|σ ∼ ω}
of words in the alphabet X. Multiplication is defined using representatives:

[σ][τ] = [στ]

(the two words are simply written one after the other). It is easy to see that this is well-defined
on equivalence classes: the operations performed on σ to arrive at an equivalent word σ′ can be
performed on the initial part of στ to arrive at σ′τ, etc. The identity element is the empty word;
we also denote it 1, for convenience. The inverse of [ω] where ω = ω1 . . . ωn is the equivalence
class of ω−1

n . . . ω−1
1 (where we define (x−1)−1 = x for x ∈ X). Finally, the associative law is

clear. We have constructed a group. Clearly this group depends up to isomorphism only on
the cardinality of the set X. Name, if we have a bijection of sets X ∼= Y then it induces an
isomorphism F (X) ∼= F (Y); for that reason we may denote F (X) simply by F (d), where d is
the cardinality of X.

29.1. Properties of free groups. The group F (d) has the following properties:
(1) Given a group G, and d elements s1, . . . sd in G, there is a unique group homomorphism

f : F (d)→ G such that f (xi) = si. Indeed, one first defines for a word y1 . . . yt, yi =
xei

n(i), ei ∈ {±1}, f (y1 · · · yt) = se1
n(1) · · · s

et
n(t). One checks that equivalent words have the

same image and so one gets a well defined function F (d)→ G. It is easily verified to be
a homomorphism.

(2) If G is a group generated by d elements there is a surjective group homomorphism
F (d)→ G. This follows immediately from the previous point. If s1, . . . , sd are gener-
ators take the homomorphism taking xi to si.

(3) If w1, . . . wr are words in F (d), let N be the minimal normal subgroup containing all the
wi (such exists!). The group F (d)/N is also denoted

〈x1, . . . , xd|w1, . . . , wr〉
and is said to be given by the generators x1, . . . xd and relations w1, . . . , wr. For example,
one can prove the isomorphisms Z ∼= F (1), Z/nZ ∼= 〈x1|xn

1 〉, Z2 ∼= 〈x1, x2|x1x2x−1
1 x−1

2 〉,
S3 ∼= 〈x1, x2|x2

1, x3
2, (x1x2)2〉, D2n ∼= 〈x, y|xn, y2, xyxy〉. This is discussed in more detail

below.
(4) If d = 1 then F (d) ∼= Z, but if d > 1 then F (d) is a non-commutative infinite group. In

fact, for every k, Sk is a homomorphic image of F (d) if d ≥ 2. And since Sk is not abelian
for k ≥ 3, so must be the groups F (d) for d ≥ 2

29.2. Reduced words.

Theorem 29.2.1. Any word is equivalent to a unique reduced word.

Proof. It is clear that every word is equivalent to some reduced word. We need to show that two
reduced words that are equivalent are in fact equal. Let ω and τ be equivalent reduced words.
Then, there is a sequence

ω = σ0 ∼ σ1 ∼ · · · ∼ σn = τ,
where at each step we either insert, or delete, one couple of the form xx−1 or x−1x, x ∈ X. Let
us look at the lengths of the words. The length function, evaluated along the chain, receives a
relative minimum at ω and τ. Suppose it receives another relative minimum first at σr (so the
length of σr−1 is bigger than that of σr and the length of σr is smaller than that of σr+1. We can
take σr and reduce it by erasing repeatedly pairs of the form xx−1, or x−1x, until we cannot do
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that any more. We get a chain of equivalences σr = α0 ∼ α1 ∼ · · · ∼ αs, where αs is a reduced
word. We now modify our original chain to the following chain

ω = σ0 ∼ σ1 ∼ · · · ∼ σr = α0 ∼ · · · ∼ αs−1 ∼ αs ∼ αs−1 ∼ · · · ∼ α0 = σr ∼ σr+1 . . . σn = τ.

A moment reflection shows that by this device, we can reduce the original claim to the following.

Let σ and τ be two reduced words that are equivalent as follows:

ω = σ0 ∼ σ1 ∼ · · · ∼ σn = τ

where the length increases at every step from σ0 to σa and decreases from σa to σn = τ. Then σ = τ.

We view σ and τ as two reduced words obtained by cancellation only from the word σa. We
argue by induction on the length of σa.

If σa is reduced, there’s nothing to prove because then necessarily 0 = a = n and we are
considering a tautology. Else, there is a pair of the form dd−1 or d−1d in σa. We allow ourselves
here (d−1)−1 = d and then we may say that there is a pair dd−1 where d or d−1 are in X. Let
us highlight that pair using a yellow marker and keep track of it. If in the two cancellations
processes (one leading to σ, the other to τ) the first step is to delete the highlighted pair, then
using induction for the word σa with the highlighted pair deleted, we may conclude that σ = τ.
If in the cancellation process leading to σ at some point the highlighted pair is deleted, then we
may change the order of the cancellations so that the highlighted pair is deleted first. Similarly
concerning the reduction to τ. And so, in those cases we return to the previous case. Thus,
we may assume that in either the reduction to σ, or the reduction to τ, the highlighted pair is
not deleted. Say, in the reduction to σ. How then can σ be reduced? The only possibility is
that at some point in the reduction process (not necessarily the first point at which it occurs)

we arrive at a word of the form · · · d−1 dd−1 · · · or · · · dd−1 d · · · and then it is reduced to

· · ·d−1 dd−1 · · · or · · · dd−1 d · · · . But note that the end result is the same as if we strike out
the highlighted pair. So we reduce to the previous case. �

Note that as a consequence, if ω ∈ [ω] is a word whose length is the minimum of the lengths
of all words in [ω] then ω is the unique reduced word in the equivalence class [ω].

29.3. Generators and relations. Let X be a set. Denote by F (X) the free group on X, as above.
Let R = {rα} a collection of words in the alphabet X. We define the group G generated by X,
subject to the relations R as follows. Let N be the minimal normal subgroup of F (X) containing
[r] for all r ∈ R. Define G as F (X)/N. Note that in G any word r ∈ R becomes trivial. Note
also that G is a universal object for this property. Namely, given a function f : X → H, H a
group, such that f (r) = 1H for all r ∈ R (where if r = ω1 . . . ωn, ωi = x±1 for x ∈ X, then
f (r) := f (ω1) · · · f (ωn) (with f (x−1) := f (x)−1)), there is a unique homomorphism F : G → H
such that F([r] (mod N)) = f ([r]). We denote G also by

〈X|R〉.

A presentation of a group H is an isomorphism

H ∼= 〈X|R〉

for some X and R. A group can have many presentations. There is always the tautological
presentation. Take X = {g : g ∈ G} - we write g so that we can distinguish between g as an
element of the group G and g an element of X, and take

R = {r = ω1 . . . ωn : in the group G we have that the product ω1 · · ·ωn = 1G}.

But usually there are more interesting, and certainly more economical presentations.
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(1) Let F (X)′ be the commutator subgroup of F (X) then 〈X : F (X)′〉 is a presentation
of the free abelian group on X. But, for example, for X = {x, y}, we have the more
economical presentation

〈{x, y} : xyx−1y−1〉.
Lets prove it. First, from the universal property, since in Z2 all commutators are trivial,
there is a unique homomorpism

〈{x, y} : xyx−1y−1〉 → Z2, x 7→ (1, 0), y 7→ (0, 1).

Clearly this is a surjective homomorphism. Define now a homomorphism

Z2 → 〈{x, y} : xyx−1y−1〉, f (m, n) = xmyn.

We need to show that f is a homomorphism. Namely, that in the group 〈{x, y} : xyx−1y−1〉
we have

xaybxcyd = xa+cyb+d.
It’s enough to show that xy = yx because then we may pass the powers of x through
those of y one at the time. But we have the equality yx = (xyx−1y−1)(yx) = xy. It is easy
to check that f is an inverse to the previous homomorphism.

(2) Sn is generated by the permutations (12) and (12 · · · n) and so it follows that it has a
presentation of the kind 〈{x, y} : R〉 for some set of relations R; for example, R could be
the kernel of the surjective homomorphism F ({x, y})→ Sn that takes x to (12) and y to
(12 · · · n). As such, R is an infinite set. But, can we replace R be a finite list of relations?
The answer is yes. It follows from the following two theorems, that we will not prove
in this course. One reason for that being that the best proofs use the theory of covering
spaces and fundamental groups that we do not assume as prerequisites to this course.

Theorem 29.3.1. (Nielsen-Schreier) A subgroup of a free group is free.

Theorem 29.3.2. Let F be a free group of rank r and let H be a subgroup of F of finite index h.
The H is free of rank h(r− 1) + 1.

It follows that we can determine all the relations in Sn as a consequence of certain
n! + 1 relations. However, this is far from optimal. For example, S3 has the presentation

〈{x, y} : x2, y3, xyxy〉
The explanation for this particular saving is that we take the minimal normal subgroup
generated by the relations and not the minimal subgroup generated by the relations.
In this example, the minimal normal subgroup generated by these relations has rank
7 = 3! + 1, while the minimal subgroup generated by these relations has rank at most 3.
We leave it as an exercise to prove that this is indeed a presentation for S3 and to find a
similar presentation for S4.

(3) After experimenting a little with examples, one easily concludes that it is in general dif-
ficult to decide whether a finitely presented group is isomorphic to a given one. In fact,
a theorem (which is essentially “the word problem” for groups) says that there is no al-
gorithm that given as an input a finite presentation 〈X|R〉, X and R finite, will decide in
finite time whether this is a presentation of the finite group or not.

29.4. Some famous problems in group theory. Fix positive integers d, n. The Burnside prob-
lem asks if a group generated by d elements in which every element x satisfies xn = 1 is finite.
Every such group is a quotient of the following group B(d, n): it is the free group F (d) generated
by x1, . . . , xd moded out by the minimal normal subgroup containing the expressions f n where
f is an element of F (d). It turns out that in general the answer is negative; B(d, n) is infinite for
d ≥ 2, n ≥ 4381, n odd. There are some instances where it is finite: d ≥ 2, n = 2, 3, 4, 6.
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One can then ask, is there a finite group B0(d, n) such that every finite group G, generated by
d elements and in which f n = 1 for every element f ∈ G, is a quotient of B0(d, n)? E. Zelmanov,
building on the work of many others, proved that the answer is yes. He received the 1994 Fields
medal for this.

The word problem asks whether there is an algorithm (guaranteed to stop in finite time) that
determines whether a finitely presented group, that is a group gives by generators and relations
as 〈x1, . . . , xd|w1, . . . , wr〉 for some integers d, r, is the trivial group or not. It is known that the
answer to this question (and almost any variation on it!) is no. This has applications to topology.
It is known that every finitely presented group is the fundamental group of a manifold14 of
dimension 4. It then follows that there is no good classification of 4-manifolds. If one can decide
if a manifold X is isomorphic to the 4-dimensional sphere or not, one can decide the question
of whether the fundamental group of X is isomorphic to that of the sphere, which is the trivial
group, and so solve the word problem.

14A manifold of dimension 4 is a space that locally looks like R4. The fundamental group is a topological construction
that associate a group to any topological space. The group has as its elements equivalent classes of closed loops in
the space, starting and ending at some arbitrarily chosen point, where if we can deform, within the space, one loop
to another we consider them as the same element of the fundamental group.
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Part 8. Representations of finite groups

In this chapter, we only consider finite groups G and finite dimensional complex vector spaces V.
The theory of representations of infinite groups and infinite-dimensional representations is vast,
and important, but is too advanced for this course. We should mention that even if one is inter-
ested in representations of Lie groups such as GLn(C) or Un(C), which arise often in physics,
the theory of representations of finite groups plays an important role.

Group representations are intimately related to understanding how groups acts on sets. In
our current setting, the set is a complex vector space and the group acts through very particular
symmetries – invertible linear transformations. Thus, this topic can be viewed as a natural
continuation of our study of groups actions.

Group representations are a subject with many applications to other branches of mathematics,
and outside mathematics, for example for computer science, physics, chemistry, and electrical
engineering. We will see some of those at the end of this chapter. It is also a topic that is a
beautiful marriage of linear algebra and group theory, thus connecting two courses that are
usually not taken together.

30. FIRST DEFINITIONS

A linear representation of a (finite) group G is a homomorphism

ρ : G → GL(V) := {T : V → V : T is an invertible linear transformation},
where V is a finite dimensional complex vector space. We will usually drop the adjective “lin-
ear”. We note that GL(V) is a group under composition of linear maps. We will denote such
a representation by (ρ, V), where the group G is understood from the context. When we feel
confident enough, we may just denote it ρ, or V, depending which notation seems more useful
at that point.

A very important notion is when are two representations isomorphic. Given two representa-
tions (ρi, Vi) of G we define

HomG(V1, V2) = {T : V1 → V2 linear : T ◦ ρ1(g) = ρ2(g) ◦ T, ∀g ∈ G}.
We note that there is no assumption that T is invertible, or even that dim(V1) = dim(V2); in
particular, we always have that the zero map is an element of HomG(V1, V2). Further, under
addition of linear maps and multiplication by a scalar, HomG(V1, V2) is a complex vector space.
We shall refer to elements of it as homomorphisms of representations, or G-homomorphisms.

Having made this definition, the notion of an isomorphism (ρ1, V1) ∼= (ρ2, V2) is clear: these
are linear maps T ∈ HomG(V1, V2) that are invertible. In that case, the inverse map always
satisfies T−1 ∈ HomG(V2, V1).

Main Goal: Classify representations of G up to isomorphism

(We will make this more precise later on).

Given a representation (ρ, V), choose an isomorphism T : V → Cn (n = dim(V)) and let

τ : G → GL(Cn), τ(g) = T ◦ ρ(g) ◦ T−1.

It is easily verified that
(ρ, V) ∼= (τ, Cn),

where the isomorphism is the map T itself. Therefore, every isomorphism class of representa-
tions is represented by some (τ, Cn).



COURSE NOTES - MATH 370 79

How unique is τ? It is unique up to conjugation by elements of GL(Cn): for any T1 ∈ GL(Cn)
we have

τ ∼= τ1,
where

τ1(g) = T1 ◦ τ(g) ◦ T−1
1 .

(this reflects the fact that we had to choose an isomorphism T : V → Cn and the freedom in this
choice is precisely modifying T to T1 ◦ T).

It follows that we can make everything more concrete by using the natural identification

GL(Cn) = GLn(C),

obtained by representing any linear transformation T by its matrix [T] relative to the usual basis
of Cn. Thus, we may think about a representation also as a homomorphism

τ : G → GLn(C).

The homomorphism rule is τ(xy) = τ(x)τ(y), where on the right we find matrix multiplication.
When do two such homomorphisms define isomorphic representations? For any invertible

matrix M ∈ GLn(C), we have

τ ∼= ρ, ρ(g) = Mτ(g)M−1, ∀g ∈ G,

and conversely. This may be a confusing point, so let’s repeat it: we are allowed to choose any
matrix M ∈ GLn(C) but, once we made the choice, the relation ρ(g) = Mτ(g)M−1 should hold
for all g ∈ G, with the same M.

Although we have finally arrived at a rather concrete model for representations, the general
point of view ρ : G → GL(V) is very useful as often the vector space V doesn’t have a natural
basis.

We now come to one of the key notions of this whole subject: the character of a representation.
Given a representation

ρ : G → GL(V),
we define its character χρ as follows:

χρ : G → C, χρ(g) = Tr(ρ(g)).

It is important to note that χρ is simply a function; it associate to each element g the trace of the
linear operator ρ(g). Usually it will not have any multiplicative properties.

The notion of a character will turn out to be central for the whole theory and we will study
many properties of characters. For now, we only give a few basic facts.

Lemma 30.0.1. (1) χρ only depends on the isomorphism class of ρ.
(2) χρ is constant on conjugacy classes in G.
(3) χ(1) = dim(V).

Proof. To calculate the trace of an operator ρ(g) one needs to choose a basis B for V and represent
ρ(g) by a matrix [ρ(g)]B. If we choose another basis, say C, then the matrices of ρ(g) in the two
bases are related by

[ρ(g)]C = M[ρ(g)]B M−1,
where M is the change of basis matrix. Note that if we pass from ρ to an isomorphic representa-
tion, say (τ, W),

τ(g) = Tρ(g)T−1
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then once more
[τ(g)]C = M[ρ(g)]B M−1,

where now C is a basis of W and M is the matrix representing T relative to the two bases B, C.
Thus, in both cases, we have to show that

Tr(M[ρ(g)]B M−1) = Tr([ρ(g)]B).

This is well known (it follows from the formula Tr(MN) = Tr(NM) that one proves by writing
down the product of the matrices explicitly and calculating the trace).

The proof that χρ is constant on conjugacy classes is very similar. Relative to some basis B we
have

Tr([ρ(hgh−1)]B) = Tr([ρ(h)ρ(g)ρ(h)−1]B) = Tr([ρ(h)]B[ρ(g)]B[ρ(h)−1]B) = Tr([ρ(g)]B).

Finally, we have χρ(1G) = Tr(IdV) = Tr(Idim(V) = dim(V), where we denote by IdV the
identity operator on V and by Id the d× d identity matrix. �

31. EXAMPLES

We now discuss some relatively simple examples. Despite appearances, perhaps, they will turn
out to be very important and will make frequent appearances. Study them carefully!

31.1. 1-dimensional representations. A 1-dimensional representation of G could be thought of
simply as a homomorphism

ρ : G → C×.

Indeed, GL1(C
×) = C×. Note that in this case if ρ ∼= τ then, since C× is commutative, we

actually have ρ = τ. Also, since the trace of a 1× 1 matrix is (α) is just α it follows that

χρ = ρ.

For these reasons, 1-dimensional representations are also called 1-dimensional characters, or
multiplicative characters .

Let
G∗ = Hom(G, C×).

We make two observations: First, G∗ is a group under the rule

(ρ · τ)(g) = ρ(g) · τ(g).

Second, if we let S1 = {z ∈ C× : |z| = 1} denote the unit circle in C then

G∗ = Hom(G, S1).

Indeed, if g ∈ G is of order d, ρ ∈ G∗, then ρ(g)d = ρ(1G) = 1 which implies that ρ(g) is
necessarily a root of unity. The group G∗ is called the character group of G.

Lemma 31.1.1. There is a natural isomorphism

G∗ ∼= (Gab)∗,

where, as usual, Gab = G/G′ is the abelianization of G.
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Proof. We have seen that any homomorphism G → A, where A is an abelian group, factors
uniquely through Gab (see 8.1.10). In particular, given any homomorphism f : G → C× there is
a unique homomorphism F : Gab → C× such that the following diagram commutes (π being the
natural map G → G/G′):

G
f

//

π

  A
AA

AA
AA

C×

Gab

F
=={{{{{{{{

,

and conversely. �

We will revisit this example later on. We will rely on Exercise 117 that you are encouraged to do
at this point.

Example 31.1.2. The alternating groups An for n ≥ 5 have only one 1-dimensional representa-
tion, which is the trivial representation 11. For any group G the trivial representation 11 is the
1-dimensional representation

G → C×, g 7→ 1, ∀g ∈ G.
Its character, also denoted 11, is the constant function 1.

The symmetric groups Sn, for n ≥ 5, have only two 1-dimensional characters, 11 and sgn.
Indeed, the only non-trivial normal subgroup of Sn, for n ≥ 5, is An and, as Sn/An ∼= {±1} is
abelian, it must be that Sab

n
∼= {±1}. The group {±1} has precisely two homomorphisms to C×,

the trivial one and the inclusion.

Example 31.1.3. The commutator subgroup of D4 is {1, x2}. Indeed, [x, y] = x2 and so the
commutator subgroup contains 〈x2〉. On the other hand, x2 commutes with x and y and is
therefore a central element and thus 〈x2〉 is a normal subgroup. As D4/〈x2〉 has order 22 it is
abelian and it follows that 〈x2〉 ⊇ D′4 and we get equality: D′4 = 〈x2〉. We think about the
abelianization as

Dab
4 = {1, x̄, ȳ, xy}

with x̄ȳ = ȳx̄ and the square of every element is 1; it is a group isomorphic to (Z/2Z)2. As
every element has order 2, every multiplicative character of Dab

4 takes values in {±1}. It is not
hard to show that there are 4 possibilities as described in the following table.

1 x̄ ȳ xy

ρ1 = 11 1 1 1 1

ρ2 1 -1 1 -1

ρ3 1 1 -1 -1

ρ4 1 -1 -1 1

31.2. The regular representation ρreg. Let G be a group. We define a vector space V with a basis
{eg : g ∈ G}. Often V is called the group ring of G and denoted C[G]. A vector in V is a sum

∑
g∈G

ag · eg,

with ag complex numbers. We can also think about V as the collection of formal sums

{∑
g∈G

ag · [g] : ag ∈ C}.
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The two notations are equivalent – the symbol [g] corresponds to the notation eg. In the second
notation, we can see that C[G] has a ring structure, where

(∑
g∈G

ag · [g]) + (∑
g∈G

bg · [g]) = ∑
g∈G

(ag + bg) · [g],

and
(∑

g∈G
ag · [g])(∑

g∈G
bg · [g]) = ∑

g∈G
(∑

s∈G
ags−1 bs) · [g].

However, the ring structure will not be important until much later.
The group G acts on this vector space and this representation is called the regular represen-

tation and denoted ρreg. We have

ρreg : G → GL(V), ρreg(g)(es) = egs, ∀g, s ∈ G.

In the other notation,

ρreg(g)(∑
s∈G

as[s]) = [g](∑
s∈G

as[s]) = ∑
s∈G

as[gs].

The character χreg of ρreg is very simple:

(4) χreg(g) =

{
]G, g = 1g;
0, else.

The proof is not hard: if {e1, . . . , en} is a basis for a vector space W, and T : W →W is a linear
transformation, write

T(ei) =
n

∑
a=1

baea, ba ∈ C.

Then the contribution to Tr(T) from the vector ei is bi. Now, to calculate Tr(ρreg(g)) we see that
the contribution from the vector es is the coefficient of es in ρreg(g)(es). As ρreg(g)(es) = egs, this
contribution is 0 from every s if g 6= 1, and is 1 from every s if g = 1.

31.3. Direct sum. Let (ρ1, V1), (ρ2, V2) be two representations of the group G. We define the
direct sum of the representations: the vector space is V1 ⊕ V2 and the representation ρ1 ⊕ ρ2 is
as follows:

ρ1 ⊕ ρ2 : G → GL(V1 ⊕V2), (ρ1 ⊕ ρ2)(g)(v1, v2) := (ρ1(g)(v1), ρ2(g)(v2)).

If we represent ρi as homomorphisms,

ρi : G → GLni(C) (ni = dim(Vi)),

then

ρ1 ⊕ ρ2 : G → GLn1+n2(C), (ρ1 ⊕ ρ2)(g) =

ρ1(g) 0

0 ρ2(g)

 .

This is a block diagonal matrix with the matrices ρ1(g), ρ2(g) on the diagonal. It is then clear
that

χρ1⊕ρ2(g) = χρ1(g) + χρ2(g).
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32. SUBREPRESENTATIONS AND IRREDUCIBLE REPRESENTATIONS

32.1. Subrepresentions. Let (ρ, V) be a representation of G. Let U ⊆ V be a subspace such that

ρ(g)(u) ∈ U, ∀g ∈ G, ∀u ∈ U.

That is, U is invariant under all the linear maps {ρ(g) : g ∈ G}. Then U is called a subrepresen-
tation of V; we have

ρ|U : G → GL(U), ρ|U(g) := ρ(g)|U .

Example 32.1.1. {0} and V are always sub-representations. We refer to them as trivial subrep-
resentations.

Example 32.1.2. The standard representation ρstd of Sn.

Let n ≥ 2. We consider Sn as contained in GLn(C) in such a way that

σ(ei) = eσ(i), i = 1, 2, . . . , n.

This is called the standard n-dimensional representation of Sn. For example, for n = 3,

(12)↔


0 1 0

1 0 0

0 0 1

 , (123)↔


0 0 1

1 0 0

0 1 0

 .

Let χstd be the character of ρstd. In our example of n = 3 we have χstd(12) = 1, χstd(123) = 0.

Proposition 32.1.3. We have

(5) χstd(σ) = ] fixed points of σ.

Proof. The contribution to Tr(ρstd(σ)) coming from the basis vector ei is the coefficient of ei in
ρstd(σ)(ei) = eσ(i), which is 1 if σ(i) = i and 0 if σ(i) 6= i. Summing over all i, we find the
statement in the proposition. �

Consider now the subspaces
U1 := {(a, . . . , a) : a ∈ C},

and

U0 := {(x1, . . . , xn) :
n

∑
i=1

xi = 0, xi ∈ C}.

The space U1 is just the trivial representation 11 of Sn, and U0 is also a representation of Sn that
we denote ρstd,0. As dim(U1) + dim(U0) = n and U1 ∩U0 = {0}, we find:

(6) ρstd = 11⊕ ρstd,0.

32.2. Irreducible representations and Maschke’s Theorem. A representation (ρ, V) of G is
called irreducible if its only subrepresentations are {0} and V, and V 6= 0.

Proposition 32.2.1. The representations 11 and ρstd,0 are irreducible representations of Sn. Thus, we
have a decomposition of ρstd as a sum of irreducible representations.

Proof. Clearly 11 is irreducible for dimension reasons – there aren’t any non-trivial subspaces;
this is true for any group G and any 1-dimensional representation of it.

The proof for U0 is slightly involved; we will give another proof later, much more elegant, as
an application of character theory.

We assume that n > 2. The case n = 2 is easy as U0 is 1-dimensional.
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Let U′ ⊆ U0 be a non-zero sub-representation. Let x = (x1, . . . , xn) be a non-zero vector
in U′. If x has precisely two zero elements, by multiplying x by a scalar we may assume that
x = (0, . . . , 0, 1, 0 . . . , 0,−1, 0, . . . , 0). Then, by acting by Sn we see that every vector of the form
ei − ej (where ei are the standard basis) is also in U′. But these vectors span U0 and it follows
that U′ = U0.

Thus, it remains to prove that U′ always contains such a vector. Let x ∈ U′ be a non-zero
vector. If x has more than 2 non-zero coordinates, we show that there is vector y ∈ U′ that is not
zero and has fewer non-zero coordinates. This suffices to reduce to the case considered above.

Assume therefore that x has at least 3 non-zero coordinates. First, by rescaling we may assume
that one of these coordinates is 1. Then, as ∑ xi = 0, there exists a non-zero coordinate that is
not equal to 1. By applying a permutation to x we may assume that

x = (1, x2, x3, . . . , xn),

where x2 6= 1 and is non-zero and also x3 6= 0. In this case, also the vector

x′ =
1
x2

(x2, 1, x3, . . . , xn),

belongs to U′. Therefore, also

y = x− x′ = (0, x2 −
1
x2

, x3(1−
1
x2

), . . . , xn(1−
1
x2

)),

belongs to U′ and this vector has fewer non-zero coordinates, yet is not zero (consider its third
coordinate). �

Theorem 32.2.2 (Maschke). Every non-zero representation (ρ, V) decomposes as a direct sum of irre-
ducible representations.

Remark 32.2.3. We will later prove that such a direct sum decomposition is unique, up to iso-
morphism and re-ordering of the summands. We can now make our goal in this chapter more
precise:

Main Goal: Classify the irreducible representations of a group G.
Find effective methods to determine the decomposition of a
representation into irreducible representations.

Proof. (Maschke’s Theorem) We begin with a lemma that shows that we can always define an
inner product of V relative to which ρ(g) is a unitary matrix for any g ∈ G.

Lemma 32.2.4. There is an inner product

〈·, ·〉 : V ×V → C,

such that
〈gv, gu〉 = 〈v, u〉, ∀g ∈ G, ∀u, v ∈ V.

(To simplify notation we write gv for ρ(g)(v).)

Proof. (Lemma) Let (·, ·) be any inner product on V. Define,

〈v, u〉 = 1
]G ∑

g∈G
(gv, gu).
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The verification that this is an inner product is straightforward and we omit it. To check that ρ
is a unitary representation relative to this inner product we calculate:

〈gv, gu〉 = 1
]G ∑

h∈G
(hgv, hgu)

=
1
]G ∑

h∈G
(hv, hu)

= 〈v, u〉,
where we used that when h runs over G so does hg. �

We now get to the proof of the theorem. We prove it by induction on dim(V).
If dim(V) = 1 then V is irreducible and there is nothing to prove. In general, if V is irreducible

there is nothing to prove. Otherwise, V has a subrepresentation 0 6= U 6= V. Let 〈v, u〉 be a G-
invariant inner product on V, as in the Lemma. Then

V = U ⊕U⊥.

We only need to show that

U⊥ := {v ∈ V : 〈v, u〉 = 0, ∀u ∈ U}
is a subrepresentation. Let g ∈ G and v ∈ U⊥. For any u ∈ U we have

〈gv, u〉 = 〈v, g−1u〉 = 0,

because g−1u ∈ U as U is a subrepresentation. It follows that gv ∈ U⊥.
By induction,

U = W1 ⊕ · · · ⊕Wa, U⊥ = Wa+1 ⊕ · · · ⊕Wb,
for some irreducible representations Wi of G. Then,

V = U ⊕U⊥ = W1 ⊕ · · · ⊕Wb

is a sum of irreducible representations too. �

32.3. The projection on VG. Let (ρ, V) be a representation of G. Let

VG = {v ∈ V : ρ(g)(v) = v, ∀g ∈ G}.
Then VG is a subrepresentation on which G acts trivially. It’s the space of invariant vectors.

Lemma 32.3.1. Let

(7) π(v) =
1
]G ∑

g∈G
ρ(g)(v).

Then π ∈ HomG(V, VG) and is a projection on the subspace VG.

Proof. As π is a sum of linear maps it is certainly a linear map from V to V. We first show that
Im(π) ⊆ VG. We need to show that all h ∈ G, v ∈ V we have ρ(h)(π(v)) = π(v). Indeed,
ρ(h)(π(v)) = 1

]G ∑g(ρ(h) ◦ ρ(g))(v) = 1
]G ∑g ρ(hg)(v) = 1

]G ∑g ρ(g)(v) = π(v).
To show π is a projection, we need to verify that π is the identity on VG. But, for v ∈ VG we

have π(v) = 1
]G ∑g ρ(g)(v) = 1

]G ∑g v = v.
Finally, we check that π is a homomorphism of representations. As G acts trivially on VG this

boils down to verifying that π(ρ(h)v) = π(v). We calculate: π(ρ(h)(v)) = 1
]G ∑g ρ(g)(ρ(h)v) =

1
]G ∑g ρ(gh)(v) = 1

]G ∑g ρ(g)(v) = π(v). �

The following corollary will be used several times in the sequel:
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Corollary 32.3.2 (Projection Formula). We have

(8) dim(VG) =
1
]G ∑

g
χρ(g).

In words, the dimension of the subspace of invariant vectors is the average value of the character χρ.

Proof. We have a decomposition,
V = VG ⊕Ker(π).

In this decomposition we can write
π = IdVG ⊕ 0.

Thus, Tr(π) = dim(VG). But on the other hand,

Tr(π) =
1
]G ∑

g
Tr(ρ(g)) =

1
]G ∑

g
χρ(g).

�

Example 32.3.3. The action of S3 on itself by multiplication from the left, as in Cayley’s Theo-
rem 15.0.1, provides us with an embedding S3 ↪→ S6. Composing with the standard represen-
tation of S6 we get a 6-dimensional representation ρ of S3. Does this representation have fixed
vectors? what is the dimension of the space of fixed vectors??

If we enumerate the elements of S3 as {1, (12), (13), (132), (23), (123)} = {σ1, σ2, σ3, σ4, σ5, σ6},
then

ρ((12)) =

 0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 , ρ((123)) =

 0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
1 0 0 0 0 0

 .

(For example, (12) ∈ S3 takes to σ1 to σ2, σ2 to σ1, σ3 to σ4, etc. and so corresponds to the
permutation (12)(34)(56) ∈ S6.)

If χ denotes the character of ρ, then by calculating χ on 1, (12) and (123) we would know its
value on any σ ∈ S3, because a character has a fixed value on each congruence class. We find

χ(1) = 6, χ((ij)) = 0, χ((ijk)) = 0.

It follows from Corollary 32.3.2 that the dimension of the space of invariant vectors is 1.
Finally, note that we could have found the values of χ without writing down the matrices. Just

by observation we could say that any non-identity element of S3 is mapped to a permutation
in S6 that has no fixed points (that would be true for any group!). As for σ ∈ S6, the value of
χstd(σ) = ](fixed points of σ), it follows that χ(τ) = 0 for any τ ∈ S3.

Example 32.3.4. Let (ρ, V) = (ρstd, Cn) be the standard representation. Then

π =
1
n! ∑

σ∈Sn

ρstd(σ).

One checks that VG = U1 and Ker(π) = U0 (for the latter, it is easier to show Ker(π) ⊇ U0 and
deduce equality by comparing dimensions). We find again the decomposition (6):

ρstd = 11⊕ ρstd,0.

Moreover, we find that

1 = dim(U1) = dim(VG) =
1
n! ∑

σ∈Sn

] fixed points of σ,

a formula one can also derive from the Cauchy-Frobenius formula.
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33. SCHUR’S LEMMA AND ORTHOGONALITY OF CHARACTERS

33.1. The dual representation and the two Homs. Let (ρ, V) be a representation of G. For
any linear operator ρ(g) : V → V we have the dual operator ρ(g)t : V∗ → V∗, where V∗ =
Hom(V, C) is the dual vector space to V. Recall that ρ(g)t is defined by

ρ(g)t(φ) = φ ◦ ρ(g), φ ∈ V∗.

Further, if {e1, . . . , en} are a basis for V and {φ1, . . . , φn} is the dual basis for V (the basis that
satisfies φi(ej) = δij) then in terms of matrices we have

[ρ(g)t]{φi} = ([ρ(g)]{ei})
t.

Define the dual representation ρ∗

ρ∗ : G → GL(V∗), ρ∗(g) = (ρ(g−1))t.

Proposition 33.1.1. ρ∗ is a representation of G and its character satisfies χρ∗ = χ̄ρ. That is,

χρ∗(g) = χρ(g) := χρ(g), ∀g ∈ G.

Proof. The proof is easy, but reveals two properties that are very important, and general, and so
we record them here as a lemma.

Lemma 33.1.2. Let (ρ, V) be a representation of G. Then:
(1) Every ρ(g) is diagonalizable.
(2) Every eigenvalue of ρ(g) is a root of unity of order dividing d, where d is the order of g in G.

Proof. Let d be the order of g. As ρ is a homomorphism ρ(g)d = ρ(gd) = ρ(1G) = IdV . It follows
that ρ(g) solves the polynomial xd − 1, which is a separable polynomial (i.e., it has distinct
roots over C). Therefore, also the minimal polynomial of ρ(g) is a separable polynomial and,
consequently, ρ(g) is diagonalizable. Let’s write

ρ(g) ∼ diag(α1, . . . , αn),

where n = dim(V) and αi are d-th roots of unity. �

Note that in general the basis in which ρ(g) is diagonal depends on g; we cannot, in general,
diagonalize all ρ(g) simultaneously. However, ρ(g−1) = ρ(g)−1 is given in the same basis by

diag(α−1
1 , . . . , α−1

n ) = diag(α1, . . . , αn),

because the αi are roots of unity. Thus,

(9) χρ(g−1) = ∑
i

αi = χρ(g).

To finish the proof of the Proposition it only remains to check that ρ∗ is a representation. We
have:

ρ∗(gh) = (ρ(gh)−1)t = (ρ(h−1)ρ(g−1))t = (ρ(g−1))t · (ρ(h−1))t = ρ∗(g) · ρ∗(h).
�

We now discuss “the two Homs” and engage in a very technical calculation. However, the
results will be absolutely essential to proving one of the most important theorems concerning
representations: orthogonality of characters.

Let (ρ, V), (τ, W) be two representations of the group G. We have already defined (all maps
appearing below are understood to be linear)

HomG(V, W) = {T : V →W : T ◦ ρ(g) = τ(g) ◦ T, ∀g ∈ G}.
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We also have the more naive

Hom(V, W) = {T : V →W}.

Proposition 33.1.3. Hom(V, W) is a linear representation σ of G, where

σ(g)(T) = τ(g) ◦ T ◦ ρ(g)−1, T ∈ Hom(V, W).

Remark 33.1.4. Note the following:
(1) dim(Hom(V, W)) = dim(V) · dim(W). This can be seen by choosing bases for the two

vector spaces and representing the linear maps as matrices. See also the proof for the
character formula below.

(2) We have the following relationship between the two Homs:

HomG(V, W) = Hom(V, W)G.

(3) Consider the special case where (τ, W) = (11, C). In this case

Hom(V, W) = V∗,

and the new representation σ we have now defined on it is:

σ(g)(φ) = τ(g) ◦ φ ◦ ρ(g−1) = φ ◦ ρ(g−1) = ρ(g−1)t(φ) = ρ∗(φ).

Namely, we just get the dual representation again.

Proof. There is actually quite a bit to verify here. We only indicate what should be verified and
leave the verification as an exercise.

• As Hom(V, W) is a complex vector space, we need to verify that for every g ∈ G, σ(g)
is an endomorphism of that space. Namely, that indeed τ(g) ◦ T ◦ ρ(g−1) is a linear map
from V to W, and that

T 7→ τ(g) ◦ T ◦ ρ(g−1),
is linear in T. This just establishes that σ(g) is a linear map from the vector space
Hom(V, W) to itself.
• Next, one needs to verify that σ(gh) = σ(g) ◦ σ(h). This shows that we have a multi-

plicative map G → End(Hom(V, W)). But note that since every element in G is invertible
and σ(1) is the identity map, automatically σ(g) is invertible (because σ(g) ◦ σ(g−1) =
σ(1) = Id, etc.). Thus, it follows that we get a homomorphism

σ : G → GL(Hom(V, W)).

�

Theorem 33.1.5. The character χσ of the representation (σ, Hom(V, W)) is given by the formula

χσ = χτ · χ̄ρ.

Proof. We first find a convenient basis for Hom(V, W). Let

B = {e1, . . . , en}, C = { f1, . . . , fm},
be bases for V and W, respectively. Let

B∗ = {e∗1 , . . . , e∗n},
be the dual basis for V∗. So, e∗i (ej) = δij (Kronecker’s delta).

We introduce the following notation: for φ ∈ V∗ and w ∈W, we let the symbol15

φ⊗ w

15The choice of notation is not accidental. There is a theory of tensor products that operates in the background, but
we will not discuss it in this course.
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denote the element of Hom(V, W) given by

v 7→ φ(v) · w.

We quickly check that it is indeed a linear map: We have (φ⊗w)(α1v1 + α2v2) = φ(α1v1 + α2v2) ·
w = (α1φ(v1) + α2φ(v2)) · w = α1φ(v1) · w + α2φ(v2) · w = α1 · (φ⊗ w)(v1) + α2 · (φ⊗ w)(v2).

In particular, we have the maps e∗i ⊗ f j. It turns out that these maps have very simple repre-
sentation as matrices. Using the bases B, C , we have an identification

Hom(V, W) ∼= Mm×n(C),

by sending any linear transformation to its matrix representation relative to these bases. Since
we have (e∗i ⊗ f j)(e`) = δi` f j, it follows that e∗i ⊗ f j is represented by the elementary matrix Eij
that has all entries equal to zero, except for the ij entry that is equal to 1:

e∗i ⊗ f j ↔ Eij.

As every matrix (mij) ∈ Mm×n(C) ∼= Hom(V, W) is equal to ∑ij mijEij, we find:

Conclusion: {e∗i ⊗ f j : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a basis for Hom(V, W).

We can calculate Tr(σ(g)) by finding the action of σ(g) on this basis. Let us introduce notation:

τ(g) = (hij)
m
i,j=1, ρ(g−1) = (gij)

n
i,j=1.

Then,

σ(g)(e∗j ⊗ fi) = (hij)Eij(gij) =


h11 . . . h1m

. . . . . . . . .

hm1 . . . hmm




0 . . . 0

gj1 . . . gjn

0 . . . 0

 = (rab).

The matrix on the right has all entries equal to zero except for its i-th row, which is equal to
(gj1, gj2, . . . , gjn). The result is a matrix (rab) whose ab entry is

rab = haigjb.

In particular,

rij = hiigjj.

Namely, we have

σ(g)(Eij) = ∑
a,b

haigjbEab.

The contribution to the trace of σ(g) coming from the basis vector e∗j ⊗ fi = Eij is hiigjj. Thus,

Tr(σ(g)) = ∑
i,j

hiigjj = (∑
i

hii)(∑
j

gjj) = Tr(τ(g)) · Tr(ρ(g−1)).

But, we have seen that Tr(ρ(g−1)) = χρ(g−1) = χρ(g). Therefore, we conclude that

χσ = χτ · χ̄ρ.

�
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33.2. Schur’s Lemma. Before proving Schur’s lemma, we establish some general properties of
homomorphisms of representations.

Lemma 33.2.1. For any two representations (ρ, V), (τ, W) of G and any T ∈ HomG(V, W) we have
that Ker(T) is a subrepresentation of V, and Im(T) is a subrepresentation of W.

Proof. Let v ∈ Ker(T) and g ∈ G. We have

T(ρ(g)(v)) = τ(g)(T(v)) = τ(g)(0) = 0.

It follows that Ker(T) is a subrepresentation of V.
Let w ∈ Im(T) and choose v ∈ V such that T(v) = w. Then:

τ(g)(w) = τ(g)(T(v)) = T(ρ(g)(v)) ∈ Im(T).

It follows that Im(T) is a subrepresentation of W. �

Lemma 33.2.2 (Schur). Let (ρ, V), (τ, W) be two irreducible representations of G. Then

(10) HomG(V, W) ∼=
{

C, (ρ, V) ∼= (τ, W);
0, else.

Proof. Let T ∈ HomG(V, W) and suppose T 6= 0. Then Ker(T) 6= V. However, Ker(T) is
a subrepresentation of V and V is irreducible. It follows that Ker(T) = 0 and so that T is
injective. Since V is not zero (by definition), Im(T) 6= 0 and since W is irreducible, and Im(T)
is a subrepresentation, Im(T) = W. Thus, T is surjective. It follows that T is an isomorphism.
Therefore, if HomG(V, W) 6= 0 (and V, W are irreducible) we have (ρ, V) ∼= (τ, W).

It remains to show that if (ρ, V) ∼= (τ, W) then HomG(V, W) is a 1-dimensional vector space.
Choose, any non-zero T ∈ HomG(V, W). We saw that T is then an isomorphism. We get an
isomorphism

HomG(V, W) ∼= EndG(V), S 7→ T−1 ◦ S,

and thus it is enough to prove that
EndG(V) ∼= C.

Let then R ∈ EndG(V) and let λ be an eigenvalue of R. As λ · Id ∈ EndG(V), it follows that
R− λ · Id ∈ EndG(V) and it follows that Ker(R− λ · Id) is a subrepresentation of V. Since every
eigenvalue has at least one non-zero eigenvector, we have that Ker(R− λ · Id) 6= 0 and, as V is
irreducible, we must have

Ker(R− λ · Id) = V.

This means that R = λ · Id. Conversely, λ · Id always belongs to EndG(V) (for any representation
(ρ, V) whatsoever). This provides the isomorphism EndG(V) ∼= C. �

Remark 33.2.3. Note that the final isomorphism EndG(V) ∼= C can be given by

(11) R 7→ 1
dim(V)

· Tr(R).

33.3. The space of class functions. Let G be a finite group and denote by h(G) the class number
of G. It appeared before in §20. By definition, h(G) is the number of conjugacy classes in G.

Example 33.3.1. • If G is abelian, h(G) = ]G.
• If G = Sn, h(G) = p(n) (the partition function of n).

A function f : G → C is called a class function if

f (hgh−1) = f (g), ∀g, h ∈ G.
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Namely, if f is constant on each conjugacy class. We let Class(G) denote the space of class
functions. It is a complex vector space of dimension h(G). If φ ∈ Class(G), define a function
φ̄ ∈ Class(G) by

φ̄(g) := φ(g)
(where on the right we are simply taking the complex conjugate of the complex number φ(g)).

We make Class(G) into a hermitian space by defining an inner product on it:

〈φ, ψ〉 :=
1
]G ∑

g∈G
φ(g) · ψ̄(g).

It is easy to verify that this is an inner product; we leave that as an exercise. We also define
‖φ‖ to be the non-negative real number satisfying ‖φ‖2 := 〈φ, φ〉. Our main motivation is the
following key example.

Example 33.3.2. For any representation (ρ, V) of G, its character χρ ∈ Class(G).

Example 33.3.3. Let 1 ≤ r ≤ n be integers. Define φr : Sn → C by φ(σ) equal to the number
of cycles of length r appearing in the decomposition of σ as a product of disjoint cycles. The
function φr is a class function.

While φ1(σ) is the number of fixed points and so φ1 = χstd, for r > 1 the function φr does
not arise as a character of a representation. Indeed, φr(1) = 0 for r > 1 so such a representation
would have to be 0-dimensional, but for r ≤ n the function φr is not zero: φr((12 · · · r)) = 1.

33.4. Orthogonality of characters. We now come to the theorem making characters into a very
powerful tool in the study of representations.

Theorem 33.4.1 (Orthogonality of characters). Let (ρ, V), (τ, W) be two irreducible representations
of G. Then:

(1) If ρ 6∼= τ then 〈χρ, χτ〉 = 0.
(2) ‖χρ‖ = 1.

Otherwise said, the characters of the irreducible representations of a group G form an orthonormal set in
the space of class functions Class(G).

Remark 33.4.2. We will prove in Theorem 36.1.1 below that, in fact, the characters of irreducible
representations form an orthonormal basis for Class(G).

Proof. Let us write U = Hom(V, W). We have seen that (σ, U) is a representation of G, where

σ : G → GL(U), σ(g)(T) = τ(g) ◦ T ◦ ρ(g−1),

and, by Theorem 33.1.5,
χσ = χτ · χ̄ρ.

By Schur’s Lemma,

dim(UG) = dim(HomG(V, W)) =

{
1, ρ ∼= τ;
0, ρ 6∼= τ.

On the other hand, by the Projection Formula (Corollary 32.3.2), we have

dim(UG) =
1
]G ∑

g∈G
χσ(g) =

1
]G ∑

g∈G
χτ(g) · χ̄ρ(g) = 〈χρ, χτ〉.

The theorem follows. �
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Corollary 33.4.3. Let h be the number of irreducible characters of G, up to isomorphism. We have

h ≤ h(G).

In words, the number of irreducible representations of G is at most its class number. (We will see later
that h = h(G).)

The following notation will be used repeatedly. Let

ρ1, . . . , ρh,

be representatives to the isomorphism classes of irreducible representations of G. More pre-
cisely, we should say, let {(ρi, Vi) : i = 1, . . . , h} be representatives to the isomorphism classes of
irreducible representations of G, but this is heavier notation that we will usually avoid. In the
same vain, given a representation (ρ, V) instead of saying that

(ρ, V) ∼= (ρ1, V1)
⊕a1 ⊕ · · · ⊕ (ρh, Vh)

⊕ah ,

we will simply write
ρ ∼= ρa1

1 ⊕ · · · ⊕ ρah
h .

(Here the ai are non-negative integers and the notation (ρ1, V1)
⊕a1 means the direct sum of

(ρ1, V1) with itself a1 times, which is declared to be the zero vector space 0 if a1 = 0.) We
will also use the notation

di = dim(ρi), χi = χρi .

Finally, whenever we view ρi as homomorphisms

ρi : G → GLdi(C),

we will assume, when convenient, that {ρi(g) : g ∈ G} are unitary matrices, which can always
be arranged, as we have seen while proving Maschke’s theorem.

33.5. Unique decomposition. We now prove that the decomposition provided by Maschke’s
theorem is unique.

Theorem 33.5.1. Let ρ be a representation of G. Then there are unique non-negative integers mi such
that

ρ ∼= ρm1
1 ⊕ · · · ⊕ ρmh

h .

Proof. By Maschke’s theorem, such mi always exist. Then, by using the formula for the character
of a direct sum (§31.3), we have

χρ =
h

∑
i=1

mi · χi.

On the other hand, we can use this formula to deduce by orthogonality of characters that

〈χρ, χj〉 = 〈
h

∑
i=1

mi · χi, χj〉 = mj.

That shows that the multiplicities mi are determined uniquely by ρ. �

We will refer to the mi as the multiplicity of the irreducible representation ρi in ρ.

Corollary 33.5.2. We have an isomorphism (ρ, V) ∼= (τ, W) if and only if χρ = χτ. In words, the
isomorphism class of a representation is completely determined by its character.
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Proof. One of the first properties of characters we proved was that the character depends only
on the isomorphism class. So, the “only if” is clear. Suppose now that χρ = χτ, then for every χj
we have 〈χρ, χj〉 = 〈χτ, χj〉 =: mj. We have seen that then both representations are isomorphic
to ρm1

1 ⊕ · · · ⊕ ρmh
h , hence to each other. �

34. SOME FURTHER THEOREMS AND EXAMPLES

Before proving some additional “big theorems”, we study some examples and prove some
easier results that will give us a better sense of the whole subject.

34.1. Decomposition of the regular representation. Recall from § 31.2 the regular representa-
tion ρreg of a group G. It is the representation on the vector space C[G] that has basis {eg : g ∈ G},
and

ρreg(h)(eg) = ehg, ∀g, h ∈ G.

We have calculated there that

χreg(g) =

{
]G, g = 1G;
0, else.

Let us now find the decomposition of the regular representation into irreducible representations.
As we have seen, the multiplicity mi of χi is given by

mi = 〈χreg, χi〉.

This is easy to calculate:

〈χreg, χi〉 =
1
]G ∑

g
χreg(g) · χ̄i(g) =

1
]G

χreg(1g) · χ̄i(1g) = di,

where di = dim(Vi), as per our conventions. We conclude the following proposition.

Proposition 34.1.1. We have

(12) ρreg = ⊕h
i=1ρdi

i , χreg =
h

∑
i=1

diχi.

Namely, every irreducible representation appears in the regular representation with multiplicity equal to
its dimension.

By calculating the dimensions of both sides in the isomorphism (12), we conclude:

Corollary 34.1.2. We have

(13) ]G =
h

∑
i=1

d2
i .
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34.2. Criterion for being irreducible. An easy consequence of orthogonality of characters is the
following useful result.

Corollary 34.2.1. A representation (ρ, V) is irreducible if and only if

‖χρ‖ = 1.

Proof. Let us write
χρ = ∑

i
mi · χi,

for non-negative integers mi. By orthogonality of characters (Pythagoras), we have

‖χρ‖2 = ∑
i

m2
i .

Thus, ‖χρ‖ = 1 if and only if there exists a unique i0 such that mi0 = 1 and all the rest of 0. But
this is exactly the cases where ρ is irreducible. �

Remark 34.2.2. A very similar argument gives that ‖χρ‖2 = 2 if and only if ρ is a sum of two
distinct irreducible representations, and that ‖χρ‖2 = 3 if and only if ρ is a sum of three distinct
irreducible representations. However, when ‖χρ‖2 = 4 the pattern breaks down, and ρ could
be either the sum of four distinct irreducible representations, or isomorphic to two copies of a
single irreducible representation.

34.3. Another look at the standard representation of Sn. We take another look here at the
standard representation of Sn, n ≥ 2, introduced in Example 32.1.2. Recall that this is an n-
dimensional representation ρstd of Sn whose character χstd satisfies

χstd(σ) = I(σ) = ] fixed points of σ.

It is clear that the space of invariant vectors is (Cn)Sn = U1 in the notation of that example
and, in particular, dim((Cn)Sn) = 1. The projection formula gives another way to calculate this
dimension (see Example 32.3.4) and we get

1
n! ∑

σ∈Sn

χstd(σ) =
1
n! ∑

σ∈Sn

I(σ) = 1.

(Note that the latter formula can also be deduced by applying CFF.) This has the pleasant inter-
pretation that the expected number of fixed points for a randomly chosen permutation is 1.

Let us use the notation T = {1, 2, . . . , n}. Then, from the very definition of the inner product,
we can say that

‖χstd‖2 =
1
n! ∑

σ∈Sn

(] fixed points of σ on T)2.

Lemma 34.3.1. ‖χstd‖2 = 2.

Proof. Consider the action of Sn on T × T given by

σ(i, j) = (σ(i), σ(j)).

It is clear that Sn has two orbits on T× T. Namely, {(i, i) : i ∈ T} and {(i, j) : i 6= j ∈ T}. On the
other hand, σ fixes (i, j) if and only if σ(i) = i and σ(j) = j. Thus,

] fixed points of σ on T × T = (] fixed points of σ on T)2.

We apply the CFF to the action of Sn on T × T to conclude that

2 =
1
n! ∑

σ

] fixed points of σ on T × T =
1
n! ∑

σ

(] fixed points of σ on T)2 = ‖χstd‖2.
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�

As we have seen, this implies that ρstd is a sum of two distinct irreducible representations
(Remark 34.2.2). But, we also know that

ρstd = 11⊕ ρstd,0.

Therefore, we conclude that ρstd,0 is irreducible. This argument is much more elegant, I think,
than the proof we previously gave.

34.4. The character group G∗ and twisting. Recall from §31.1 the set

G∗ = Hom(G, C×),

which is group under
(φ1 · φ2)(g) = φ1(g) · φ2(g).

For a 1-dimensional representation there is no difference between the representation and its
character. The following properties are not hard to prove and the details are left as an exercise:

(1) We have a canonical isomorphism

(G1 × · · · × Ga)
∗ = G∗1 × · · · × G∗a .

It is given by
f 7→ ( f |G1 , . . . , f |Ga),

where we identify Gi with {1} × · · · × Gi × · · · × {1}. The inverse isomorphism is given
by

( f1, . . . , fa) 7→ f1 × · · · × fa,
where

( f1 × · · · × fa)(g1, . . . , ga) = f1(g1) f2(g2) · · · fa(ga).
(2) We have a canonical isomorphism G∗ ∼= (Gab)∗.
(3) We have a canonical isomorphism

(Z/nZ)∗ ∼= µn,

where µn = {ej·2πi/n : j = 0, 1, . . . , n − 1} is the multiplicative group of n-th roots of
unity in C. (Don’t confuse (Z/nZ)∗ with (Z/nZ)×.) The isomorphism is given by

f 7→ f (1) ∈ µn,

and
ζ 7→ f ∈ (Z/nZ)∗, f (a) := ζa.

As every finite abelian group is isomorphic to a product of groups of the form Z/nZ, we have
a method to determine G∗ for any finite group G:

• Calculate Gab. Any f : Gab → C× induces an element of G∗, i.e., f ◦π, where π : G → Gab

is the canonical homomorphism. All multiplicative characters of G arise this way.
• Write Gab ∼= Z/n1Z× · · · ×Z/naZ. Use the isomorphism (Z/n1Z× · · · ×Z/naZ)∗ ∼=
(Z/n1Z)∗ × · · · × (Z/naZ)∗.
• Use the identification (Z/nZ)∗ ∼= µn to fined the multiplicative characters of Z/nZ.

In particular, we conclude that if G is a finite abelian group then

]G = ]G∗ = h(G).

Even better, we can conclude the following corollary of unique decomposition for representa-
tions. (For another proof, see the exercises).
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Corollary 34.4.1. Every irreducible representation of an abelian group G is 1-dimensional and there are
]G of them. Every n-dimensional representation of G is isomorphic to a representation of the form

ρ : G → GLn(C), g 7→


α1(g)

. . .

αn(g)

 ,

for some αi ∈ G∗.

34.5. Twisting. Let (ρ, V) be a representation of G and let α : G → C× be a 1-dimensional rep-
resentation of G. Then Hom((α, C), (ρ, V)) is a representation of G of the same dimension and
its character, by Theorem 33.1.5, is just

χρ · ᾱ.
As ᾱ : G → C× is likewise a 1-dimensional representation, we conclude that also χρ · α is a char-
acter. We call the operation χρ 7→ χρ · α twisting the representation ρ by the character α. We
proved the first part of the following proposition.

Proposition 34.5.1. For any character χ of G and any 1-dimensional character α of G, also χ · α is a
character. Moreover, if χ is irreducible, so is χ · α.

Proof. It is not hard to give a direct simple proof of the second part, but let us use characters
instead. We have

‖χα‖2 =
1
]G ∑

g
χ(g)α(g)ᾱ(g)χ̄(g).

However, because α is 1-dimensional, α(g) is a root of unity and we find

‖χα‖2 =
1
]G ∑

g
χ(g)χ̄(g) = ‖χ‖2 = 1.

Thus, by Corollary 34.2.1, χ is irreducible. �

Remark 34.5.2. It is possible that χ · α = χ even if α 6= 11. In fact, this happens quite often,
for example in cases where G has a unique irreducible representation of a given dimension.
Nevertheless, in general, twisting by 1-dimensional characters is a very useful method to get
new irreducible representations from known ones.

35. CHARACTER TABLES

The character table of a group G is one of the best ways to get insight into the structure of G
and its action on vector spaces. There are whole books written on this subject.16 In this section
we will study various properties of the character table. Our treatment is by no means complete:
there are additional properties we will not even mention, and there are properties will mention
but we will not prove.

The character table of G has rows for every irreducible representation of G, and columns for
every conjugacy class of G. We reserve the first row for the character 11 and the first column
for the conjugacy class of the identity (often we will write a representative element for each
conjugacy class, and indicate below the conjugacy class how many elements it contains). The

16For example: I. Martin Isaacs, “Character Theory of Finite Groups”, Dover 1994.
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table entry corresponding to a character χ and a conjugacy class c is just χ(c). By that we mean
χ(x) for any x ∈ c; the choice of x doesn’t influence the value χ(x). So, for example, the character
table of S3 is the following:

1 (12) (123)

1 3 2

χ1 = 11 1 1 1

χ2 1 -1 1

χ3 2 0 -1

TABLE 2. Character table of S3

We see the three representatives 1, (12), (123) of the distinct conjugacy classes of S3 and their
sizes indicated by 1, 3, 2. We see 3 irreducible characters. The first one is the trivial character 11,
the second is the sign homomorphism sgn : S3 → C×, and the third is the character χstd,0.

We will usually use the notation χi for the rows and ci for the columns. We use the notation
introduced before: χi is the character of the irreducible representation ρi that has dimension di.

35.1. First properties of the character table.

Theorem 35.1.1. The character table of G has the following properties:
(1) The number of rows equals to the number of columns.
(2) The sum of the squares of the entries of the first column is the cardinality of the group.
(3) The number of rows with 1 in the first column is equal to ]Gab.
(4) Every entry in the first column is an integer dividing ]G.
(5) The “weighted” inner-product of distinct rows is 0. The weighted self-product of a row is equal

to ]G (here the weights are the cardinality of conjugacy classes).
(6) The “weighted” sum of the rows is the vector (]G, 0, . . . , 0) (here the weights are the dimensions

of the representations).

The proof consists of references to theorems we proved, or will prove shortly.

Proof. (1) is the statement that the number of irreducible characters h is actually equal to h(G).
We mentioned this before and will prove it in Theorem 36.1.1 below.

(2) is Corollary 34.1.2: ]G = ∑h
i=1 d2

i
(3) states the the irreducible characters of dimension 1 are 1-dimensional characters G → C×,

and ]G∗ = ](Gab)∗ (Lemma 31.1.1).
(4) is a theorem we will not prove because it requires some notions from algebraic number

theory, but it is useful to know.
(5) is just orthogonality of characters (Theorem 33.4.1). If we use the fact that characters are

class functions, we may write

〈χi, χj〉 =
1
]G ∑

g∈G
χi(g)χ̄j(g) =

1
]G

h

∑
i=1
|ci| · χi(ci)χ̄j(ci).

We find that if i 6= j then the weighted inner-product of the rows, ∑h
i=1 |ci|χi(ci)χ̄j(ci), is equal

to 0, and if i = j it is equal to ]G.
(6) is just a restatement of the decomposition of the regular representation: χreg = ∑h

i=1 diχi
(Proposition 34.1.1). �
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35.2. Examples of character tables.

35.2.1. The character table of Z/nZ. Recall that every irreducible representation of an abelian
group is a multiplicative character and that we have

(Z/nZ)∗ ∼= µn.

We usually denote the corresponding characters ρ0, . . . , ρn−1 in this case, because if we let ζ =
e2πi/n then we have

ρi(a) = ζai.
(This notation is slightly in odds with the usual convention of denoting the irreducible charac-
ters of a group G by χ1, . . . , χh.) We find the following table

0 1 2 n− 1

ρ0 = 11 1 1 1 . . . 1

ρ1 1 ζ ζ2 . . . ζn−1

ρ2 1 ζ2 ζ4 . . . ζ2(n−1)

...
...

ρn−1 1 ζn−1 ζ2(n−1) . . . ζ(n−1)2

TABLE 3. Character table of Z/nZ

Note that property (6) in Theorem 35.1.1 gives us the very useful fact in complex analysis: For a
root of unity ζ of order n, we have ∑n−1

i=0 ζai = 0 for every a 6≡ 0(n).

35.2.2. The character tables of (Z/2Z)2, Z/3Z×Z/5Z and (Z/3Z)2. “Multiplying” two copies
of the character table of Z/2Z we find

0 1

11 1 1

ρ1 1 -1

×
0 1

11 1 1

ρ1 1 -1

=

(0,0) (1,0) (0, 1) (1,1)

11× 11 1 1 1 1

11× ρ1 1 1 -1 -1

ρ1 × 11 1 -1 1 -1

ρ1 × ρ1 1 -1 -1 1

TABLE 4. Character table of (Z/2Z)2

Similarly, for any abelian group G ∼= Z/n1Z× · · · ×Z/naZ we can “multiply” the character
tables for each Z/niZ to find the character table of G. This rests on our results

G∗ ∼= (Z/n1Z)∗ × · · · × (Z/naZ)∗ ∼= µn1 × · · · × µna ,

and the concrete description of the character table of Z/nZ.
It is not efficient to use this method for G = Z/3Z×Z/5Z because by CRT we have G ∼=

Z/15Z which is a cyclic group for which we already have a nice description. But, for example,
for the case G = (Z/3Z)2 it is useful, and we find the following 9× 9 table (ω = e2πi/3):
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0 1 2

11 1 1 1

ρ1 1 ω ω2

ρ2 1 ω2 ω

×
0 1 2

11 1 1 1

ρ1 1 ω ω2

ρ2 1 ω2 ω

=

(0,0) . . . (1, 2) . . . (a, b)

11× 11 1 1 1
...

ρ1 × ρ2 1 ω2 ωa+2b

...
...

...

ρi × ρj 1 ωi+2j ωai+bj

...
...

...

TABLE 5. Character table of (Z/3Z)2

35.2.3. The character table of S3. We have h(S3) = p(3) = 3 and so there are 3 conjugacy classes
and we take as representatives 1, (12), (123). Their sizes are 1, 3, 2, respectively. We have

Sab
3 = S3/A3 ∼= Z/2Z,

and, in fact, we know two 1-dimensional characters: 11 and sgn. As we must have

]S3 = 6 = 11 + 11 + x2,

we conclude that the remaining irreducible representation of S3 is 2-dimensional. We happen
to know such a representation, namely, ρstd,0 and its character χstd,0 whose value on a permuta-
tion σ is the number of fixed points of σ minus 1. We therefore find the following table:

1 (12) (123)

1 3 2

χ1 1 1 1

χ2 1 -1 1

χ3 2 0 -1

TABLE 6. Character table of S3

Remark though that we didn’t really need to use our “lucky break” of knowing before-hand an
irreducible 2-dimensional representation. We could have solved for the remaining character:

χ3 =
1
2
(χreg − χ1 − χ2)

(Theorem 35.1.1).

35.2.4. The character table of D4. It requires some calculations but one find that

D′4 = {1, x2}, Dab
4 = {1, x̄, ȳ, x̄y},

and that every element of Dab
4 has order 2. Thus,

Dab
4
∼= Z/2Z×Z/2Z, x̄ 7→ (1, 0), ȳ 7→ (0, 1).



100 EYAL Z. GOREN, MCGILL UNIVERSITY

We also calculate “by hand” the conjugacy classes and find that they are given by

c1 = {1}, c2 = {x, x−1}, c3 = {x2}, c4 = {y, yx2}, c5 = {yx, yx−1}.
There isn’t a really quick way to do that, but one can note that since 〈x〉 is a normal subgroup,
conjugacy classes are either contained in it, or disjoint from it. At any rate, we now know
that D4 has four 1-dimensional representations, “lifted” from (Z/2Z)2. That is, if χ is an irre-
ducible character of (Z/2Z)2 and f is the composition D4 → Dab

4 → (Z/2Z)2 then χ ◦ f is an
1-dimensional character of D4.

In addition, D4 has one more irreducible representation and its dimension x satisfies

8 = ]D4 = 12 + 12 + 12 + 12 + x2.

It follows that we are missing a 2-dimensional representation. Note that we can solve for the
missing character, say χ, using the result on the sum of the rows of the character table, but it
is also natural to wonder whether the missing representation is provided by the action of D4
on the plane (the action inducing the action of D4 on the square). In this representation ρpl , the
action of the representatives for conjugacy classes is given as follows:

1 =
(

1
1

)
, x =

(
1

−1
)

, y =
( −1

1

)
, x2 =

( −1
−1

)
, yx =

( −1
−1

)
.

We can now write the character table of D4. The last row is χpl = χρpl , which is indeed irre-
ducible because ‖χpl‖ = 1.

1 x y xy x2

1 2 2 2 1

11 1 1 1 1 1

ρ1 × 11 1 -1 1 -1 1

11× ρ1 1 1 -1 -1 1

ρ1 × ρ1 1 -1 -1 1 1

χpl 2 0 0 0 -2

TABLE 7. Character table of D4

Here is an application. The composition ρ defined by

D4 // S4
ρstd

// GL4(C) ,

(where the first arrow is the natural inclusion of D4 into S4, x 7→ (1234), y 7→ (24)) is a 4-
dimensional representation of D4. It is a bit hard to understand this action. Indeed, in terms of
matrices

x =

( 0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

)
, y =

( 1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

)
,

and it is not easy to understand what is the overall action of elements of the group. However,
we can decompose ρ into irreducible representations. A calculation gives

〈χρ, 11〉 = 1 , 〈χρ, ρ1 × 11〉 = 1, 〈χρ, χpl〉 = 1.
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This tells us that

ρ ∼= 11⊕ (ρ1 × 11)⊕ ρpl .

That means that there is another basis for C4 in which the representation has the form

x =

( 1 0 0 0
0 −1 0 0
0 0 0 1
0 0 −1 0

)
, y =

( 1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

)
.

And a general element g of D4 will act by a matrix of the form(
1 0 0
0 ±1 0
0 0 ρpl(g)

)
.

It is now much easier to understand the action of D4.

35.2.5. The character table of S4.

Here is a general principle. Let f : A→ B be a homomorphism of groups. Let ρ : B→ GL(V) be
a representation of B. Then ρ ◦ f is a representation of A and its character is simply

χρ◦ f = χρ ◦ f : A→ C.

In fact, we have used it several times before in the situation G → Gab → C× to lift 1-dimensional
characters of Gab to G.

Now, if f is surjective and ρ is irreducible then also ρ ◦ f is irreducible. Indeed, suppose that
U ⊆ V is a subrepresentation of ρ ◦ f . That is, for all a ∈ A we have ρ( f (a))(U) ⊆ U. Then,
as f is surjective, it follows that for all b ∈ B we have ρ(b)(U) ⊆ U. It follows that U is a
subrepresentation of ρ and so U = 0 or V.

Let us use this for the surjective homomorphism f : S4 → S3, whose kernel is K, the Kline
group. We have studied this homomorphism before. Using it, we can lift the characters of S3 to
S4, and so we easily find the first 3 rows of the character table of S4. (The conjugacy classes of Sn
correspond to the cycle type of permutations and that gives us the columns’ labels.) As there are
5 conjugacy classes, there are two additional irreducible representations. We know one of them,
ρstd,0, and we get the last row as the twist ρstd,0 · sgn (or by solving the equation where the sum
of the rows with multiplicities is equal to the vector (24, 0, 0, 0, 0)). We find the following table.

1 (12) (123) (1234) (12)(34)

1 6 8 6 3

11 1 1 1 1 1

sgn 1 -1 1 -1 1

χ3 ◦ f 2 0 -1 0 2

χstd,0 3 1 0 -1 -1

χstd,0 · sgn 3 -1 0 1 -1

TABLE 8. Character table of S4
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35.2.6. Character table of A4. The representatives for the conjugacy classes of A4 are given by
1, (12)(34), (123), (132). There are therefore 4 irreducible representations. As A4/K is of order 3,
it follows that A4/K ∼= Z/3Z and that K ⊇ A′4. As A4 is not abelian, A′4 6= {1} and so contains
some element of cycle type (2, 2). But those form a single conjugacy class and A′4 is normal. It
follows that A′4 = K.

We conclude that there are 4 irreducible representations, of which 3 are 1-dimensional, and
the last is 3-dimensional (as ]A4 = 12 + 12 + 12 + x2 only allows x = 3). Using the result about
the sum of rows we find the following character table:

1 (123) (132) (12)(34)

1 4 4 3

11 1 1 1 1

χ1 1 ω ω2 1

χ2 1 ω2 ω 1

χ 3 0 0 -1

TABLE 9. Character table of A4

It turns out that the last character is just χstd,0|A4 . This is no coincidence. One can prove that for
n ≥ 4 the representation ρstd,0|An is an irreducible representation of An (Exercise 128).

35.3. Orthogonality of columns. In this subsection we show that the columns of the character
table enjoy an orthogonality property. We begin with some renormalization device to make the
argument more transparent, hopefully.

For every character χ of G we define a vector vχ ∈ Ch, where h = h(G) is the number of
conjugacy classes of G. Let c1, . . . , ch be the conjugacy classes of G, and let

vχ = (

√
]c1

]G
· χ(c1), . . . ,

√
]ch

]G
· χ(ch))

The point of this construction is that for every two characters χ, ψ (or even any two class func-
tions) we have

〈χ, ψ〉 = 〈vχ, vψ〉,
where the inner-product on the left is the inner product of class-functions, and the inner-product
on the right is the usual inner-product in Ch. In fact, we have already noticed something very
similar – see the proof of part (5) of Theorem 35.1.1.

Let χ1, . . . , χh denote the irreducible characters of G. It follows that the rows of the following
matrix are orthonormal: 

vχ1

vχ2

...

vχh

 .
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But this implies that the columns of the same matrix are an orthonormal set too. Namely, for
any two conjugacy classses ca, cb we get that

h

∑
i=1

√
]ca

]G

√
]cb

]G
· χi(ca)χ̄i(cb) = δab.

Note that ](G)/](ca) = ]Cent(x) for any x ∈ Ca. Therefore, we conclude the following.

Proposition 35.3.1 (Orthogonality of columns). We have the following orthogonality properties of the
columns of the character table.

(1) If ca 6= cb are conjugacy classes then the product of the ca column with the cb column is 0. To be
precise:

h

∑
i=1

χi(ca)χ̄i(cb) = 0.

(2) For every conjugacy class ca the norm of the ca column is the cardinality of its centralizer. That
is,

h

∑
i=1
|χi(ca)|2 = ]Cent(x), x ∈ ca.

It follows that we can use the entries of the character table, more specifically we can use the
second part of the proposition, to figure out the size of conjugacy classes. We record it as a
corollary.

Corollary 35.3.2. The character table determines the size of the conjugacy classes.

36. THE IRREDUCIBLE CHARACTERS FORM A BASIS FOR CLASS(G)

In this section we fill a gap and prove that the irreducible characters of a group G form a basis
for Class(G). Nothing prevented us from proving it sooner; it just seemed more useful to see
some examples before developing the theory further.

36.1. Irreducible characters form a basis.

Theorem 36.1.1. Let G be a group and let χ1, . . . , χh be its irreducible characters. Then

{χ1, . . . , χh}
is an orthonormal basis for Class(G).

Proof. We begin with a lemma that constructs endomorphisms of representations.

Lemma 36.1.2. Let (ρ, V) be a representation of G and let α a class function. Then the linear operator

T = Tρ = ∑
g∈G

α(g)ρ(g) ∈ EndG(V).

Proof. The fact that T is a linear operator is clear, because α(g) are scalars and T is the sum of
the linear operators α(g)ρ(g). The point is that it commutes with ρ. We have

ρ(h) ◦ T ◦ ρ(h)−1 = ∑
g∈G

α(g)ρ(hgh−1) = ∑
g∈G

α(hgh−1)ρ(hgh−1).

The last equality is true because α is a class function. Now, g 7→ hgh−1 is a bijection of G (even
an automorphism) and hence

ρ(h) ◦ T ◦ ρ(h)−1 = ∑
g∈G

α(hgh−1)ρ(hgh−1) = ∑
g∈G

α(g)ρ(g) = T.
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�

We know already that {χ1, . . . , χh} are an orthonormal set. To prove they form a basis we
need only show for β ∈ Class(G),

〈χi, β〉 = 0, ∀i =⇒ β ≡ 0.

Let α = β̄. It will of course be enough to prove α ≡ 0.

Let (ρ, V) be an irreducible representation. We claim the the operator

Tρ := ∑
g∈G

α(g)ρ(g) ∈ EndG((ρ, V))

is actually the zero operator. By Schur’s Lemma, we have EndG((ρ, V)) ∼= C under the map
T 7→ 1

dim(V)
Tr(T) (Equation (11)). Now,

Tr(Tρ) = ∑
g∈G

α(g)Tr(ρ(g)) = ∑
g∈G

χρ(g)β̄(g) = ]G〈χρ, β〉 = 0.

And therefore Tρ = 1
dim(V)

Tr(Tρ) · IdV = 0.

Note that the construction
ρ 7→ Tρ = ∑

g∈G
α(g)ρ(g)

commutes with direct sums. Thus, we may conclude that for any representation (ρ, V) of G we
have Tρ = 0. In particular this holds of the regular representation. That is, we conclude that
∑g∈G α(g)ρreg(g) is the zero operator on C[G]. In this case, we must have

∑
g∈G

α(g)ρreg(g)(e1) = 0,

where e1 ∈ {eg : g ∈ G} is the basis vector indexed by the identity element of G. However,

∑
g∈G

α(g)ρreg(g)(e1) = ∑
g∈G

α(g)eg.

As {eg} is a basis, it follows that α(g) = 0 for all g ∈ G, as we wanted to show. �

36.2. Even more properties of the character table. We organize together all the properties of
the character table we have seen, implicitly or explicitly.

Theorem 36.2.1. Let G be a group with class number h. Let {χi : i = 1, . . . , h} be its irreducible
characters, di = dim(χi) = χi(1), and let {ca : a = 1, . . . , h} be the conjugacy classes of G. We assume
always that χ1 = 11 and c1 = {1g}.

The character table of G has the following properties:

(1) The number of rows equals to the number of columns.
(2) The sum of the squares of the entries of the first column is the cardinality of the group.
(3) The number of rows with 1 in the first column is equal to ]Gab.
(4) Every entry in the first column is an integer dividing ]G.
(5) The “weighted” inner-product of distinct rows is 0. The weighted self-product of a row is equal

to ]G (here the weights are the cardinality of conjugacy classes).
(6) The “weighted” sum of the rows is the vector (]G, 0, . . . , 0) (here the weights are the dimensions

of the representations).
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(7) For any two columns ca, cb we have

h

∑
i=1

χi(ca)χ̄i(cb) = 0, a 6= b,

and
h

∑
i=1
|χi(ca)|2 = |Cent(x)|, x ∈ ca.

(8) If χi(ca) = α then χi(c−1
a ) = ᾱ where c−1

a is the conjugacy class {x−1 : x ∈ ca}. In particular,
the set of entries of the character table is closed under complex conjugation.

(9) If χi is 1-dimensional and χj is any other irreducible character, then χi · χj = χk for some
irreducible character χk (possibly equal to χj).

(10) |χi(g)| ≤ χi(1), with equality if and only if ρi(g) = α · Id for some root of unity α.
(11) If ca 6= cb then there is some character χi such that χi(ca) 6= χi(cb).
(12) The weighted sum of the columns, where the i-th column is given weight |ci|, is the vector

t(]G, 0, . . . , 0).

Proof. We have already proved properties (1) - (6) in Theorem 35.1.1 (only that now we have
really proved (1)). Property (7) is the orthogonality of columns proven in Proposition 35.3.1.

Property (8) was also mentioned before: we have seen that χi(x−1) = χi(x) (Equation 9).
Property (9) is of course the twisting operation we have studied in § 34.5. Property (10) follows
from the fact that χi(g) is a sum of di roots of unity and the absolute value is equal to di if and
only if they all point in the same direction.

Property (11) follows from the fact that the {χi} form a basis for the class functions and so for
any given ca 6= cb a suitable linear combination of them should have value 1 on ca and value 0
on cb. This is only possible if for some i, χi(ca) 6= χi(cb).

Property (12) is essentially he orthogonality of χ1 and χi for i 6= 1. Indeed, the i-th entry of
this sum of columns is

h

∑
j=1
|cj|χi(cj) = ]G · 〈χi, χ1〉 = ]G · δi,1.

�

Character tables have even more properties. We mention an additional one, which is a theorem
of Burnside, just because it is so easy to state (we will not use it in this course)

Theorem 36.2.2 (Burnside). If di > 1 then χi takes the value 0 for some conjugacy class.

37. USING THE CHARACTER TABLE TO FIND NORMAL SUBGROUPS

We will now see a beautiful application of character tables for the calculation of all normal
subgroups of a group G.

37.1. Normal subgroups and character kernels. Let (ρ, V) be any representation of G with
character χ = χρ. Define

Ker(χρ) := {g ∈ G : χρ(g) = χ(1)} = {g ∈ G : χρ(g) = dim(V)}.
Lemma 37.1.1. We have

Ker(χρ) = Ker(ρ),
and so Ker(χρ) is a normal subgroup of G.
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Proof. Let g ∈ Ker(ρ) then ρ(g) = IdV . Then, χ(g) = Tr(IdV) = dim(V) and thus g ∈ Ker(χ).
Conversely, let g ∈ Ker(χ) and d = dim(V). As χ(g) is a sum of d roots of unity (which are

the eigenvalues, with multiplicity, of ρ(g)), the only way this sum can be equal to to d if all these
roots of unity are 1. This implies ρ(g) = IdV . �

In particular, if χ1, . . . , χh denote the irreducible characters of G, as per our usual notation, we
have the normal subgroups

Ker(χi), i = 1, 2, . . . , h.
Note that these subgroups can be written as a union of conjugacy classes, given the character
table of G.

Lemma 37.1.2. Let χ be a character of a representation (ρ, V) of G. Suppose that

χ = ∑
i∈I

aiχi,

for a subset I ⊆ {1, 2, . . . , h} and positive integers ai. Then,
Ker(χ) = ∩i∈IKer(χi).

Once more, note that this can be calculated effectively from the character table of G.

Proof. We have
χ(1) = ∑

i∈I
aiχi(1).

If g ∈ Ker(χi) for every i, then

χ(g) = ∑
i∈I

aiχi(g) = ∑
i∈I

aiχi(1) = χ(1),

and so g ∈ ker(χ).
Conversely, if g ∈ ker(χ) we have

χ(1) = χ(g) = ∑
i∈I

aiχi(g) = ∑
i∈I

aiχi(1).

Since the ai are positive integers and |χi(g)| ≤ χi(1), the only way the last equality can hold is
if χi(g) = χi(1) for every i ∈ I. Namely, if g ∈ Ker(χi), for all i ∈ I. �

Lemma 37.1.3. Any normal subgroup NCG is of the form Ker(χ) for some character χ.

Proof. Let H = G/N and consider the composition

G π// G/N = H
ρ

reg
H // GL(C[H]).

Let ρ = ρ
reg
H ◦ π. Since the regular representation ρ

reg
H of H is injective, we have Ker(ρ) =

Ker(π) = N. Therefore,
N = Ker(χρ).

�

We summarize our discussion in the following theorem.

Theorem 37.1.4. Let χ1, . . . , χh, h = h(G), be the irreducible characters of G. Let
Ni = Ker(χi).

Any normal subgroup N of G is of the form
N = ∩i∈IKer(χi),

for a suitable subset I ⊆ {1, 2, . . . , h}. And, conversely, any such intersection is a normal subgroup of G.

Remark 37.1.5. The whole point is, of course, that we have a practical easy method to find all the
normal subgroups of a group G from the character table. Note, also, that the theorem implies
that any proper maximal normal subgroup of G is of the form Ker(χi) for some i (although, the
converse is not true; Ker(χi) is often not a maximal normal subgroup).
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Example 37.1.6. We illustrate the theorem using the character table of A4. Recall that it is given
by the following table, where in the last column we indicated the kernel of the character.

1 (123) (132) (12)(34) Ker

1 4 4 3

11 1 1 1 1 A4

χ1 1 ω ω2 1 K

χ2 1 ω2 ω 1 K

χ 3 0 0 -1 {1}

TABLE 10. Character table of A4

We conclude that A4 has only one non-trivial normal subgroup, which is K.

37.2. Recognizing the commutator subgroup. Given a group G we have several normal sub-
groups canonically associated to it. For example, the commutator subgroup G′ and the centre
Z(G). In light of Theorem 37.1.4, it makes sense to ask how to construct them from the character
table. For the center, this is just the union of all conjugacy classes of size 1. For the commutator
subgroup we have the following proposition.

Proposition 37.2.1. We have
G′ =

⋂
χ 1-dim. char.

Ker(χ).

Proof. Suppose that g ∈ G′ and ρ is a 1-dimensional representation, then ρ(G′) = 1 (and so, as
we have used several times before, ρ factors through Gab). Thus, G′ ⊆ ⋂χ 1-dim. char. Ker(χ).

Suppose now that g 6∈ G′ and denote ḡ its image in Gab. Then ḡ 6= 0 (the identity element of
the abelian group Gab). Write

Gab ∼= Z/n1Z× · · · ×Z/naZ.

Then ḡ = (g1, . . . , ga) and assume without loss of generality that g1 6= 0.
Let ζ = e2πi/n1 and ρ the multiplicative character of Z/n1Z given by ρ(a) = ζa. Then,

ρ × 11 × · · · × 11 is a multiplicative character of Gab and hence, through G → Gab, also of G.
We have

(ρ× 11× · · · × 11)(g) = (ρ× 11× · · · × 11)(ḡ) = ρ(g1) = ζg1 6= 1.
Thus, g 6∈ ⋂χ 1-dim. char. Ker(χ), and the proof is complete. �

Remark 37.2.2. One can also characterize Z(G) in terms of the characters of G. See Exercise 131.

38. MORE EXAMPLES OF REPRESENTATIONS

In this section we consider two more examples of representations, more difficult than those
we considered thus far.
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38.1. The character table of the Frobenius group F20. The Frobenius group F20 is the group

Z/5Z o (Z/5Z)×.

Recall that (Z/5Z)× = Aut(Z/5Z) and the semi-direct product is taken relative to the identity
map (Z/5Z)× → Aut(Z/5Z). The group law is very simple,

(n1, b1)(n2, b2) = (n1 + b1n2, b1b2), ni ∈ N := Z/5Z, bi ∈ B := (Z/5Z)×.

The Frobenius group can be realized into other ways:
(1) As a group of matrices {(

b n
1

)
: b ∈ Z/5Z×, n ∈ Z/5Z

}
,

with multiplication ( b1 n1
1

) ( b2 n2
1

)
=
( b1b2 n1+b1n2

1

)
.

(2) As the subgroup of S5 given by

〈(12345), (2354)〉.
The isomorphism of F20 with the group of matrices is evident. For the realization as the subgroup
of permutations, we send

(12345)n 7→ (n, 1), (2345) 7→ (0, 2).

Because
(2354)(12345)(2354)−1 = (12345)2,

and (0, 2)(1, 1)(0, 2)−1 = (2, 1), it follows (with some additional arguments) that we have an
isomorphism 〈(12345), (2354)〉 ∼= F20.

Next, we calculate the conjugacy classes of F20. For elements of N, conjugation by N is trivial
and so by conjugating by elements of B we get the full conjugacy classes (using that F20 = NB).
We have the formula

(0, b)(n, 1)(0, b−1) = (bn, 1).
We find two conjugacy classes:

a1 = {(0, 1)}, a2 = {(i, 1) : i = 1, 2, 3, 4}.
Likewise, conjugating elements of B by B is trivial and so we will get the full conjugacy classes
of elements of B by conjugating them by elements of N. We have the relation

(n, 1)(0, b)(−n, 1) = ((1− b)n, b).

For b = 2, 3, 4, we get the conjugacy classes

c2 = {(i, 2) : 0 ≤ i ≤ 4}, c3 = {(i, 3) : 0 ≤ i ≤ 4}, c4 = {(i, 4) : 0 ≤ i ≤ 4}.
We see that we already accounted for all the elements of the group. Therefore, F20 has 5 conju-
gacy classes (of sizes 1, 4, 5, 5, 5).

Note that F20/N ∼= B ∼= (Z/5Z)×, (n, b) 7→ b. As F20 is not abelian, and N has no non-trivial
subgroups, it follows that N = F′20 and Fab

20
∼= (Z/5Z)×, which is cyclic group of order 4 with

generator 2.Thus, F20 has precisely 5 irreducible representations, 4 of which are 1-dimensional.
Therefore, as the size of the group is the sum of the squares of the dimensions of the irreducible
representations, the remaining irreducible representation is 4-dimensional. We can find its char-
acter χ4 by using that the weighted sum of the rows of the character table is the regular repre-
sentation. (The notation is chosen so that the first 4 characters have notation that agrees with
the notation we used for cyclic groups.)

It is not hard to check that under the realization of F20 as a subgroup of S5 in fact χ4 = χstd,0|F20 .
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a1 a2 c2 c3 c4

1 4 5 5 5

(0, 1) (1, 1) (0,2) (0, 3) (0, 4)

χ0 = 11 1 1 1 1 1

χ1 1 1 i −i −1

χ2 1 1 −1 −1 1

χ3 1 1 −i i −1

χ4 4 -1 0 0 0

TABLE 11. Character table of F20

38.2. Monomial representations. Consider a finite group G acting on a non-empty set S. Con-
struct a vector space V with basis {es : s ∈ S}; we have dim(V) = ]S. There is a natural
representation

ρ : G → GL(V), ρ(g)(es) = eg∗s.
Such representations are called monomial.

In fact, we have already seen at least two instances of this construction. When S = G, and G
acts by left multiplication, we get V = C[G] and ρ = ρreg. When G = Sn, and S = {1, 2, . . . , n},
we get V = Cn and ρ = ρstd. As in these cases, it is easy to check that

χρ(g) = I(g) = ] fixed points of g in S.
Applying CFF and the projection formula, we get

(14)
1
]G ∑

g∈G
χρ(g) = ] orbits of G in S = dim(VG).

One way one may get such actions, is by choosing a subgroup B < G and letting S = G/B,
the set of left cosets of B in G (in fact, any set S on which G acts is a union of such examples).
The representation is called the coset representation, which explains the name we have been
using for the action of G on S throughout the course.

To make the situation even more specific, assume that
G = N oφ B.

Therefore, G = NB, N ∩ B = {1}. Then,
G/B = {nB : n ∈ N}.

We check that gnB = nB⇔ g ∈ nBn−1. But,

nBn−1 = {(n, 1)(1, b)(n−1, 1) : b ∈ B} = {(nφb(n)−1, b) : b ∈ B}.
If g = (n1, b) ∈ nBn−1 it means that g necessarily equals to (nφb(n)−1, b) for some n. We
conclude that

χ((n1, b)) = I((n1, b)) = ]{n ∈ N : n1 = nφb(n)−1}.

Continuing with a general analysis will require making more assumptions on φ. Instead, let us
take the case of F20 = Z/5Z oid (Z/5Z)×. Here, n1 = nφb(n)−1 is written in additive notation
and the condition is n1 = (1− b)n. Now,

• if b 6= 1 there is a unique solution to the equation n1 = (1− b)n.
• if b = 1 and n1 = 0 there are 5 solutions to the equation n1 = (1− b)n.
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• if b = 1 and n1 6= 0 there are no solutions to the equation n1 = (1− b)n.

We conclude that the character χ has the values χ(a1) = 5, χ(a2) = 0, χ(c2) = χ(c3) = χ(c4) = 1.
Therefore,

χ = χ4 + χ0,

and that tells us how the representation decomposes. Incidentally, note that the action of F20 on
the 5 cosets of B gives us the inclusion F20 ⊂ S5 we used before.

38.3. A combinatorial application. Let G be a finite group acting transitively on a finite non-
empty set S. Let

G0 = {g ∈ G : g has no fixed point in S}.
G0 is a subset of G, not a subgroup. We proved before (Proposition 17.1.3) that if ]X ≥ 2 then

]G0 ≥ 1.

Theorem 38.3.1 (Cameron-Cohen).

]G0 ≥
]G
]X

.

Proof. Let I(g) = χ(g) be the number of fixed points of g in S, where χ is the character of the
monomial representation of G coming from S.

Compare the proof of the following lemma to the proof of Lemma 34.3.1. It is really the same.

Lemma 38.3.2. We have
1
]G ∑

g∈G
χ2(g) ≥ 2.

Proof. Consider the action of G on the set S × S, g(a, b) = (g(a), g(b)). The class function χ2

is the character of this representation and the dimension of the space of invariant vectors is
1
]G ∑g∈G χ2(g), which is equal to the number of orbits of G in S× S by Equation (14). To prove
the lemma we only need to show that there is more than 1 orbit. And, indeed, one orbit is the
diagonal {(s, s) : s ∈ S} and, since ‖S‖ ≥ 2, there must be at least one more orbit. �

Let n = ]S. Note that for g 6∈ G0 we have 1 ≤ χ(g) ≤ n and therefore

1
]G ∑

g∈G−G0

(χ(g)− 1)(χ(g)− n) ≤ 0.

Therefore,

1
]G ∑

g∈G
(χ(g)− 1)(χ(g)− n) ≤ 1

]G ∑
g∈G0

(χ(g)− 1)(χ(g)− n) = n · ]G0

]G
.

On the other hand,

1
]G ∑

g∈G
(χ(g)− 1)(χ(g)− n) =

1
]G ∑

g∈G
χ2(g)− (n + 1)

1
]G ∑

g∈G
χ(g) +

1
]G ∑

g∈G
n

≥ 2− (n + 1) + n = 1.

Combining the two inequalities, the theorem follows. �

J.-P. Serre used this in proving the following theorem in number theory.

Theorem 38.3.3. Let f (x) ∈ Z[x] be an irreducible polynomial of degree n. The density of prime
numbers p (in the set of all primes) such that f has no root modulo p is at least 1/n.



COURSE NOTES - MATH 370 111

Example 38.3.4. If we take the most simple non-trivial situation f (x) = x2 + 1, the theorem
states that for at least 1/2 the primes f has no zero modulo p.

On the other hand, f has a zero modulo p if and only if −1 is a square modulo p. As −1 has
order 2 modulo p (if p > 2), this happens if and only if there are elements of order 4 in Z/pZ×.
Using that Z/pZ× is a cyclic group of order p− 1 we see that this is the case if and only if p ≡ 1
(mod 4). Thus, we conclude that the density of primes of the form 4k + 3 is at least 1

2 (in fact, it
is known to be precisely 1/2).

39. INTRODUCTION TO FOURIER ANALYSIS ON FINITE GROUPS.

In this section we are following the fantastic book by P. Diaconis, “Group representations in
probability and statistics” and if you find the following sections interesting, I very much recom-
mend reading it; you should have essentially all the prerequisite knowledge for reading much of
the book. Before commencing, let us mention that the theory of Fourier transform for groups has
many applications to other branches of science (computer science, chemistry, physics, electrical
engineering), and even within mathematics to many branches besides probability and statistics.

39.1. Convolution. Let G be a finite group. Let

C(G, C) = { f : G → C},

be the vector space of complex-valued functions on G. It is of course just the vector space C[G]
we used many times before. A function f defines an element ∑g f (g)[g] of C[G], and conversely.
It has dimension ]G.

For g ∈ G define the delta function δg : G → C by

δg(x) =

{
1, g = x;
0, else.

This function corresponds to [g] ∈ C[G]. The collection {δg : g ∈ G} is a basis for C(G, C).
We define the convolution of two functions f , g ∈ C(G, C) as

( f ∗ g)(x) = ∑
s∈G

f (xs−1)g(s).

Note that for a non-abelian group in general f ∗ g 6= g ∗ f . In fact, convolution is just the product
in the ring C[G]; if we write an element of C[G] as ∑g ag[g], where ag ∈ C, then

(∑
g

ag[g]) + (∑
g

bg[g]) = ∑
g
(ag + bg)[g], (∑

g
ag[g])(∑

g
bg[g]) = ∑

g
(∑

s
ags−1 bs)[g].

And so, it is clear that C(G, C) is a ring under addition of functions and convolution, with
identity element δ1. For the same reason, the following two properties are evident, nonetheless
we prove the first in the language of convolutions.

• δg ∗ δh = δgh.
• f = ∑g f (g)δg.

Indeed, (δg ∗ δh)(x) = ∑s∈G δg(xs−1)δh(s) = δg(xh−1), which is a function that is everywhere
zero except at x = gh where it is 1. Thus, δg ∗ δh = δgh.
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39.2. The Fourier transform. The Fourier transform f̂ of a function f ∈ C(G, C) is a function
on representations (ρ, V) of G. It associate to a representation ρ the element

f̂ (ρ) = ∑
s∈G

f (s)ρ(s) ∈ End(V).

In this part of the course, we will always assume that the representations are unitary, which
we can always achieve by a suitable inner-product (cf. the proof of Maschke’s theorem, Theo-
rem 32.2.2).

Lemma 39.2.1. We have the following properties of the Fourier transform:

(1) f̂ + g = f̂ + ĝ, and α̂ f = α f̂ , α ∈ C.
(2) δ̂g(ρ) = ρ(g).
(3) f̂ ∗ g = f̂ · ĝ.
(4) Let U be the uniform distribution on G, U(g) = 1

|G| , ∀g ∈ G. Let (ρ, V) be a representation
of G. Then Û(ρ) is the projection operator on the sub-representation VG. Thus, if ρ is irreducible
and ρ 6∼= 11 then Û(ρ) = 0, while Û(ρ)(11) = Id.

Proof. The first two properties are immediate from the definition. For the third, let (ρ, V) be a
representation of G. Then,

f̂ ∗ g(ρ) = ∑
s∈G

(∑
t∈G

f (st−1)g(t)) · ρ(s)

= ( ∑
x∈G

f (x)ρ(x))(∑
t∈G

g(t)ρ(t))

= f̂ (ρ) · ĝ(ρ).

(The last product means product in the ring End(V)).
The fourth property is just the definition of the projection operator and the fact that VG is a

subrepresentation of V. �

39.3. Fourier Inversion and Plancherel’s formula. The following theorem is very much remi-
niscent of Fourier analysis over R.

Theorem 39.3.1. Let ρ1, . . . , ρh be unitary representatives for the irreducible representations of G and
let di = dim(ρi), χi = χρi .

(1) (Fourier Inversion). For any function f ∈ C(G, C),

(15) f (s) =
1
|G|

h

∑
i=1

di · Tr(ρi(s−1) f̂ (ρi)).

(2) (Plancherel’s formula) For any two functions f , h ∈ C(G, C),

(16) ∑
s∈G

f (s−1)h(s) =
1
|G|

h

∑
i=1

diTr( f̂ (ρi)ĥ(ρi)).

Proof. The proof is surprisingly simple for such scary looking formulas. First note that by linear-
ity and bilinearity, it is enough to prove Fourier inversion for the functions δg, and the Plancherel
formula for the functions δg, δh. We first verify Fourier inversion for δg. In this case, the right
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hand side of (15) evaluated at s is:

1
|G|

h

∑
i=1

di · Tr(ρi(s−1)δ̂g(ρi)) =
1
|G|

h

∑
i=1

di · Tr(ρi(s−1)ρi(g))

=
1
|G|

h

∑
i=1

di · Tr(ρi(s−1g))

=
1
|G|

h

∑
i=1

diχi(s−1g)

=
1
|G|ρ

reg(s−1g).

This is a function that vanished everywhere, except at s = g, where it receives the value 1.
Namely, this is just the function δg(s), as required.

The right-hand side of Plancherel’s formula (16) is equal to

1
|G|

h

∑
i=1

diTr(δ̂g(ρi)δ̂h(ρi)) =
1
|G|

h

∑
i=1

diTr(ρi(g)ρi(h))

=
1
|G|

h

∑
i=1

diTr(ρi(gh))

=
1
|G|

h

∑
i=1

diχi(gh)

=
1
|G|ρ

reg(gh).

This expression is equal to 1 if g = h−1, and is equal to 0 otherwise. The sum

∑
s∈G

δg(s−1)δh(s)

has exactly the same property, and we get the equality we were after. �

We now derive a variant of Plancherel’s formula that is very useful for applications. Recall the
(potentially confusing, but customary) notation for a complex matrix M: M∗ = M̄t.

Corollary 39.3.2. Let f be a real-valued function then

(17) ∑
s∈G

f (s)h(s) =
1
|G|

h

∑
i=1

di · Tr(( f̂ (ρi))
∗ · ĥ(ρi)).

Proof. Let g be the function g(s) = f (s−1). Then ∑s∈G f (s)h(s) = ∑s∈G g(s−1)h(s) and we can
apply Plancherel’s formula to this sum. It only remains to note that for ρ = ρi for some i,

ĝ(ρ) = ∑
s

f (s−1)ρ(s) = ∑
s

f (s)ρ(s−1) = ∑
s

f (s)ρ(s)∗ = (∑
s

f (s)ρ(s))∗ = f̂ (ρ)∗,

where we used that ρi is unitary and f is real-valued. �

39.4. Random walks on cyclic groups. Let p be a positive integer and consider the integers
modulo p, Z/pZ. For various applications in cryptography, statistics, computer science and
more, it is of interest to randomly choose a congruence class modulo p, or to emulate a random
walk on Z/pZ. True randomness is hard; it’s hard to generate and hard to “excavate” from
nature. For that reason, one tries to expand, or stretch, a small amount of randomness to create
a process that is pseudo-random; it is not completely random, but for all practical purposes, it
is.
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Consider then the following process

xk+1 = akxk + bk, k = 1, 2, . . . .

At each iteration ak and bk can be chosen among the classes (Z/pZ)× and Z/pZ, respectively,
according to some agreed upon distribution. (This process is related to pseudo-random number
generators, but we will now get into that here.) The simplest situation that is not completely
deterministic is

ak = 1, ∀k, bk chosen from {±1} with equal probability.

This process just requires a fair coin-toss at every step.
Let us denote functions on Z/pZ by vectors (a0, . . . , ap−1). And let us suppose that the initial

seed is x0 = 0, namely, it is the vector (1, 0, . . . , 0) with probability 1. Then, the distribution
after one iteration is P = (0, 1/2, . . . , 1/2), and after n-steps it is given by P∗n := P ∗ P ∗ · · · ∗ P
(convolution n-times). For example, applying the random walk twice, it is clear that we can only
end at 0, 2 of −2 = n− 2, and the probability we end at 0 can be found as

P(b1 = 1) · P(b2 = −1) + P(b1 = −1) · P(b2 = 1) =
1
2
· 1

2
+

1
2
· 1

2
=

1
2

.

Similarly the probability for ending at 2 is P(b1 = 1) · P(b2 = 1) = 1/4, and so on. We recognize
that we are just calculating P ∗ P. For example, P ∗ P(0) = ∑

p−1
j=0 P(j)P(−j) = P(1)P(p− 1) +

P(p− 1)P(1) = 1/2.
Let us switch for a moment to multiplicative notation (which will hopefully be less confusing),

and write Z/pZ = 〈t〉 where tp = 1. Using the group-ring presentation, we can say that

P =
1
2
(t +

1
t
),

and so

P∗n =
1
2n (t +

1
t
)n =

1
2n

n

∑
j=0

aj(n)tj,

where

aj(n) = ∑
i∈{0,...,n},2i−n≡j(p)

(
n
i

)
.

The limiting distribution is thus

lim
n→ ∞

P∗n = lim
n→ ∞

(a0(n), a1(n), . . . , ap−1(n)).

Our main interest is to know whether limn→ ∞ P∗n approaches the uniform distribution U, and,
if so, how fast? The fact that it approaches U is fairly easy (and follows from basic theory of
Markov chains). The main question is how quickly it approaches U.

To gauge this we introduce the total variation norm ‖ · ‖max. Let G be a finite group. For any
two probability distributions P, Q ∈ C(G, C) we let

‖P−Q‖max = max
A⊂G
|P(A)−Q(A)| = 1

2 ∑
g∈G
|P(g)−Q(g)|,

where P(A) = ∑a∈A P(a) is the probability of the event A.

Lemma 39.4.1 (Diaconis-Shahshahani). Let G be a finite group with irreducible (unitary) representa-
tions ρ1 = 11, . . . , ρh. and let P be a probability distribution on G. Then,

‖P−U‖2
max ≤

1
4

h

∑
i=2

di · Tr(P̂(ρi)
∗ · P̂(ρi)).

(Namely, the trivial representation 11 is the only one not appearing in this sum.)
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We will prove this lemma later on. Let us first see its application for the process we are dis-
cussing. In this case, recall that the irreducible representations of Z/pZ are the 1-dimensional
representations {ρj : j = 0, 1, . . . , p− 1}, where

ρj(a) = ζaj (ζ = e2πi/p).

(Namely, ρj is the character such that ρj(1) is the p-th root of unity ej2πi/p.) Then,

P̂(ρj) =
1
2
(ρj(1) + ρj(−1)) = cos(2π j/p).

By multiplicativity of the Fourier transform,

P̂∗n(ρj) = cos(2π j/p)n.

Applying the Diaconis-Shahshahani lemma we find

‖P∗n −U‖2
max ≤

1
4

p−1

∑
j=1

cos(2π j/p)2n.

This last sum, though elementary in appearance, is not that easy to estimate, yet a relatively
elementary argument gives a bound and one gets the following, if p ≥ 7 and odd:

‖P∗n −U‖2
max ≤ e

− π2
2 ·

n
p2 .

This can be formulated qualitatively as saying that

“for ak ≡ 1, and bk chosen uniformly from the set {1,−1}, about p2 iterations of the process

xk+1 = a + kxk + bk

are required to achieve a distribution close to the uniform distribution.”

One can perform a similar analysis for the case ak = 1 and bk chosen uniformly from {0, 1,−1}
and get a very similar result. On the other hand, in stark-contrast, one can prove the following
results for p such that gcd(p, 6) = 1:

“for ak ≡ 3, and bk chosen uniformly from {1,−1}, about log p iterations of the process xk+1 =
akxk + bk are required to achieve a distribution close to the uniform distribution.”

One reason the estimates are so different is that we are transferring from representation the-
ory for the group Z/pZ to representation theory for the group Z/pZ o Z/pZ×. The process
xk+1 = 3xk + bk is thought of as coming from a random walk on the group Z/pZ o Z/pZ×

corresponding to taking powers of the random element (b, 3), where b = {1, 0,−1} with equal
probability. See Exercise 39.4.2

Exercise 39.4.2. Prove that last estimate using the Diaconis-Shahshahani lemma for the group
Z/pZ o Z/pZ×. (Finding the representations is Exercise ??.)

39.5. Proof of the Diaconis-Shahshahani lemma. Let us now prove the lemma. Recall the
statement:

Let G be a finite group with irreducible (unitary) representations ρ1 = 11, . . . , ρh. and let P be a probabil-
ity distribution on G then

‖P−U‖2
max ≤

1
4

h

∑
i=2

diTr(P̂(ρi)
∗ · P̂(ρi)).

(Namely, the trivial representation 11 is the only one not appearing in this sum.)
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Proof. Applying the Cauchy-Schwarts inequality for real numbers (∑ anbn)2 ≤ (∑ a2
n)(∑ b2

n) and
taking all the bn = 1, we find that

4‖P−U‖2
max = (∑

s∈G
|(P(s)−U(s)|)2 ≤ ]G · ∑

s∈G
(P(s)−U(s))2.

We view the last sum as ∑s∈G f (s)h(s), where f (s) = h(s) = (P(s)−U(s)). Apply the version
of Plancherel’s formula given in Corollary 39.3.2 to find

]G · ∑
s∈G

(P(s)−U(s))2 ≤
h

∑
i=1

diTr( f̂ (ρ)∗ · f̂ (ρ))

Now, f̂ (ρi) = (P̂− Û)(ρi) and, using Lemma 39.2.1, we see that it is equal to P̂(ρi) for ρi 6= 11
(i.e., for i > 1), while f̂ (11) = (P̂− Û)(11) = 1− 1 = 0. Therefore, we find

h

∑
i=1

diTr( f̂ (ρ)∗ · f̂ (ρ)) =
h

∑
i=2

diTr(P̂(ρ)∗ · P̂(ρ)),

and the proof is complete. �

39.6. Riffle shuffles. This is a famous problem that one can attack by similar techniques. The
actual estimates are very difficult though and, in any case, not accessible to us because they
require full and detailed knowledge of the representation theory of the symmetric group. It is
interesting, nonetheless, to see how the problem is set up and the first steps of the analysis.

A deck of cards, consisting of N cards (N = 52 in a usual deck) is split into two piles, one with k
cards and the other with N− k cards, with probability 1

2N (
N
k ). Say, the left pile and the right pile.

Then the cards from the two piles are interleaved randomly, where a card is chosen from the left
pile with probability k/N and from the right pile with probability (N − k)/N. In the new pile
the cards appear in a new order that is a permutation π ∈ SN . Such a permutation is called,
naturally enough, a shuffle, and the process of shuffling cards this way is called riffle shuffle or
dovetail shuffle. It has the following form for some k 1 2 3 4 5 6 . . . . . . . . . N − 2 N − 1 N

k + 1 1 2 k + 2 3 k + 4 . . . k− 2 . . . k− 1 N k



Experiments show that this is a good model for real-life card shuffles.

After n shuffles we get a certain probability distribution on SN . If P is the original distribution,
the distribution after n shuffles is P∗n. It is easy to understand the distribution P. We have
P(π) = 0 if π is not a k-shuffle for any k, and P(π) = 2−N if π is a k-shuffle. But it is complicated
to describe P∗n (and you can convince yourself of that by considering the case n = 2); more
sophisticated methods are needed.

Similarly to the case of random walks on Z/pZ, routine arguments with Markov chains show
that P∗n → U relative to the total variation norm. The question is how fast? Once more the main
idea is to use the Diaconis-Shahshahani Lemma to get an estimate of the form

‖P∗n −U‖2
max ≤

1
4 ∑

ρ 6=11, irred.
dim(ρ) · Tr((P̂(ρ)∗)n · (P̂(ρ))n),

where now ρ runs over all irreducible representations of Sn and that, on the other hand, even 5
shuffle will exhibit significant bias towards particular permuations.
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The following table (their Q is our P) is taken from a paper of Bayer and Diaconis. It shows
that 7 shuffles suffice to shuffle reasonably-well a deck of 52 cards.

39.7. Rubik’s cube. We have discussed Rubik’s cube in §17.3. in particular, we introduced the
notation U, D, F, B, L, R and the Cayley graph relative to the generators Ui, Di, Fi, Bi, Li, Ri, i =
1, 2, 3. There is a rational for using these redundant set of generators; in practice, the moves
U2, U3 = U−1, for example, take almost the same time as U.

In cube solving competitions, cube scramblers are used. These are computer programs that
produce a position of the cube and a set of instructions of how to get to it that judges use to
create the cube positions to be solved. Naturally, we wish to have all cube positions given to the
participants “equally hard”, and also “hard enough” so that undeserving achievements will not
be recorded as world-records. One needs to find a method that produces such positions. The
scramblers are choosing randomly generators to provide directions for creating the cube posi-
tions. However, we would like to guarantee that (with high probability) such sets of directions
lead to equally hard positions that are also among the hardest possible.

The question of which position requires the most moves to solve was open for a long time and
was finally settled by Rokicki et al. that determined this number to be 20. (This number is known
as “God’s number”; I don’t personally like this terminology.) The following table is taken from
a paper of Rokicki; the first column indicates the minimal number of moves required to solve a
position and the last column indicates the number of cube positions requiring this number. We
ignore the middle column; it relates to the method of analysis used in their paper.

We see that the bulk of the cube positions require 18 moves. It is thus natural to perform the
random process P and hope that P∗n is very closed to a distribution Q that has values, say,
Q(17) ≈ Q(19) ≈ 0.05, Q(18) ≈ 0.90 and otherwise Q(i) ≈ 0. But, is it possible?? More
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precisely, what is
min

n
‖P∗n −Q‖max.

I don’t know the answer to that. (A careful analysis might require understanding the repre-
sentations of the Cube group.) In real-life, the Tnoodle scrambler program is used by the World
Cube Association to generate positions and the quality bar seems pretty low. At some point
in time, they were OK with producing cube positions only guaranteed to require 11 moves or
more, which seems rather bad. By simply running the program for say 1,000 times for each
n = 15− 25 and using fast cube-solvers, one could get a very reliable statistics on this question.
The whole project shouldn’t take more than a week to run a desktop computer.

40. SOME OF THE APPLICATIONS OF GROUP REPRESENTATIONS

This is a very sketchy section that mainly contains pointers to the literature. I will leave it to
you to chase these references down, if you are interested. First, there are the two survey articles
by T. Y. Lam, “Representations of Finite Groups: A Hundred Years, Part I, and Part II”. You can find
the articles here:

http://www.ams.org/notices/199803/lam.pdf
http://www.ams.org/notices/199804/lam2.pdf

Secondly, there is the following post on Math overflow about ”Fun applications of represen-
tations of finite groups”, from which I have learned a lot myself.

https://mathoverflow.net/questions/11784/fun-applications-of-representations-of-finite-groups

I don’t know if I would have used the adjective “fun”, but there are certainly diverse and inter-
esting applications. You would note, in particular, applications to:

(1) Chemistry and Physics, specifically quantum chemistry and quantum physics. For exam-
ple, one user mentions ”The symmetry group of a molecule controls its vibrational spec-
trum, as observed by IR spectrosocopy. When Kroto et al. discovered C60, they used this
method to demonstrate its icosahedral symmetry.” They suggest Group Theory and Chem-
istry by David M. Bishop as a reference. Another post suggests the book Group Theory
and Physics by S. Sternberg for the connections to Physics quoting Sternberg saying that
“molecular spectroscopy is an application of Schur’s lemma”. Another very convincing
book is Group theory and its applications to physical problems by M. Hamermesh.

(2) Combinatorics. A lot of this is done through representations of the symmetric group and
related groups. This is a topic to which many books, book chapters, and articles are de-
voted. The symmetric group plays a crucial role in combinatorics, of course. Mathscinet
returns 455 references for searching for “Representation” and ”symmetric group” in title,
among which 14 are books.

(3) Probability and Statistics. Here perhaps we can rest our case by referring to a book by one
of the leading statisticians and probablists of our time Group representations in probability
and statistics by P. Diaconis.

(4) Within algebra, the celebrated Feit-Thompson theorem uses the following theorem of
Frobenius, to which the only known proofs use representation theory.

A finite group G is called a Frobenius group with Frobenius kernel K and Frobenius
complement H if G has a subgroup H, such that for any g 6∈ H we have

H ∩ gHg−1 = {1}.
One lets in this case

K = {1} ∪ (G−
⋃

g∈G

gHg−1).

K is called the Frobenius kernel.
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An example of a Frobenius group is the group of affine linear transformations of the
line {ax + b}with H being the linear transformations {ax}. We can also write this group
as {

(
a b
0 1

)
}.

Theorem 1 (Frobenius’ theorem) Let G be a Frobenius group with Frobenius complement H
and Frobenius kernel K. Then K is a normal subgroup of G, and G is the semidirect product
K o H.

The hard part is to show that K is a group!

Theorem 2 (Frobenius’ theorem, equivalent version) Let G be a group of permutations acting
transitively on a finite set X, with the property that any non-identity permutation in G fixes at
most one point in X. Then the set of permutations in G that fix no points in X, together with the
identity, is closed under composition.

Apparently, there is still no proof of these theorems that avoids using group representa-
tions in an essential way. Although, recently, Terrence Tao gave a proof that only uses
character theory for finite groups. I have learned much about this from reading Tao’s
blog

https://terrytao.wordpress.com/2013/04/12/the-theorems-of-frobenius-and-suzuki-
on-finite-groups/

Another very nice application within Algebra is the proof of Burnside’s theorem already
cited: if p, q are primes then a group of order paqb is solvable. The proof is almost within our
reach, but not quite. It uses several ideas from algebra that we did not discuss at all (such
as the theory of modules and algebraic integers).

Finally, but still within the realm of pure algebra, group representations have a lot to
do with the study of simple groups. The classification of simple groups puts them in
large families (Z/pZ, An, PSLn(F), . . . ,) but some escape this classification and fall into
a category to themselves: the sporadic simple groups. There are finitely many such
groups (27, in fact). The largest simple group is the Monster group, its order is

808, 017, 424, 794, 512, 875, 886, 459, 904, 961, 710, 757, 005, 754, 368, 000, 000, 000.
Its existence is a non-trivial fact. Before constructing the Monster, mathematicians

suspected its existence and in fact predicted the dimensions of some of its smallest ir-
reducible representations as 1, 196883 and 21296876, and were able, more generally, to
work out its character table. John McKay, of Concordia university, made the audacious
observation that those numbers are related to Fourier coefficients of the j-function, a
function appearing in the theory of elliptic curves, which is part of number theory. Fol-
lowing that, precise conjectures were made by Conway and Norton, going under the
name of “Moonshine”.

Some of the key aspects of these conjectures were proven by R. Borcherds, a work that
got him the Fields prize in 1998.

(5) In number theory, representations of groups play a central role. The subject of auto-
morphic forms is really about the representations theory of certain infinite groups. At
a more accessible level, group representations play an important role in the study of L-
functions, and in the study of equations over finite fields (for example, Gauss sums can
be viewed as Fourier transforms). For a concrete example, in a different direction, we
might mention Roth’s theorem.

A subset A of the natural numbers is said to have positive upper density if

lim sup
n→∞

|A ∩ {1, 2, 3, . . . , n}|
n

> 0.

Roth’s theorem on arithmetic progressions states that a subset of the natural numbers
with positive upper density contains a 3-term arithmetic progression; namely, there are
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positive integers x, d such that x, x + d, x + 2d belong to A. This is a surprisingly difficult
theorem, and many people have worked on various generalizations of it. This is a subject
of ongoing research. Roth’s proof, as well as current day developments, use heavily the
Fourier analysis on the group Z/nZ.

41. WHAT IS MISSING

We have barely scratched the surface when it comes to group representations. But, I would
say that at the very basic entry level to representations of finite groups there is one more topic
that we could have discussed if we had more time. This is the subject of induced representations
and Frobenius reciprocity. Besides its theoretical importance, it is a powerful computational
tool. This subject is completely within reach and those wishing to have a more complete picture
are encouraged to pursue it using any textbook dealing with group representations.

Besides this topic, other glaring omissions are (i) tensor products of representations and their
decomposition; some study of (ii) the representations of symmetric group and their connec-
tions to Young tableaux, hook lengths and other mysterious terminology; (iii) Representations
of nilpotent groups, and in particular p-groups (Blichfeldt’s theorem). Once more, these topics
would (or should) be covered in most textbooks dealing with representations of finite groups;
(iv) Representations of finite matrix groups, for example GLn(Fp).

Blichfeldt’s theorem asserts that every irreducible representation of a finite nilpotent group G,
for example, every irreducible representation of a finite p-group, is induced from a 1-dimensional
representation of a subgroup H of G.

Going perhaps further back, some topics that should be covered in more detail as part of an
introduction to finite groups are the topics: (i) Free groups and free products and the Nielsen-
Schreier theorem; (ii) Nilpotent groups and the notions of ascending and descending central
series. (iii) Simplicity of the groups PSLn(Fq). Once more, these topics are certainly accessible
and it is only for reasons of time that we have omitted them.
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Part 9. Exercises

(1) Prove directly from the definitions that every group of order 3 is cyclic (and in particular
commutative). Do the same for order 5.

(2) Let G be a group of even order. Show, directly from the definitions, that G has an element
of order 2.

(3) Prove directly from the definitions that a group G in which every element a satisfies
a2 = e is commutative. Prove further that if G is finite then G has 2n elements for some
integer n.

(4) Write down all the elements of GL2(F2). Consider the action of this group on the set of
non-zero vectors in F2

2 (the two dimensional vector space over F2). Show that this allows
one to identify the group GL2(F2) with the symmetric group S3.

(5) Consider the symmetric group S7.
(a) Calculate the order of the following element of S7: (2 3 5)(7 1)(4 2)(3 4 5 1)(6 5).
(b) Find an element of order 12 in S7.
(c) Prove that S7 doesn’t have an element of order 15.

(6) Let n ≥ 3, an integer. Consider the dihedral group Dn with 2n elements. It has generators
x, y that satisfy xn = y2 = 1 and yxy = x−1. Show that yxay = x−a for any integer a > 0.
Show algebraically that every element of Dn that is not a power of x has order 2.

(7) Let n ≥ 3, an integer. Find two elements of order 2 of Dn that together generate it.

(8) Let G be a group and let x, y be elements of G that commute: xy = yx. Let n be the order
of x and m the order of y. Assume that gcd(n, m) = 1. Show the following.
• 〈x〉 ∩ 〈y〉 = {1G}.
• The order of the element xy is mn.
• Show that the assumption that x and y commute is necessary. (One can find a

counter-example already in S3.)

(9) Let D2n, n ≥ 3, be the dihedral group with 2n elements. It is generated by x, y, satisfying
xn = y2 = xyxy = 1. Prove (algebraically) that every element not in the subgroup 〈x〉 is
a reflection and find (geometrically) the line through which it is a reflection.

(10) Let n ≥ 2. Prove that Sn is generated by the set of all transpositions {(ij) : 1 ≤ i < j ≤ n}.
Prove that in fact the transpositions (12), (23), . . . , (n− 1 n) alone generate Sn.

(11) Identify S3 as a subgroup of S4 by thinking about elements of S3 as permutations that fix
the element 4. Prove that a subgroup of S4 that contains S3 is either equal to S3 or to S4.

(12) Let α ∈ Rn, n ≥ 2, be a non-zero vector. We define a reflection in the hyperplane perpen-
dicular to α by the formula

σα(v) = v− 2(v, α)

(α, α)
· α.

Here (x, y) is the standard inner product on Rn. Prove that σα is indeed a linear map
that fixes the hyperplane orthogonal to α and sends α to−α. Given α, β non-zero vectors,
determine when the subgroup 〈σα, σβ〉 is infinite. Further, in case it is finite, determine
it’s order. (Suggestion: reduce to the case of n = 2.)

(13) Let T be a non-empty set (possibly infinite) and define ΣT as the set of all functions
f : T → T that are bijective. Show that ΣT is a group under composition of functions (if
T = {1, 2, . . . , n} we can identify ΣT with Sn). Show that for T = Z there are elements
σ, τ ∈ ΣT, each of order 2, that generate a subgroup of infinite order.

(14) Let G be a finite group and H1 ⊂ H2 be subgroups of G such that [H2 : H1] = p, a prime
number. Prove that if J is a subgroup of G such that H1 ⊆ J ⊆ H2 then either H1 = J of
H2 = J.
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(15) Let G be a group and let H1 ⊂ H2 be subgroups of G. Prove that the index is multiplica-
tive:

[G : H1] = [G : H2][H2 : H1].
If you know how to work well with infinite sets, prove this assertion as equalities of
cardinalities. If not, assume that [G : H1] is a finite integer, and prove the assertion as
an equality of integers. (In particular, using this claim, there is no need to assume in
Exercise (14) that G is a finite group.)

(16) Find the lattice of subgroups of the groups Z/4Z, Z/2Z × Z/2Z, Z/6Z, S3, and A4.
Namely, write all the subgroups and determine which is contained in which. The fol-
lowing simple observation may help: Any subgroup of a finite group is generated by
finitely many elements (for instance, all its elements). Thus, we can start by writing all
the subgroups generated by one element - the cyclic subgroups, then all the subgroups
generated by two elements, and so on. It is useful to note that if we find two subgroups
H1 ⊂ H2 such that |H2|/|H1| is prime, there is no subgroup strictly between H1 and H2
(why?).

(17) The Euler function ϕ,
ϕ : Z>0 → Z,

defined by
ϕ(n) = ]{0 < a ≤ n : gcd(a, n) = 1}.

Prove that it has the following properties:
• If n and m are relatively prime then ϕ(nm) = ϕ(n)ϕ(m).
• If p is a prime ϕ(pa) = pa − pa−1.
• ϕ(n) = n ∏p|n(1− 1/p) (the product taken over the prime divisors p of n).

(18) Let F be a finite field with q elements.
(a) Let n ≥ 1 be an integer. How many solutions does the equation

xn − 1 = 0
has in F?

(b) Find the solutions for xn − 1 = 0 in F = Z/11Z for n = 2, 3, 4, 5. (You may use that
2 generates the cyclic group (Z/11Z)×.)

(19) Let F ⊂ L be finite fields, ] F = q.
(a) Prove that ] L = qn for some integer n ≥ 1.
(b) Prove that for every a ∈ F we have aq = a and that every a ∈ L that satisfies aq = a

is actually in F. (Hint: what do we know about F×?)
(c) Prove that the map x 7→ x(q

n−1)/(q−1) defines a surjective homomorphism L× → F×.

(20) Let p be an odd prime. Prove that for every n ≥ 1 the group (Z/pnZ)× is cyclic. Sug-
gestion: consider first the subgroup B = {a ∈ Z/pnZ : a ≡ 1 (mod p)}.

(21) Prove that the group (Z/2nZ)× is trivial for n = 1, cyclic for n = 2 and isomorphic to
Z/2Z×Z/2n−2Z for n ≥ 3. Suggestion: for n ≥ 3 consider the elements −1 and 5.

(22) (Fermat primes). Use group theory to prove the following: Let h be an integer such that
p = 2h + 1 is prime. Prove that h = 2j for some non-negative integer j. (Prove first that
the order of 2 in (Z/pZ)× is 2h.) Thus, p has the form 22j

+ 1. Such primes are called
Fermat primes. 17

(23) Use group theory to prove Wilson’s theorem: For every prime p, (p− 1)! ≡ −1 (mod p).

17For j = 0, 1, 2, 3, 4 we indeed get primes. They are the primes 3, 5, 17, 257, 65537. To date (June 2020) no other
Fermat primes are known. In particular, 225

+ 1 = 4294967297 was famously factored by L. Euler as 641× 6700417,
and it is known today that all numbers of the form 22j

+ 1 are composite for 5 ≤ j ≤ 32. It is interesting to note that
Fermat conjectured that all numbers of the form 22j

+ 1 are primes. Well, he did better with conjecturing Fermat’s
last theorem.
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(24) Let G be a finite group. The exponent of G, exp(G), is defined as the minimal positive
integer m such that xm = 1 for all x ∈ G. Prove:
(a) If G is abelian then exp(G) = max{ord(x) : x ∈ G}.
(b) If G is not-abelian the previous statement may fail.

(25) Give an example of groups H1CG1, H2CG2, such that H1
∼= H2 and G1/H1

∼= G2/H2,
but G1 6∼= G2.

(26) Give an example of groups ACBCC such that A is not normal in C.

(27) Let σ ∈ Sn be a permutation. Find a formula (in terms of the factorization of σ into
disjoint cycles) for the cardinality of CentSn(σ). Fix n; for which permutations σ the
minimum is obtained?

(28) Give an example of a group G and a subgroup H 6= {1} of G for which H ∩CentG(H) =
{1} and CentG(H) 6= {1}.

(29) Prove that if N < G and [G : N] = 2 then NCG. (This can be done without using group
actions.)

(30) Let m < n be positive integers. Calculate NSn(Sm). In particular, find when NSn(Sm) =
Sm.

(31) Find two subgroups A, B of the symmetric group S4 that have the following properties:
(1) they are both isomorphic to the group S3; (2) they generate S4: 〈A, B〉 = S4.

(32) Prove that the alternating group A4 is generated by {x, y}, for any choice of x ∈ A4 an
element of order 3, and for any choice of y ∈ A4 as an element of order 2.

(33) Prove that S4 is generated by {x, y}, for a suitable choice of an element x of order 3 and
for a suitable choice of an element y of order 2.

(34) Let G be a group and let C ⊂ G be a left coset of some subgroup of G. Prove that C is
also a right coset of some (usually different) subgroup of G.

(35) Characteristic subgroups. A subgroup H of a group G is called characteristic if for every
automorphism f : G → G we have f (H) = H.
(a) Prove that a characteristic subgroup is a normal subgroup. (Hint: consider x 7→

gxg−1 for g fixed.)
(b) Prove that the centre of G, Z(G) is a characteristic subgroup. Prove also that the

commutator subgroup G′ is a characteristic subgroup.
(c) Give an example of a normal subgroup that is not characteristic.
(d) Prove that if H is normal in G and K is a characteristic subgroup of H, then K is

normal in G.

(36) If G, H are finite groups such that (|G|, |H|) = 1 prove that every group homomorphism
f : G → H is trivial ( f (G) = {1}).

(37) Find all possible homomorphisms Q→ S3. Is there an injective homomorphism Q→ S4?
(As usual, Q is the quaternion group of order 8).

(38) Find the centralizer in GL3(R) of each of the following matrices
1

2

3

 ,


1

1

1

 ,


1

−1

1

 .

Fermat primes are interesting in the context of constructing a regular polygon with n sides using only a straightedge
and a compass. This is possible if and only if n is of the form n = 2k p1 p2 · · · ps, where k is a non-negative integer and
the pi are distinct Fermat primes.
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(39) Prove that a non-abelian group of order 6 is isomorphic to S3. Prove that every abelian
group of order 6 is isomorphic to Z/6Z.

Here are some hints: start by showing that every group G of order 6 must have an
element x of order 2 and an element y of order 3. This in fact follows from some general
theorems but I want you to argue directly using only what we covered in class. (A typical
problem here is why can’t all the elements different from 1 have order 3. If this is the case,
show that there are two cyclic groups K1, K2 of G of order 3 such that K1 ∩ K2 = {1}.
Calculate |K1K2|.)

Having shown that, if G is abelian show it implies the existence of an element of order
6. In the non-abelian case show that we must have xyx−1 = y2 and that every element
in G is of the form xayb, a = 0, 1, b = 0, 1, 2. Show that the map x 7→ (1 2), y 7→ (1 2 3)
extends to an isomorphism.

(40) Let G be a finite group with a unique maximal subgroup. Prove that G is cyclic of prime
power order.

(41) Prove that Q, considered as an abelian group relative to addition, has no maximal sub-
groups.

(42) Let A, B be normal subgroups of a group G and suppose that G = AB. Prove that

G/(A ∩ B) ∼= G/A× G/B.

(43) Let G be a group. Let Aut(G) be the collection of automorphisms of G (isomorphisms
from the group onto itself). Show that Aut(G) is a group under composition. For every
g ∈ G let τg : G → G be the map τg(x) = gxg−1. Prove that τg ∈ Aut(G) and that
the map G → Aut(G), g 7→ τg, is a homomorphism of groups whose kernel is the centre
Z(G) of G. The image is called the inner automorphisms of G and is denoted Inn(G).
Prove that Inn(G) is a normal subgroup of Aut(G). The quotient group Aut(G)/Inn(G)
is called the outer automorphism group of G and is denoted Out(G).

(44) Prove that Aut(Z/nZ) is isomorphic to (Z/nZ)×. More generally, prove that

Aut((Z/nZ)N) ∼= GLN(Z/nZ) := {M = (mi,j)
N
i,j=1 : mi,j ∈ Z/nZ, det(M) ∈ (Z/nZ)×}.

(45) In this exercise we shall prove that Aut(Sn) = Sn for n > 6. (The results holds true for
n = 4, 5 too and fails for n = 6.) Thus, Sn is complete for n > 6.

(a) Prove that an automorphism of Sn takes an element of order 2 to an element of
order 2.

(b) For n > 6 use an argument involving centralizers to show that an automorphism of
Sn takes a transposition to a transposition.

(c) Prove that every automorphism has the effect (12) 7→ (a b2), (13) 7→ (a b3), ..., (1n) 7→
(a bn),for some distinct a, b2, ..., bn ∈ {1, 2, ..., n}. Conclude that ]Aut(Sn) ≤ n!.

(d) Show that for n > 6 there is an isomorphism Sn ∼= Aut(Sn).

(46) Let T = Z/6Z×Z/6Z and consider the following permutations on the set T:

σ(x, y) = (y, x), α(x, y) = (x + 1, y + 2).

Let H = 〈σ, α〉 be the subgroup of the permutation group of T generated by σ and α.
(a) Prove that H is not commutative by calculating [α, σ].
(b) Determine the number of orbits of H in T and the size of every orbit. (Hint: it is

useful to consider the function (x, y) 7→ x + y (mod 3)).
(c) Prove that H has more than 12 elements.

(47) Double cosets. Let G be a group and A, B be subgroups of G. A double coset is a set of
G of the form AgB for some g ∈ G.
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(a) Prove that double cosets are either equal or disjoint. Prove that G is a disjoint union
of double cosets.

(b) Provide a necessary and sufficient condition for AgB = AhB.
(c) Give a formula for |AgB|. Is it true that all double cosets have the same cardinality?
(d) Interpret double cosets as orbits for a certain group action. (Make sure that your

initial guess really defines a group action!)
(e) Let A be a subgroup of G such that every double coset AgA of A is equal to some

coset hA of A. Prove that A is normal, and vice-versa.

(48) Let G be a finite group consisting of linear transformations of a finite dimensional vector
space V over the field Fp of p elements (p prime). Suppose that the order of G is a power
of p. Show that there is a vector v ∈ V, v 6= 0 that is an eigenvector with eigenvalue 1 for
the elements of the group G.

Arguing inductively, show that there is a basis in which G consists of upper-triangular
unipotent matrices. (Suggestion: let W be the span of v and consider V/W.)

(49) Let H, K be subgroups of a group G. Prove that

[G : H ∩ K] ≤ [G : H] · [G : K].

(50) Find the number of necklaces with 16 beads, 8 of them blue, 4 red and 4 white, up to
symmetries by D16.

(51) Find the number of necklaces with 12 beads, 2 red, 4 green, 3 blue and 3 yellow, up to
symmetries by D12.

(52) Let G be a finite group. Let p be the minimal prime dividing the order of G and sup-
pose that G has a subgroup K of index p. Prove that K is normal. (Hint: use the coset
representation.)

(53) Let A be a proper subgroup of a finite group G. Prove that G 6= ∪g∈GgAg−1. Prove that
this statement may fail for infinite groups (suggestion: Try G = GL2(C) for the second
part).

(54) Let S3 act on F3, where F is a finite field with more than two elements, by permuting the
coordinates. Find the number of orbits for this action. The size of an orbit is a divisor of
6 (why?). For each such divisor determine if there is an orbit of that size or not. (Either
provide an example, or prove that none exists). Consider the action of S3 on the subspace
given by x1 + x2 + x3 = 0. How many orbits are there?

(55) Let G be a group and H a subgroup of G and let [G : H] = n. We consider here the
question of whether there is an element in g ∈ G such that {H, gH, . . . , gn−1H} are all
the cosets of H in G.
(a) Show that if n is not prime this may fail.
(b) Show that if n is prime such g always exists. (Suggestion: Show first that a transitive

subgroup of Sn has order divisible by n. Show then that if p is prime, a transitive
subgroup of Sp has an element of order p. Use the coset representation to finish the
proof. )

(56) Let G be a group acting transitively on a set S and let s ∈ S be some element. Let K be
a normal subgroup of G. Prove that the number of orbits for K in its action on S is the
cardinality of G/(K StabG(s)).

(57) Show that if G acts transitively on a set of size n then G has a subgroup of index n and,
conversely, if G has a subgroup of index n then G acts transitively on some set with n
elements.

For example, suppose we didn’t know that the group Γ of rigid transformation of the
cube was isomorphic to S4. We can deduce that Γ has a subgroup of index 8 by its action
on the vertices, a subgroup of index 12 by its action on the set of edges, a subgroup of
index 6 by its action on the faces and a subgroup of index 4 by its action on the long
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diagonals; a subgroup of index 3 by its action on the 3 pairs of opposite faces and a
subgroup of index 2 by doing a similar construction with the long diagonals.

(58) Show that the symmetric group S5 can be made to act transitively on a set of size 6 or 10,
but that it cannot act transitively on a set of size 8.

(59) If there are a colours available, prove that there are 1
n ∑d|n ϕ(n/d)ad coloured roulette

wheels with n sectors. (One puts no restriction on how many sectors are painted by a
particular colour.)

(60) The German artist Gerhard Richter created the art installation “4900 Colours: Version
II”, exhibited in the Serpentine Gallery in London in 2008. The installation is created by
combining glass panels, where each panel is composed of 5× 5 squares, coloured in one
of 25 possible colours. If you are interesting in learning more about this, see the beautiful
article by David Spiegelhalter,

https://plus.maths.org/content/understanding-uncertainty-pure-randomness-art

(but this is not required for solving the question). If we wanted to count the number of
such distinct 5× 5 panels, we can rotate them, but as glass panels are transparent we can
also flip them over.
(a) Suppose we only used 3 colours (instead of Richter’s 25 colours).18 How many such

distinct glass panels can be created then, up to such symmetries? (To clarify, we do
not pose any constrains on the panels, so we also allow monochromatic panels and
so on...)

(b) What is the probability that a 3-coloured glass panel thus created randomly actually
has only 2 colours?

(61) Prove that the free group on 2 elements, F2 has a subgroup of index n for every positive
integer n.

(62) (Flags and Parabolic subgroups) Let n ≥ 1 be an integer, F a field and G = GLn(F). Then
G acts on Fn by (M, v) 7→ Mv.
(a) Prove that there are precisely two orbits: {0} and Fn − {0}.
(b) Let 1 ≤ d1 < d1 < · · · < dr < n be integers (r ≥ 1) that we fix from now on. A flag

V• of type (d1, d2, . . . , dr) in Fn is a collection of sub vector spaces

V• : {0} $ V1 $ V2 $ · · · $ Vr $ Fn, di = dim(Vi).

For example, for ei the usual basis of Fn, we have the standard flag V•st, where

Vi = Span(e1, . . . , edi).

Let F(d1,d2,...,dr) be the set of all flags of type (d1, d2, . . . , dr) in Fn. Prove that GLn(F)

are transitively on F(d1,d2,...,dr) and calculate Stab(V•st).
19

(c) Assume now that F is a finite field with q elements. Give a formula for the cardinal-
ity of F(d1,d2,...,dr), Stab(V•st), and [GLn(F) : Stab(V•st)].
Here is an example: let n = 4, (d1, . . . , dr) = (2). Then F(2) is the collection of planes
in F4. The standard flag is

V•st : Span(e1, e2).

The stabilizer is the group of matrices of the form:A B

0 D

 ,

18If I had asked you about Richter’s original choice of 25 possible colours, the answer would have been on the order
of magnitude of 1034, a number too big to be interesting.
19This subgroup is an example of a parabolic subgroup of GLn(F) and all parabolic subgroups are those conjugate
to Stab(V•st) of some (d1, d2, . . . , dr).

https://plus.maths.org/content/understanding-uncertainty-pure-randomness-art
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where A, D ∈ GL2(F), B ∈ M2(F).
If we take (d1, d2, . . . , dr) = (1, 2), the standard flag is Span(e1) ⊂ Span(e1, e2) and
the stabliizer are the matrices of the form( a ? ? ?

0 b ? ?
0 0 c d
0 0 e f

)
,

where a, b are non-zero elements of F, the ? are (any) elements of F, and
(

c d
e f

)
∈

GL2(F).

(63) Let Fq be a finite field with q elements. The group GL2(Fq) acts transitively on F2
q − {0}

(cf. Exercise 62). Consider the following 3 subgroups of GL2(Fq) and their induced
action on F2

q − {0},

B = {
(

a b
0 d

)
: a, b, d ∈ Fq, ad 6= 0}, C = {

(
1 b
0 d

)
: b, d ∈ Fq, d 6= 0},

D = {
(

a b
0 1

)
: a, b ∈ Fq, a 6= 0}.

How many orbits they have? (Although this can be done using just linear algebra, it’s
better if you use also the Cauchy-Frobenius formula.)

(64) Prove that for n ≥ 5, An is the unique non-trivial normal subgroup of Sn.

(65) Let the symmetric group Sn act transitively on a set of m elements. Assume that n ≥ 5
and that m > 2. Show that m ≥ n. Show that for every 1 ≤ a ≤ n there is a transitive
action of Sn on a set with (n

a) elements.

(66) For which n, if any, is there an injective homomorphism Sn → An+1?

(67) Prove that for n ≥ 5 the commutator subgroup of Sn is An.

(68) Let n ≥ 5. Prove that An is generated by the 3-cycles (namely, permutations of the form
(i j k), where i, j, k, are distinct). Prove that An is generated by 5-cycles too.

(69) Write the conjugacy classes of S4. For each conjugacy class choose a representative x and
calculate its centralizer CentS4(x). Verify the class equation. Do the same for A4. Use the
results to find the normal subgroups of A4 and, in particular, deduce that A4 does not
contain a subgroup of order 6.

(70) There is an obvious embedding of S3 in S6, the one in which S3 acts on {1, 2, 3} ⊂
{1, 2, 3, 4, 5, 6}. This embedding is not transitive, that is, given 1 ≤ i < j ≤ 6 we cannot
always find an element of S3 that takes i to j. Prove that there is a transitive embed-
ding S3 ↪→ S6 (i.e., such that the image acts transitively on the 6 elements). Given such
embedding, write the image of (12) and (123).

(71) Write the conjugacy classes of A6. Devise a direct proof that A6 is simple.

(72) Let G act transitively on a set S. We say that G acts primitively if no partition of S, except
for the trivial partitions S = S and S = äs∈S{s}, is preserved by the action of G. Prove
G acts primitively if and only if the point stabilizer of a point of S is a proper maximal
subgroup of G.

(73) A group G acts on a set doubly transitively if for any two elements a 6= b and for any
two elements c 6= d there is g ∈ G such that ga = c and gb = d. Prove that if G acts
doubly transitively then it acts primitively. Give an example of a group G acting on a set
primitively, but not 2-transitively.

(74) In the class equation for finite groups, the number of conjugacy classes is called the class
number of G. Thus, for example, if G is abelian of order n its class number is n. The
group S3 has class number 3, and more generally Sn has class number p(n) (the number
of possible cycle structures). What is the class number of the quaternions Q? Of An for
n ≤ 7? Of An in general? Prove that if G has even class number then G has even order
and provide a counter example for the converse.
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(75) Let G be a finite non-trivial p-group. Prove that G′ (the commutator subgroup of G) is a
proper subgroup of G.

(76) Let G be a finite p-group and HCG a non-trivial normal subgroup. Prove that H ∩
Z(G) 6= {1}.

(77) Let G be a finite p-group and H a normal subgroup of G with pa elements, a > 0. Prove
that H contains a subgroup of order pa−1 that is normal in G. (Hint: use the previous
exercise to prove the result by induction.)

(78) Let p > 2 be a prime, F = Z/pZ. Let G be the subgroup of 3× 3 matrices of the form


1 a b

0 1 c

0 0 1

 ,

where a, b, c are in F. Thus, G is a group with p3 elements.
(a) Calculate the commutator subgroup G′ and prove that Gab = G/G′ ∼= F×F (where

the right hand side is a group under component-wise addition).
(b) Prove that Z(G) = G′.
(c) Prove that if A is a subgroup of G with p2 elements then A ⊃ Z(G). (One way to

prove that is to show that, if not, then necessarily A is an abelian group, G = A Z(G)
and that also G is abelian.)

(d) Prove that G has precisely p + 1 subgroups of order p2.

(79) Let G = GLn(Fq), where Fq is a finite field, q = pr where p is prime.

(a) Prove that the upper unipotent matrices N :=


 1 ∗ ∗ ... ∗

0 1 ∗ ... ∗
...

...
0 ... 1

 are a p-Sylow sub-

group P of G by calculating the order of P and G.
(b) Find conditions so that every element of P has order dividing p. (Hint: use the

binomial theorem for (I + N)p, where I is the identity matrix.)
(c) In particular, deduce that for any p 6= 2 there are non-abelian p-groups such that

every element different from the identity has order p.
(d) Prove that a group G in which a2 = 1 for all a ∈ G is an abelian group.

(80) There are up to isomorphism precisely two non-abelian groups of order 8; they are the
dihedral group D4 and Q the quaternion group. Q is the group whose elements are
{±1,±i,±j,±k}, where −1 is a central element and the relations ij = k, jk = i, ki = j,
i2 = j2 = k2 = −1 hold (in addition to the implicit relations such as−12 = 1,−1 · j = −j,
. . . ). Prove the following
(a) D4 is not isomorphic to Q.
(b) D4 and Q are non-abelian. (Calculate, for instance what is ji.)
(c) Let P be the 2-Sylow subgroup of GL3(F2). Find whether P is isomorphic to D4 or

to Q.

(81) Let p be an odd prime. In this exercise we show that a non-abelian group G of order p3

that has an element x of order p2 is a semi-direct product Z/p2Z o Z/pZ.
(a) Show that Z(G) = G′ is a subgroup of order p and that G/Z(G) ∼= Z/pZ⊕Z/pZ.

In particular, any commutator is in the centre of G and is killed by raising to a p
power.

(b) Prove that xp generates the centre of G.
(c) Prove that to show that G is a semi-direct product Z/p2Z o Z/pZ, it is enough to

show that there is an element y ∈ G such that yp = 1 and y 6∈ Z(G).
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(d) Let y 6∈ 〈x〉 and suppose that y is of order p2. Show that G is generated by x and y.
We want to show that we can find an element ỹ of order p such that ỹ 6∈ Z(G). We
show that by counting how many elements of order p the group G has.

(e) Prove the surprising property, that the function f : G → G, f (t) = tp, is a ho-
momorphism of groups. For that, explain why it is enough to prove the identity
xpyp = (xy)p and proceed to prove this property by making use of identities of the
form xyxy = x[y, x]xyy = [y, x]x2y2, etc.

(f) By estimating the image and the kernel of f show that there exists an element ỹ as
wanted.

(82) Let G be a finite p-group. An element g of G is called a non-generator if whenever
S ∪ {g} is a set of generators of G, so is S. Prove that the Frattini subgroup Φ(G) is the
set of non-generators of G. Prove further that the minimal number of generators of G
is dimFp(G/Φ(G)) and that, in fact, any minimal set of generators has dimFp(G/Φ(G))
generators.

(83) Calculate the Frattini subgroup of the upper unipotent matrices N in GL3(Fp). Conclude
that N is generated by 2 elements. Find such 2 elements.

(84) In Exercise 79 we found a p-Sylow subgroup N of G = GLn(F) where F is a finite field
with q = pr elements. Prove that given a p-subgroup H of G, viewed as a group of linear
transformations, there is a basis to the vector space in which the elements of H are upper-
unipotent (this is, essentially, Exercise 48). Conclude that every maximal p-subgroup of
GLn(F) has qn(n−1)/2 elements and that they are all conjugate.

Improve your argument to show that to give a p-Sylow subgroup of GLn(F) is equiv-
alent to giving a chain of subspaces {0} $ V1 $ V2 $ · · · $ Vn = Fn. Find how many
p-Sylow subgroups there are.

(85) Frattini’s argument. Let G be a finite group, H a normal subgroup of G and p a prime
dividing the order of H. Let P be a p-Sylow subgroup of H. Prove that G = HNG(P).

Use Frattini’s argument to show that if J is a subgroup of G such that J ⊇ NG(P),
where now P is a p-Sylow of G, then NG(J) = J. In particular, NG(NG(P)) = NG(P).

(86) Let G1 ⊂ G2 be two finite groups and p a prime dividing ]G1. Prove that if H1 is a
p-Sylow subgroup of G1 there is a p-Sylow subgroup H2 of G2 such that H2 ∩ G1 = H1.

(87) Let G be a finite group and H a normal subgroup of G. Let P be a p-Sylow subgroup of G
for some prime p. Show that P ∩ H is a maximal p-subgroup of H (where here we allow
that P ∩ H = {1} which is not technically a p-subgroup...). Further, show that HP/H is
a p-Sylow subgroup of G/H.

(88) How many elements of order 5 could there be in a group of order 20?

(89) Prove that in a group of order 20 the number of elements of order 4 must be either 0, 2
or 10. Show by providing an example that the cases 0 and 2 do occur. (The case 10 also
occurs. See exercise 109.)

(90) Let G be a group of order 30.
• Prove that either the 3-Sylow subgroup of G is normal, or the 5-Sylow of G is normal

(or both).
• Prove that G has a subgroup H of order 15.
• Prove that every 5-Sylow subgroup of G is contained in H.
• Prove that G has precisely 4 elements of order 5.

(91) Let p be an odd prime. Find the order and generators for a p-Sylow subgroup of Sp and
S2p.

(92) Find all Sylow subgroups, up to conjugation, for the group S5 and determine for each
prime p how many p-Sylow subgroups there are.

(93) Find all Sylow subgroups, up to conjugation, for the group GL3(F2).
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(94) If the order of G is 231, show that the 11-Sylow subgroup of G is contained in the centre
of G. (After establishing it’s normal you would need eventually to use exercise 44.)

(95) If the order of G is 385, show that the 7-Sylow subgroup of G is contained in the centre
of G and the 11-Sylow is normal.

(96) Find a subgroup of the symmetric group S7 of order 21.

(97) Let G be a group of order 32 · 7 · 23.
(a) Prove that G is solvable.
(b) Assuming that G is non-abelian, what are the possibilities for the order of Z(G)?

(98) Let G be a solvable group. Prove that G 6= G′.

(99) Consider the groups of order bigger than 60 and less than 100. Prove that they are all
solvable. (The choice of 100 is random. In fact, the next non-abelian simple group has
168 elements.)

(100) Find a composition series for A4 and find the composition factors. Prove that A4 does not
have a composition series A4 = G0 B G1 · · · such that G0/G1

∼= Z/2Z. Thus, although
the Jordan-Hölder theorem tells us that two composition series have the same quotients
up to isomorphism and permutation, the converse is not true. Namely, given the compo-
sition factors we cannot necessarily find them arising from a composition series in any
way we want.

(101) If G = H1 × · · · × Hm = K1 × · · · × Kn, where each Hi and Kj are simple groups then
m = n and there is a permutation σ ∈ Sn such that Hi

∼= Kσ(i) for all i = 1, 2, . . . , n.

(102) Let A, B be solvable subgroups of a group G. Suppose that B ⊆ NG(A) (and so AB is a
group). Prove that AB is also solvable.

(103) Prove that a group of order pqr is solvable, where p < q < r are distinct primes.

(104) Let F be a field and consider the invertible matrices of the form
(

a b
0 1

)
with a, b ∈ F.

Exhibit this group as a semi-direct product.

(105) Let G = N oφ B. Prove that G is abelian if and only if both N and B are abelian and
φ : B→ Aut(N) is the trivial homomorphism.

(106) Construct a non-abelian group of order 75 as a semi-direct product. (Hint: at some point
you may wish to use the matrix

( 0 −1
1 −1

)
.)

(107) Construct a group of order 600 containing S5 as a normal subgroup but which is not a
direct product of the form A× S5.

(108) (a) Construct two non-isomorphic abelian groups of order 18.
(b) Using semi-direct products construct a non-abelian group of order 18, which is non-

isomorphic to the Dihedral group D9.

(109) (a) Let p be a prime and choose an isomorphism φ : Z/(p− 1)Z→ Z/pZ×. Use it to
construct a non-trivial semi-direct product

Z/pZ oφ Z/(p− 1)Z.

You may assume in the sequel that the isomorphism type of this group does not
depend on the choice of the isomorphism φ.

(b) For p = 5 the group gotten this way is denoted F20 (it’s an example of a Frobenius
group). Show that F20 is isomorphic to the following subgroup of S5:

〈(12345), (2354)〉.

(c) Calculate the number of elements of order 4 in F20.
(d) Prove that any two distinct 2-Sylow subgroups of F20 intersect only at the identity.

(Hint: prove that a non-trivial permutation belonging to such an intersection will
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have at least 2 fixed points, but also has cycle structure 2, 2, 1, which is impossible in
S5.)

(110) Prove that the group PSL2(F3), which is the quotient of SL2(F3) by the scalar matri-
ces {±

(
1 0
0 1

)
}, has order 12. We have constructed 5 groups of order 12, 2 abelian and

3 non-abelian, and proved that they are the complete list of groups of order 12 up to
isomorphism. Determine to which of these is PSL2(F3) isomorphic.

(111) Prove that for every positive integer n, the group F (2) has a subgroup of index n. (Hint:
think of transitive group actions on n elements instead of subgroups of index n.)

(112) Let n ≥ 3. Show that 〈x, y|xn, y2, xyxy〉 is a presentation of the dihedral group Dn.

(113) Find a presentation for the group Q of quaternions of order 8.

(114) Prove that 〈x, y|x2, y2〉 is an infinite group.

(115) Let p(·) be the partition function. That is, p is defined on positive integers and p(a) is
the number of distinct partitions a = λ1 + λ2 + · · ·+ λs, λ1 ≥ λ2 ≥ · · · ≥ λs > 0, of a
into positive integers (s is allowed to vary at will). Prove that if n = pa1

1 · · · p
ar
r , where

the pi are distinct primes, then there are precisely p(a1) · · · p(as) isomorphism classes of
abelian groups of order n. Find their structure for n = 10800.

(116) Let (ρ, V) be a representation of a group G. Let v ∈ V. Prove that Span{ρ(g)v : g ∈ G}
is always a subrepresentation of V. Give an example for which it is a reducible.

(117) Let S1 = {z ∈ C : |z| = 1}, which is a group under multiplication. For a finite group G
define

G∗ = Hom(G, S1),

the character group of G. Prove that G∗ is indeed a group under multiplication of func-
tions. Prove:
(a) (A× B)∗ ∼= A∗ × B∗.
(b) If G is a finite abelian group then G ∼= G∗.
(c) Let G be a finite abelian group and H a subgroup of G. Show that there is a subgroup

N of G such that G/N ∼= H. Similarly, if H is isomorphic to a quotient group of G
then H is isomorphic to a subgroup of G. (Hint: use duality arguments using the
character group G∗.)

(d) Show that if G is a finite abelian group, then any n-dimensional representation of G
is of the form α1 ⊕ · · · ⊕ αn for some αi ∈ G∗.

(118) (a) Find the four 1-dimensional representations of the quaternion group Q and calculate
for each its character.

(b) The quaternion group Q acts on C2 via its embedding Q ⊆ GL2(C). Write the
character χ for this action and calculate ‖χ‖2.

(c) Write the character table of Q.

(119) Let (ρ, V) be a representation of a group G, where V is a vector space of dimension n.
Suppose that its character, χρ, is the constant function n:

χρ(g) = n, ∀g ∈ G.

Prove that ρ is a trivial representation. Namely, that ρ(g) = IdV for all g ∈ G.

(120) Let (ρ, V) be a 3-dimensional representation of the quaternion group Q. Show that there
is a vector v 6= 0 that is an eigenvector for every ρ(g), g ∈ Q.

(121) Let (ρ, V) be a representation of G, where ]G = n and dim(V) > n. Prove that V is
reducible.

(122) Let ρreg be the regular representation of G. Determine ∑g∈G ρreg(g).
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(123) The group A4 acts on R3 via its action on a regular tetrahedron. Write the character χ for
this action and calculate ‖χ‖2. (Hint: you don’t have to work with the usual basis. There
is another basis for R3 in which the computations are much easier!)

(124) Find the decomposition of the representation Z/4Z→ GL2(C), a 7→
(

0 1
−1 0

)a into a sum
of irreducible representations.

(125) Let (α, V), (τ, W) be two representations of a group G. Prove that (α, V) is isomorphic
to a sub-representation of (τ, W) if and only if for every irreducible character ρ of G we
have 〈χα, ρ〉 ≤ 〈χτ, ρ〉.

(126) Let G be a finite group of order n and class number h and consider its character table.
Modify the rows of the character table suitably so as to obtain genuine orthogonal rows
and so a h × h orthogonal matrix. Use this modified matrix to prove that the columns
of the character table are orthogonal too and so for g, h ∈ G and {χi} the irreducible
characters of G:

∑
χi

χi(g)χi(h) =

{
|CentG(g)| , if g, h are conjugate;
0, otherwise.

(The summation extending over the irreducible characters.)

(127) The group Sn acts {1, 2, . . . , n}. Consider all pairs of distinct elements in {1, 2, . . . , n}.
There are n(n− 1)/2 such. The group Sn acts on these elements by

σ ∗ {i, j} = {σ(i), σ(j)}.
Consider now a vector space of dimension n(n− 1)/2 with basis

{v{i,j}, i 6= j}.
Or, put differently, let T be the set whose elements are the n(n− 1)/2 subsets {i, j}. Then
Sn acts on T. And we take a vector space with basis

{vt, t ∈ T}.
There is a linear representation ρ of Sn on this vector space such that

ρ(σ)(vt) = vσ(t).

Nothing to prove so far. First, give a combinatorial interpretation for the character χ
of this representation, interpreting χ(σ) in terms of transpositions and fixed points.

Now, specialize all this to the case n = 4. Write the character of the representation
ρ completely explicitly. Using the character table of S4 (it appears in the course notes)
decompose the 6-dimensional representation ρ into irreducible representations. You are
not required to decompose the vector space itself, only to find the abstract decomposition
of ρ into a sum of irreducible representations.

Now view ρ merely as representation of the Klein group. Factor it into irreducible
representations (in the same sense as above).

(128) Show that for n ≥ 4, ρst,0, viewed as a representation of An, is irreducible.

(129) Let z be a central element of a finite group G and V an irreducible representation of G.
Show that z acts on V as a multiple of the identity endomorphism. (Hint: use Schur’s
lemma.)

(130) Prove that two elements x, y of a group G are conjugate, if and only if χ(x) = χ(y) for
every irreducible character χ of G.

(131) Prove that

Z(G) = {g ∈ G : |χ(g)| = χ(1), χ irreducible character}.
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(132) Let G be a finite group with n elements and k conjugacy classes. Denote by m = [G : G′]
the index of the commutator subgroup. Prove that

n + 3m ≥ 4k.

(Hint: the solution uses group representations.)

(133) Prove that if a value α appears in the character table of a group G then also ᾱ appears in
the character table. Prove that if all the entries in the character group are real, then every
element of the group is conjugate to its inverse. (Make use also of question 130.)

(134) Prove that for any n, the value of any character of the group Sn is a real number. (In fact,
it’s an integer, but this would be too hard to prove based on what we have learned in
this course.)

(135) Here is the character table of the group G = Z/2Z×Z/3Z oφ S3 (φ is a unique non-
trivial homomorphism S3 → Aut(Z/3Z)). Determine all normal subgroups of this group,
their orders and their inclusion relation. Determine the commutator subgroup and the
centre of the group (in the sense of writing them as a union of conjugacy classes). Is Gab

a cyclic group? Is G′ a cyclic group?

(136) Let F = Z/pZ, where p is a prime number. Consider the group

G = {
(

b n
0 1

)
: b, n ∈ F, b 6= 0}.

Find the character table of G. (Start by finding the number of conjugacy classes and the
number of 1-dimensional representations.)

(137) Consider a group G with the following character table.
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The top row provides notation for the different conjugacy classes and the row below
it indicates the number of elements in each conjugacy class (except that you will have
deduce some of the entries). Answer the following questions:

(a) What is ]G? What is ]Gab? What is ]Z(G)? What is the size of the conjugacy class
5A? What is the value of ρ7 on the conjugacy class 5E? (In each case, explain what
you rely on.)

(b) Determine the structure of Gab up to isomorphism.
(c) Prove that ∀x ∈ G′, x 6= 1, ]Cent(x) = 25, where Cent(x) = {g ∈ G : gx = xg}.
(d) Prove that besides G and {1}, G has exactly 4 normal subgroups and determine their

orders and inclusion relation.

(138) The table below is the character table of the symmetric group S5.

(a) Use your knowledge of the 1-dimensional representations of S5, and other consid-
erations, to write a representative permutation for each conjugacy class.

(b) The group S5 acts on the set T = {{i, j} : i, j ∈ {1, 2, . . . , 5}, i 6= j} that has 10
elements. Show that this defines a 10-dimensional representation (ρ, V) of S5. A
basis for this vector space can be given by

{v{i,j} : 1 ≤ i < j ≤ 5}.

Write the character χρ of ρ. (Namely, provide its value on each conjugacy class in
S5.)

(c) Find the decomposition of χρ as a sum of irreducible characters and, in particular,
determine the dimension of the space of fixed vectors dim(VS5).

(d) Consider the natural inclusion S3 ⊂ S5 and the subspace

VS3 = {v ∈ V : ρ(σ)(v) = v, ∀σ ∈ S3}.

Find a basis for VS3 .

(139) Let T be the non-abelian group of order 12 that we constructed as

T = Z/3Z oφ Z/4Z,

where we identify Aut(Z/3Z) with (Z/3Z)× = {1, 2} and where φ is the homomor-
phism:

φ : Z/4Z→ Aut(Z/3Z), φ(a) = 2a.

In this question we will eventually write the character table of T. Elements of T are
written as (n, b), n ∈ Z/3Z, b ∈ Z/4Z and multiplication is given by

(n1, b1)(n2, b2) = (n1 + 2b1 n2, b1 + b2).
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(a) Prove that T has 6 conjugacy classes and write each of them explicitly.20

(b) Prove that T has four 1-dimensional representations and deduce that the irreducible
representations of T are: four 1-dimensional representations and two irreducible
2-dimensional representations.

(c) Let ψ : Z/2Z→ Aut(Z/3Z), ψ(a) = 2a. Show that there is a natural homomor-
phism

f : T → Z/3Z oψ Z/2Z.
(d) Prove that Z/3Z oψ Z/2Z ∼= S3 and thus has an irreducible 2-dimensional repre-

sentation ρ′.
(e) Write the character of the representation ρ := ρ′ ◦ f .
(f) Write the full-character table of T.

(140) One of the first, and fundamental, results we proved about representations of finite
groups is their decomposition into irreducible representations, provided that we are
dealing with representations on finite dimensional complex vector spaces. In this ex-
ercise we show that this fails in characteristic p.

Let F be a field of characteristic p, hence we may assume that Z/pZ ⊂ F. Consider the
group of upper unipotent matrices in GLn(Z/pZ), which acts naturally of Fn, thought
of as columns vectors of length n with coordinates in F. Call this representation (ρ, Fn).

For every 1 ≤ a ≤ n − 1, find an a-dimensional sub-representation U of (ρ, Fn)
and prove that it doesn’t have a complement; that is, prove that there is no other sub-
representation V of (ρ, Fn) such that U ⊕V = Fn.

Additional and challenging exercises about groups:

(141) A group G is called complete if Z(G) = {1} and Out(G) = {1}. Otherwise said, if
G ∼= Aut(G) via the natural homomorphism G → Aut(G). Prove that if G is a simple
non-abelian group then Aut(G) is complete.

(142) Let G be a finite group and K a normal subgroup of G. Suppose that K is a simple group
and that |K|2 - |G|. Prove that G doesn’t have any subgroup that is isomorphic to K
besides K. In particular, conclude that K is a characteristic subgroup.

(143) Let G be a finite simple group. Let H be a subgroup of G whose index is a prime p. Prove
that p is the maximal prime dividing the order of G and that p2 - |G|.

(144) Coxeter groups. A Coxeter group can be defined as a group with the presentation

〈r1, . . . , rn|(rirj)
mij = 1〉

where the mij are positive integers, where we allow formally mij = ∞ and that means
that no relation is put on rirj. Furthermore, mii = 1 for all i, and for every pairi, j, we
have mij = mji. One refers to S = {r1, . . . , rn} as the generators and a Coxeter system is
a pair (W, S) as above.

Thus, a Coxeter group is generated by “reflections” ri that do not necessarily commute
(as we may have mij > 2) and, as such, they often arise from geometry. Particular Coxeter
groups are also a fundamental object in the theory of Lie groups, where they appear
under the name Weyl group.

Prove the following ((b) is more challenging than (a) and (c), I believe):

(a) Prove that for n ≥ 3, the matrix (mij) =
(

1 n
n 1

)
defines a Coxeter group

〈r1, r2 : r2
1 = r2

2 = (r1r2)
n = 1〉

isomorphic to Dn.

20If you did your calculation correctly you will find that 2 are of size 1,2 are of size 2 and 2 are of size 3.
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(b) Let n ≥ 2. For 1 ≤ i ≤ j ≤ n− 1, let mii = 1, mi i+1 = 3 and mij = 2 if j− i ≥ 2 and
complete the matrix (mij) by symmetry. Show that the Coxeter group

〈r1, . . . , rn−1|(rirj)
mij = 1〉

is isomorphic to the symmetric group Sn. (So, for example, S3 is isomorphic to the
group 〈r1, . . . , r2|r2

1 = r2
2 = (r1r2)3 = 1〉.)

(c) Show that the Coxeter group 〈r1, . . . , r2|r2
1 = r2

2 = 1〉 (with corresponding matrix
(mij) =

(
1 ∞
∞ 1

)
) is an infinite group.

(145) Let (W, S) be a Coxeter system. We define the length `(w) of w ∈ W as r, where r ≥ 0 is
the minimal integer so that one can write

w = s1s2 · · · sr, si ∈ S.

Note: there may be more than one such expression of length r for w, but any such ex-
pression w = s1s2 · · · sr, si ∈ S is called a reduced decomposition of w. Prove the
following:
(a) `(w) = `(w−1.
(b) `(w1w2) ≤ `(w1) + `(w2).
(c) The function d(w1, w2) = `(w1w−1

2 ) is a metric on W.
(d) For the Coxeter system (Sn, {(12), (23), . . . , (n − 1 n)), for n = 3, 4, calculate the

length of (13) and (14)(23).

(146) (Goursat’s Lemma) Gourstat’s lemma provides a method to find all subgroups of a prod-
uct A× B of two groups. We first provide motivation by providing a general method to
construct such subgroups. Goursat’s lemma would show that this method is the most
general one; that every subdirect product of A× B is obtained this way.

To begin with, denote by πA : A× B→ A, πB : A× B→ B, the projections

πA(a, b) = a, πB(a, b) = b.

A subgroup H of A× B is called a subdirect product if

πA(H) = A and πB(H) = B.

(Note that we always have that H is a subdirect product of πA(H)× πB(H) and so for
many purposes, such as classifying all subgroups H of A× B, we may reduce to the case
of subdirect products.)

(a) Let KCB and let f : A→ B/K be a surjective homomorphism. Let H ⊆ A × B be
given by

H = {(a, b) : f (a) = bK}.
Prove that H is a subdirect product of A× B.

(b) Let N be the kernel of f . We have then an induced isomorphism

F : A/N → B/K.

Denote by ā elements of A/N and by b̄ elements of B/K. Let ΓF be the graph of F:

ΓF = {(ā, F(ā)) : ā ∈ A/N}.
Prove that ΓF is a subgroup of A/N × B/K and that H is the pre-image of ΓF in
A× B under the natural homomorphism A× B→ A/N × B/K. That is

H = {(a, b) : a ∈ A, b ∈ B, F(ā) = b̄}.
(c) Prove Goursat’s lemma, which is the converse of the above:

Let H be a subdirect product of A × B. There are normal subgroups NCA, KCB and an
isomorphism F : A/N → B/K such that H is the pre-image of ΓF under the natural homo-
morphism A× B→ A/N × B/K.
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(i) Let N = H ∩ A = Ker(πB : H → B) and K = H ∩ B = Ker(πA : H → A).21

Prove that N and K are normal subgroups of A and B, respectively, and that
the function

F : A/N → B/K, F(ā) = πB(a, b)K = bK = b̄,
defined by choosing any element (a, b) in H such that ā = aN, is a well-defined
homomorphism.

(ii) Prove that, in fact, F is an isomorphism and that H is the pre-image of ΓF.
(iii) Prove that ]H = ]A× ]K = ]B× ]N, if A and B are finite groups.

(d) Use the results above to find all subdirect products of S3 × S3.
(147) Shuffles. Let n ≥ 1 and 1 ≤ d ≤ n be integers. A shuffle (sometimes called a riffle

shuffle) is a permutation σ of Sn such that that
σ(1) < σ(2) < · · · < σ(d), σ(d + 1) < σ(d + 2) < · · · < σ(n).

This definition depends on d, but we do not indicated that in the terminology unless we
must. We will then talk about a (d, n− d) shuffle. The name comes from shuffling cards.
Imagine a deck of n cards and a shuffle of it, where you take the top d cards and stick
them in order into the other n− d cards. 22

(There is a similar notion, that for lack of better terminology we will call an inverse-
shuffle. These are permutations σ that satisfy σ−1(1) < · · · < σ−1(d) and σ−1(d + 1) <
· · · < σ−1(n). Note that the inverse of a shuffle is an inverse-shuffle)
(a) Prove that there are (n

d) permutations in Sn that are (d, n− d)-shuffles.
(b) Consider the group Sd × Sn−d as a subgroup of Sn, where we identify Sn−d with

permutations of {d + 1, . . . , n}. More formally, to a pair (σ, τ) ∈ Sd × Sn−d associate
the permutation ρ ∈ Sn given by

ρ(i) =

{
σ(i) 1 ≤ i ≤ d
τ(i− d) + d d + 1 ≤ i ≤ n.

Prove that the set of (d, n− d) shuffles are a complete set of representatives for the
right cosets Sn/Sd × Sn−d.

(c) Likewise, prove that the set of (d, n− d) inverse shuffles are a complete set of repre-
sentatives for the left cosets Sd × Sn−d\Sn.

(d) Consider now (1, n− 1)-shuffles and the oriented Cayley graph of Sn relative to the
set of (1, n− 1)-shuffles. First draw this graph for the groups S3 and S4. Prove for
a general n that the Cayley graph is connected (namely, that every permutation can
be obtained as a product of (1, n− 1)-shuffles) and estimate its diameter.

(148) Let F be a field. Prove that the subgroup U of GL3(F) is a non-trivial semi-direct product,
where

U =
{(

1 a b
0 1 c
0 0 1

)
: a, b, c ∈ F

}
.

(149) Let n be a positive integer. Find the number of conjugacy classes, the centre and the
commutator subgroup of the group

Z/nZ oφ (Z/nZ)×,

where φ : (Z/nZ)× → Aut(Z/nZ) is given by a 7→ [a], where [a] is the automorphism
of Z/nZ defined as

[a](x) = ax.

21It is more accurate to say that N = H ∩ (A× {1}), and K = H ∩ ({1} × B), but we will identify A with A× {1}
and B with {1} × B.
22If you are interested in learning more about shuffles and their combinatorial and probabliistic uses, I recommend
the paper by Aldous and Diaconis, Shuffling cards and stopping times, Amer. Math. Monthly 93 (1986), no. 5, 333–348,
as a starting point.
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Rokicki, 117
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centralizer, 15
commutator, 15
generated, 3
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Sylow’s theorem, 52
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Weyl group, 135
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