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Introduction.
This course is about vector spaces and the maps between them, called linear transformations (or
linear maps, or linear mappings).

Vector spaces have their origins in physics. Vectors in 3-dimensional space may represent the
momentum of travelling bodies. Those can be added and rescaled by an real scalar. And all this
without introducing any coordinate system as yet. Later on, the same structure was revealed in
the study of functions, for example, continuous functions f : R — R. Once more, two functions
can be added: f + g is the function whose value at x is f(x) = g(x). They can also be rescaled,
that is multiplied by a real number r: rf is the function whose value at x is r - f(x). We see
here the emergence of a similar structure: a set whose elements can be added and multiplied
by a scalar. If we now replace the field R by any field FF, and the set V' can be any set, we
obtain the notion of a vector space: a set V' so that any two elements v, w of it, called “vectors”,
can be added and each vector can be rescaled by an element of IF. Naturally, we impose some
reasonable conditions (such as those occurring for adding vectors in physical 3-dimensional
space). To illustrate: we wantv+w =w+v, (4 +v) + w = u + (v+ w), and so on.

By introducing coordinates, the space around us can be thought of as IR3. By abstraction we
understand what are

R,R? R3 R, ..., RY,...,

where R" is then thought of as vectors (x, ..., x,) whose coordinates x; are real numbers. Re-
placing the field R by any field IF, we can equally conceive of the spaces

F,F?, F3,F4, ... F",...,

where, again, [F" is then thought of as vectors (x1,. .., x,) whose coordinates x; are in IF. [F" is
called the vector space of dimension n over [F, where adding vectors is done coordinate-wise.
Our goal will be, in the large, to build a theory that applies equally well to R" and F". We
will also be interested in constructing a theory which is free of coordinates; the introduction
of coordinates will be largely for computational purposes. Now, it turns out, that the theory
of vector spaces in themselves is very limited. Once one introduces the notion of a basis and
proves a thing or two about it, the theory is over. A basis provides us with coordinates on the
space and all vector spaces look like [F", or a generalization of it made to accommodate vector
spaces of infinite dimension. What really gives life to the subject and makes it highly applicable
is the study of maps between vector spaces, the so-called linear transformations.

Here are some problems that use linear algebra and that we shall address later in this course
(perhaps in the assignments):

(1) An m x n matrix over F is an array

ar ... dAp
p ajj € IF.

Am1 -+ Amn

We shall see that linear transformations and matrices are essentially the same thing.
Consider a homogenous system of linear equations with coefficients in IF:

aix1+ -+ aypx, =0

A1 X1+ -+ AynXy = 0



This system can be encoded by the matrix

We shall see that matrix manipulations and vector spaces techniques allow us to have a very
good theory of solving a system of linear equations.

(2) Consider a smooth function of 2 real variables, f(x,y). The points where
0 0
o, U,
ox ay
are the extremum points. But is such a point a maximum, minimum or a saddle point?
Perhaps none of these? To answer that one defines the Hessian matrix,

2 f 2 f
9x2  oxdy
9 f f
oy o

If this matrix is “negative definite”, resp. “positive definite”, we have a maximum, resp.
minimum. Those are algebraic concepts that we shall define and study in this course. We
will then also be able to say when we have a saddle point.

(3) The following example is a very special case of what is called a Markov chain. Imagine
a system that has two states A, B, where the system changes its state every second ( say),
with given probabilities. For example,

0.2
T
0.3\7A\M”//B‘J0.8
0.7

Given that the system is initially with equal probability in any of the states, we’d like to
know the long term behavior. For example, what is the probability that the system is in

state B after a year. If we let
03 0.2
M= (0.7 O.8> ‘

MO0X60x 24365 <0-5> )

then the question is what is

0.5

While modern computers (or even smart phones) have no problem making this calcula-
tion by brute-force, we can imagine systems with 100 particles1 evolving over a billion
years and then a brute-force approach is certainly not the best. Thus, we are led to ask if
there is a fast method to perform such calculations.

(4) Consider a sequence defined by recurrence. A very famous example is the Fibonacci
sequence:
1,1,2,3,5,8,13,21,34,55, . ..

IThe number of water molecules in a tea cup exceeds 10% so for physical applications 10° is really a modest size
number.
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(6)

It is defined by the recurrence

ap=1, a =1, ap2=ay,+ay,41, n=0.
01
u=(7 1)
an \ _ (0 1Y (an— g (0
An4+1 11 n ai1)’

We see again that the issue is to find a formula for M".

If we let

then

Consider a graph G. By that we mean a finite set of vertices V(G) and a subset E(G) C
V(G) x V(G), which is symmetric: (1,v) € E(G) < (v,u) € E(G). The elements of E(G)
are the edges. (It follows from our definition that there is at most one edge between any
two vertices 1, v. So we really are considering a special kind of graphs.) We shall also
assume that the graph is simple: (u, 1) is never in E(G).

To a graph we can associate its adjacency matrix

ayg ... a
Lo 1 (i,j) €EG)
S VSRS K U210
Ayl .. OQun ] '
It is a symmetric matrix whose entries are 0, 1. The algebraic properties of the adjacency
matrix teach us about the graph. For example, we shall see that one can read off if the
graph is connected, or bipartite, from algebraic properties of the adjacency matrix. If we
think about the vertices as trees and the edges indicate if a fire can spread from one tree
to the next, the eigenvalues of the adjacency matrix inform us how quickly a fire will
spread through the graph.

The goal of coding theory is to communicate data over a noisy channel. The main idea is
to associate to a message m a uniquely determined element c(m) of a subspace C C 5.
The subspace C is called a linear code. Typically, the number of digits required to write
c(m), the code word associated to m, is much larger than that required to write m itself,
but by means of this redundancy something is gained.

Define the Hamming distance of two elements u, v in [F} as

d(u,v) = no. of digits in which u and v differ.

We also call d(0, ) the Hamming weight w(u) of u. Thus, d(u,v) = w(u — v). We wish
to find linear codes C such that

w(C) := min{w(u) : u € C\ {0}},

is large. The receiver of the message c(m) can tell what was the original message m
by reversing the encoding process. But, in practice, due to errors in transmission, the
receiver may not receive c(m) but rather a string of bits c(m)’ that is not far off, hopefully,
from c(m). The receiver is thus looking for the element of C closest to the message c(m)’
received; very likely that element is indeed c¢(m). The larger w(C) is, the more likely it is
that the receiver found correctly the original transmission ¢(m) and thus the message m.

The mathematics begins in finding codes C with a large weight w(C) that nonetheless
fill up much of the space IF; (otherwise, one can show, that the rate of data transmission
is very low). Such codes enable deep space NASA missions to transmit data from a
distance of billions of miles using, essentially, the power of a little battery.



(7) Let y(t) be a real differentiable function and let y(")(t) = 3::71 . The ordinary differential

equation:

vy () = a1 -y 4+ 4ar -y V(@) +ag - y(b)
where the a; are some real numbers, can be translated into a system of linear differential
equations. Let f;(t) = y((t) then

fo=h
fi=r

fr,z—l = ay_1fu—1+ - +aifi +aofo.

More generally, given functions g1, ..., we may consider the system of differential
equations:

gi =ang1+ -+ amngn

g =am& + -+ Aungn.
It turns out that the matrix

determines the solutions uniquely, and effectively. In the example above, the matrix is

o 1 0 ... O
o 0 1 ... 0
0 1

apg apy dp ... Ap_1



Part 1. Vector spaces

1. VECTOR SPACES: KEY NOTIONS

1.1. Definition of vector space and subspace. Let FF be a field.
Definition 1.1.1. A vector space V over [ is a non-empty set together with two operations
VxV =V, (v1,v2) — v1 + 0y,
and
FxV =V, (2, 0) — av,

(sometimes we write « - v) such that V is an abelian group with identity element denoted 0Oy
and, in addition:

1) lv=09, YoeV,

(2) (aB)v =wa(Bv), Ya,p € F, Vv € V;

3) (a+pB)v=av+pv, Ya,peF,VoeV;

(4) a(v1 +v2) = avy +avy, Yo € F,v1,05 € V.
The elements of V are called vectors and the elements of IF are called scalars.

Here are some formal consequences:

0
This holds true because Of - v = (O + Op)v = Op - v 4 O - v and so Oy = O - v.
o

This holds true because Oy = 0p-v = (1+ (—-1))v=1-v+(-1)-v =v+ (—1)-vand
that shows that —1-vis —v.

®
Indeed, a -0y = a - (Oy +0y) = a -0y +a - Oy.
Definition 1.1.2. A subspace W of a vector space V is a non-empty subset such that:
(1) Ywq, wy € Wwehave wi +w, € W,
(2) Va € F,w € W we haveaw € W.

It follows from the definition that W is a vector space in its own right. Indeed, the consequences
noted above show that W is a subgroup and the rest of the axioms follow immediately since
they hold for V. We also note that we always have the trivial subspaces {0} and V.

Example 1.1.3. The vector space [F". Let n > 0 be an integer.
We define

F'" = {(x1,...,x4) : x; € F},
with coordinate-wise addition. Multiplication by a scalar is defined by
a(xy, ..., xn) = (ax1,...,0x,).

The axioms are easy to verify. (If 7 = 0 we understand by IF? a set of one element {0} with
0+0=0andforalla € F,a-0=0.)
For example, for n = 5 we have that

W = {(x1,x2,x3,0,0) : x; € F}

is a subspace of IF°. This can be generalized considerably.



Let a;; € IF and let W be the set of vectors (x1,...,x,) such that

ap1x1 + -+ apx, =0,

Am1X1 + -+ AmnXn = 0.
Then W is a subspace of [F".

Example 1.1.4. Polynomials of degree less than 7.
Again, FF is a field. We define FF[t],, to be

Flt], = {ao +ait + - +ay_1t""' 1 a; € F}.

We also put F[t]o = {0}. Itis easy to check that this is a vector space under the usual operations
on polynomials. Let 2 € IF and consider

W= {f eF[t],: f(a) =0}
Then W is a subspace. Another example of a subspace is given by
U= {f € Fltl: f'(t) +3f'() = 0},

where if f(t) = ag + a1t + - - + ay,_1t" "t we let f'(t) = a; +2at + -+ - + (n — 1)a,_1#" "2 and
similarly for f” and so on.

Example 1.1.5. Continuous real functions.
Let V be the set of real continuous functions f : R — IR. We have the usual definitions:

(f+8)x) = flx) +g(x),  (af)(x) = af(x).
Here are some examples of subspaces:

(1) The functions whose value at 5 is zero.

(2) The functions f satisfying f(1) +9f () = 0.
(3) The functions that are differentiable.

(4) The functions f such that fol f(x)dx =0.

Proposition 1.1.6. Let Wy, W, C V be subspaces then
Wy + Wy :={wy +wy : w; € W;}
and
W1 N W,
are subspaces of V.
Proof. Let x = wy + wo,y = wj + w) with w;, w; € W;. Then
x+y=(w+wh)+ (wy +wp).
We have w; + w} € W;, because W; is a subspace, so x +y € Wi + Wa. Also,
X = qwq + aws,

and aw; € W;, again because W; is a subspace. It follows that ax € W; + W,. Thus, W; + W is a
subspace.

As for Wi N W,, we already know it is a subgroup, hence closed under addition. If x €
Wi N W, thenx € W;and soax € W;, i = 1,2, because W; is a subspace. Thus, ax € Wy NW,. U



1.2. Direct sum. Let U and W be vector spaces over the same field F. Let
UsW:={(u,w):ueclwe W}
We define addition and multiplication by scalar as
(ug, w1) + (up, wa2) = (U1 + up, wq + wy), a(u,w) = (au, aw).

It is easy to check that U @& W is a vector space over [F. It is called the direct sum of U and W, or,
if we need to be more precise, the external direct sum of U and W.

We consider the following situation: U, W are subspaces of a vector space V. Then, in general,
U + W (in the sense of Proposition 1.1.6) is different from the external direct sum U @ V, though
there is a connection between the two constructions as we shall see in Theorem 3.4.1.

1.3. Linear combinations, linear dependence and span. Let V be a vector space over F and
S ={v;:i € I,v; € V}bea collection of elements of V, indexed by some index set I. Note that
we may have i # j, but v; = v;.

Definition 1.3.1. A linear combination of the elements of S is an expression of the form
a0 + -+ a0,

where the «; € IFand v;; € S. If S is empty then the only linear combination is the empty sum,
defined to be Oy. We let the span of S be

Span(S) = {

m
DC]'UZ']. D € IF,Z]' € I} .
j=1

Note that Span(S) is all the linear combinations one can form using the elements of S.

Example 1.3.2. Let S be the collection of vectors {(0,1,0), (1,1,0),(0,1,0)}, say in R3. The vector
0 is always a linear combination; in our case, (0,0,0) =0-(0,1,0) +0-(1,1,0)+0-(0,1,0), but
also (0,0,0) =1-(0,1,0)4+0-(1,1,0) —1-(0,1,0), which is a non-trivial linear combination. It
is important to distinguish between the collection S and the collection T = {(0,1,0),(1,1,0)}.
There is only one way to write (0,0, 0) using the elements of T, namely, 0- (0,1,0) +0- (1,1,0).

Proposition 1.3.3. The set Span(S) is a subspace of V.

Proof. Let }i’; ajv;; and }.i' ;1 Bjvy; be two elements of Span(S). Since the a; and f; are allowed
to be zero, we may assume that the same elements of S appear in both sums, by adding more
vectors with zero coefficients if necessary. That is, we may assume we deal with two elements
Yy ajv; and Y4 Bjv;,. Itis then clear that

m m m

2 ;0j, + Z ,iji]- = 2(06]' + ﬁj)vij,

j=1 j=1 j=1
is also an element of Span(S).

Leta € F then « <Z;”:1 wj - Ui]) = Z}”:l awj - vj, shows that « (Z}”:l zx]-vi/.) is also an element of

Span(S). O
Definition 1.3.4. If Span(S) = V, we call S a spanning set. If Span(S) = V and forevery T G S
we have Span(T) & V we call S a minimal spanning set.

Example 1.3.5. Consider theset S = {(1,0,1),(0,1,1),(1,1,2)}. Thespanof Sis W = {(x,y,z) :
x +y—z = 0}. Indeed, W is a subspace containing S and so Span(S) C W. On the other hand,
if (x,y,z) € W then (x,y,z) = x(1,0,1) +y(0,1,1) and so W C Span(S). Note that we have
actually proven that W = Span({(1,0,1),(0,1,1)}) and so S is not a minimal spanning set for
W. It is easy to check that {(1,0,1),(0,1,1)} is a minimal spanning set for W.



Example 1.3.6. Let
st={(1,0,0,...,0), (0,1,0,...,0),..., (0,...,0,1)}.
Namely,
St={e1, ez, ..., en},
where ¢; is the vector all whose coordinates are 0, except for the i-th coordinate which is equal
to 1. We claim that St is a minimal spanning set for [F". Indeed, since we have
wier + -+ ape, = (ag,...,&,),
we deduce that: (i) every vector is in the span of St, that is, St is a spanning set; (ii) if T C St
and ¢; ¢ T then every vector in Span(T) has j-th coordinate equal to zero. So in particular
ej ¢ Span(T) and so St is a minimal spanning set for IF".
Definition 1.3.7. Let S = {v; : i € I} be a non-empty collection of vectors of a vector space V.
We say that S is linearly dependent if there are ; € F, j = 1,...,m, not all zero and v, € S,
j=1,...,m,such that
X10;, + -+ - + a0, = 0.
Thus, S is linearly independent if

0;, + -+ +ayo;, =0
for some a; € I, v, € S,impliesa; = --- = a,;, = 0.

Example 1.3.8. If S = {v} then S is linearly dependent if and only if v = 0. If S = {v, w} then S
is linearly dependent if and only if one of the vectors is a multiple of the other.

Example 1.3.9. The set St = {ey, 2, ...,e,} in [F" is linearly independent. Indeed, if }/" ; aje; = 0
then (a1,...,a,) = 0 and so each a; = 0.

Example 1.3.10. The set {(1,0,1),(0,1,1),(1,1,2)} is linearly dependent. Indeed, (1,0,1) +
(0,1,1) - (1,1,2) = (0,0,0).

Definition 1.3.11. A collection of vectors S of a vector space V is called a maximal linearly inde-
pendent set if S is independent and for every v € V the collection S U {v} is linearly dependent.

Example 1.3.12. The set St = {ej,e,...,¢,} in F" is a maximal linearly independent. Indeed,
given any vector v = (ay,...,a,), the collection {ey, ..., e,, v} is linearly dependent as we have
w161 +opey + - -+ e, —ov=0.

1.3.1. Geometric interpretation. Suppose that S = {vy,..., v} is a linearly independent collection
of vectors in IF”. Then v; # 0 (else 1-v; = 0 shows S is linearly dependent). Next, v, ¢
Span({v;}), else v = a1v; for some a; and we get a linear dependence a1v; — v, = 0. Then,
v3 & Span({v1,v2}), else v3 = w101 + a2v7, etc. We conclude the following:

Proposition 1.3.13. S = {vy,..., v} is linearly independent if and only if v1 # 0 and for any i we
have v; ¢ Span({v1,...,vi_1}).

1.4. Spanning and independence. We keep the notation of the previous section 1.3. Thus, V is
a vector space over Fand S = {v; : i € I,v; € V} is a collection of elements of V, indexed by
some index set I.

Lemma 1.4.1. We have v € Span(8S) if and only if Span(S) = Span(S U {v}).
The proof of the lemma is left as an exercise.

Theorem 1.4.2. Let V be a vector space over a field F and S = {v; : i € I} a collection of vectors in V.
The following are equivalent:



(1) S is a minimal spanning set.
(2) S is a maximal linearly independent set.
(3) Every vector v in V can be written as a unique linear combination of elements of S:

U= &10; + -+ &m0,
a;j € IF, non-zero, v, € S(i,..., iy distinct).?

Proof. We shall show (1) = (2) = (3) = (1).
1) = ()

We first prove S is independent. Suppose that a1v;, + - - - + a0, = 0, witha; € Fand iy,..., iy
distinct indices, is a linear dependence. Then some &; # 0 and we may assume w.l.o.g. that

a1 # 0. Then,

_ -1 -1 -1
Ui1 = —ucl 06201'2 — (Xl 0(301'3 —_— e — (Xl zxmvim,

and so v;, € Span(S \ {v;, }) and thus Span(S \ {v; }) = Span(S) by Lemma 1.4.1. This proves
S is not a minimal spanning set, which is a contradiction.

Next, we show that S is a maximal independent set. Let v € V. Then we have v € Span(S)
s0 0 = a10; + -+ + ayo;, for some a; € T, vi; € S (i1, ..., 1y distinct). We conclude that
a10;, + - - -+ apv;, —v = 0 and so that S U {v} is linearly dependent.

2)=©)

Letv € V. Since SU {v} is linearly dependent, we have
{10;, + -+ +ay0;, + v =0,
for some «; € FF, B € IF not all zero, vj; € S (i1, ..., iy distinct). Note that we cannot have § = 0
because that would show that S is linearly dependent. Thus, we get
v = —,B_l(xlvil — B vy, — - — B i,

We next show such an expression is unique. Suppose that we have two such expressions, then,
by adding zero coefficients, we may assume that the same elements of S are involved, that is

m m
v = E,ijij = 2 YiViis
i=1 i=1

where for some j we have ; # ;. We then get that

m

0=2) (Bj —1)vi,
i=j

Since S is linearly independent all the coefficients must be zero, that is, B; = 7y}, V.
3) = (1)

Firstly, the fact that every vector v has such an expression is precisely saying that Span(S) = V
and so that S is a spanning set. We next show that S is a minimal spanning set. Suppose not.
Then for some index i € I we have Span(S) = Span(S — {v;}). That means, that

U = w10, + -0+ &m0,

2As the zero vector Oy is equal to the empty sum, this also says that there is no way to write Oy as a non-trivial
linear combinations of the set S.
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for some a; € TF, v € S —{v;} (i1, ..., iy distinct). But also
0; = 0.

That is, we get two ways to express v; as a linear combination of the elements of S. This is a
contradiction. O
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2. BASIS AND DIMENSION

Definition 2.0.1. Let S = {v; : i € I} be a collection of vectors of a vector space V over a
field F. We say that S is a basis if it satisfies one of the equivalent conditions of Theorem 1.4.2.
Namely, S is a minimal spanning set, or a maximal independent set, or every vector can be
written uniquely as a linear combination of the elements of S.

Example 2.0.2. Let St = {ey,e,...,e,} be the set appearing in Examples 1.3.6, 1.3.9 and 1.3.12.
Then S is a basis of [F" called the standard basis.

The main theorem is the following:

Theorem 2.0.3. Every vector space has a basis. Any two bases of V have the same cardinality.
Based on the theorem, we can make the following definition.

Definition 2.0.4. The cardinality of (any) basis of V is called its dimension.

We do not have the tools to prove Theorem 2.0.3. We are lacking knowledge of how to deal
with infinite cardinalities effectively. The existence of a basis is a rather easy consequence of
Zorn’s lemma and is explained in an appendix. We shall only prove the following weaker theo-
rem.

Theorem 2.0.5. Assume that V has a basis S = {s1,s2,...,sn} of finite cardinality n. Then every other
basis of V has n elements as well.

Remark 2.0.6. There are definitely vector spaces of infinite dimension. For example, the vector
space V of continuous real functions R — IR (see Example 1.1.5) has infinite dimension (exer-
cise). Also, the set of infinite vectors

F* = {(a1,a2,a3,...) : a; € F},

with the coordinate-wise addition and w(aq, ap, a3, ... ) = (a1, aa, aws, ... ) is a vector space of
infinite dimension (exercise).

2.1. Steinitz’s substitution lemma.

Lemma 2.1.1. Let A = {v1,v2,03,...} be a list of vectors of V. Then A is linearly dependent if and
only if one of the vectors of A is a linear combination of the preceding ones.

This lemma is essentially the same as Proposition 1.3.13. Still, we supply a proof.

Proof. Clearly, if vy1 = &1v1 + - - - + a, vy then A is linearly dependent since we then have the
non-trivial linear dependence w101 + - - - + ayvx — V41 = 0.
Conversely, if we have a linear dependence

w10 + - o, = 0

with some a; # 0, we may assume that each «; # 0 and also that i1 < i, < --- < ;. We then
find that

v;, = —ock_loqvil — = ock_lock_lvikfl
is a linear combination of the preceding vectors. 0

Lemma 2.1.2. (Steinitz) Let A = {vy,...,v,} be a linearly independent set and let B = {wy, ..., Wy }
be another linearly independent set. Suppose that m > n. Then, for every j, 0 < j < n, we may
re-number the elements of B such that the set

{01102/ ey U]', wj+1/ wj+2/ RN wm}

is linearly independent.
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Remark 2.1.3. The lemma says that for every j < n we can substitute j elements of B by the

elements v4, ..., v; of A and retain independence.

Proof. We prove the Lemma by induction on j. For j = 0 the claim is just that B is linearly
independent, which is given.
Assume the result for j. Thus, we have re-numbered the elements of B so that

{1, 05, W1, Wi}

is linearly independent. Suppose that j < n (else,we are done). Consider the list

{Ul,. . .,0j,Uj+1,ZUj+1,. . .,wm}

If this list is linearly independent, omit w;; and then

{v1,..., 0,051, Wis2, . .., Wi}

is linearly independent and we are done. Else,

{v1,..., 0, 0541, Wjs1, ., Wi }

is linearly dependent and so by Lemma 2.1.1 one of the vectors is a linear combination of the
preceding ones. Since {vy,...,vj1} is linearly independent that vector must be one of the w’s.
Thus, there is some minimal > 1 such that w; , is a linear combination of the previous vectors.
So,
1) Wity = 0101 + -+ + 4410541 + Bjr1Wj1 + - -+ Bjrr—1Wjr—1-
We claim that

{v1,...,0, 0141, Wi 1, Wiy, Wi}

is linearly independent.
If not, then we have a non-trivial linear relation:

2) Y101+ -+ Y1041 + Wi + -+ 0 Wiy + - - Oy = 0.

Note that 7,1 # 0, because we know that {v1,02,..., Vj, Wjt1, Wit2,- -, Wy, } is linearly indepen-
dent. Thus, using Equation (2), we get for some ¢;, #; that

Vjt1 = €101+ -+ + €0 + i 1Wjt1 + -+ Yy Wiy + -+ YW

Substitute this in Equation (1) and obtain that w;, is a linear combination of the vectors
{v1,...,0;,Wj41,..., Wiy, ..., Wy} whichis a contradiction to the induction hypothesis. Thus,

{v1,...,0, 0741, W1, o, Wiy, Wi}
is linearly independent. Now, rename the elements of B so that w;, becomes wj 1. O

Remark 2.1.4. The use of Lemma 2.1.1 in the proof of Steinitz’s substitution lemma is not es-
sential. It is convenient in that it tells us exactly which vector needs to be taken out in order
the continue the construction. For a concrete application of Steinitz’s lemma see Example 2.2.3
below.
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2.2. Proof of Theorem 2.0.5.

Proof. Let S = {si1,...,s,} be a basis of finite cardinality of V. Let T be another basis and
suppose that there are more than 7 elements in T. Then we may choose t1,...,t,1, elements
of T, such that ty,...,t,41 are linearly independent. By Steinitz’s Lemma, we can re-number
the t; such that {sy,...,sy, t,41} is linearly independent, which implies that S is not a maximal
independent set. Contradiction. Thus, any basis of V has at most n elements. However, suppose
that T has less than 1 elements. Reverse the role of S and T in the argument above. We get again
a contradiction. Thus, all bases have the same cardinality. [

The proof of the theorem also shows the following

Lemma 2.2.1. Let V be a vector space of finite dimension n. Let T = {t1,...,t,} be a linearly indepen-
dent set. Then a < n.

(Take S to be a basis of V and run through the argument above.) We conclude:

Corollary 2.2.2. Any independent set of vectors of V (a vector space of finite dimension n) can be com-
pleted to a basis.

Proof. Let S = {s1,...,5,} be an independent set. Then a < n. If 4 < n then S cannot be
a maximal independent set and so there’s a vector s,1 such that {sj,...,s,, 5,41} is linearly
independent. And so on. The process stops when we get an independent set {s1,...,S4,...,5,}
of n vectors. Such a set must be maximal independent set (else we would get that there is a set
of n + 1 independent vectors) and so a basis. t

Example 2.2.3. Consider the vector space F"” and a set B = {by,...,b,} of linearly independent
vectors. We know that B can be completed to a basis of [F", but is there a more explicit method
of doing that? Steinitz’s Lemma does just that. Take the standard basis St = {ey, ..., e, } (or any
other basis if you like). Then, Steinitz’s Lemma implies the following. There is a choice of n — a
indices iy, . .., i,—,; such that

bl/ .. '/bﬂ/eill e s iy

is a basis for [F". More than that, the Lemma tells us how to choose the basis elements to be
added. Namely,

(1) Let B={s1,...,s05,e1} and S = {eq,...,ex}.

(2) If {by, ..., by, €1} is linearly independent (this happens if and only if e; & Span({si,...,s:})
then let B = {by,...,bs,e1} and S = {ey,...,e,} and repeat this step with the new B, S
and the first vector in S.

(3) If {by,...,bs, €1} is linearly dependent let S = {ey, ..., e, } and, keeping the same B go to
the previous step and perform it with these B, S and the first vector in S.

Corollary 2.2.4. Let W C V be a subspace of a finite dimensional vector space V. Then dim(W) <
dim(V) and
W=V & dim(W) = dim(V).

Proof. Any independent set T of vectors of W is an independent set of vectors of V and so can
be completed to a basis of V. In particular, a basis of W can be completed to a basis of V and so
dim(W) < dim(V).

Now, clearly W = V implies dim(W) = dim(V). Suppose that W # V and choose a basis
for W, say {t1,...,tm}. Then, there’s a vector v € V which is not a linear combination of the
{ti} and we see that {t1,...,t;, v} is a linearly independent set in V. It follows that dim (V) >
m+1>m=dim(W). O
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Example 2.2.5. Let V;,i = 1,2 be two finite dimensional vector spaces over F. Then (exercise)
dim(V; & V,) = dim(V;) + dim(V2).

2.3. Coordinates and change of basis.
Definition 2.3.1. Let V be a finite dimensional vector space over F. Let
B={by,..., by}
be a basis of V. Then any vector v can be written uniquely in the form
v=uw1b1+ - +aby,,

where «; € F for all i. The «; are called the coordinates of v with respect to the basis B and we
use the notation
X1

Note that the coordinates depend on the order of the elements of the basis. Thus, whenever
we talk about a basis {by, ..., b, } we think about that as a list of vectors.

Example 2.3.2. We may think about the vector space [F" as
oy
F" = Dl €F
Xn

Addition is done coordinate wise and in this notation we have

0
ei=|1]|+1
0
&1
Ifv = : | isanelement of [F" then of course v = aje; + - - - + aye, and so
Xn
X1
(0]t =
Xn

Example 2.3.3. Let V = R?and B = {(1,1),(1,—1)}. Letv = (5,1). Thenv = 3(1,1) +2(1, —1).

Thus,
o] = @ .



Conversely, if
2
[vls = <12)

2.3.1. Change of basis. Suppose that B and C are two bases, say
B:{bl,...,bn}, C:{Cl,...,Cn}.

We would like to determine the relation between [v]p and [v]c. Let,

thenv = 2(1,1) 4+ 12(1, 1) = (14, —10).

by = myicy + - -+ myicy
(3) b] = ml]'C1 + -+ mn]'Cn

bn = M1uC1 + -+ - + MyuCy,

and let
mi1r ... Myy

cMp = :
mnl e mnn

Theorem 2.3.4. We have
[vlc = cMg[v]s.
We first prove a lemma.
Lemma 2.3.5. We have the following identities:
[v]p + [w]p = [v+wls,  [av]p = a[v]s.

Proof. This follows immediately from the fact that if

v=Y b, w=) Bib;,

v+w=) (a+pBi)bi, av=) aa;-b.

then

Proof. (Of theorem). It follows from the Lemma that it is enough to prove
[vlc = cMp[v]s
for v running over a basis of V. We take the basis B itself. Then,
cMpg|bj]p = cMge;
= j-th column of -Mp

(cf. Equation 3).

15
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Lemma 2.3.6. Let M be a matrix such that
[v]c = M[v]s,
for everyv € V. Then,
M = cMsp.
Proof. Since
[bj]c = M[b;]p = Me; = j-th column of M,
the columns of M are uniquely determined. 4
Corollary 2.3.7. Let B, C, D be bases. Then:
(1) gMp = I, (the identity n X n matrix).
(2) pMp =p Mc cMs.
(3) The matrix c Mp is invertible and - Mpg = BMgl.
Proof. For (1) we note that
[v]g = In[0]B,
and so, by Lemma 2.3.6, I, =g M3.
We use the same idea for (2). We have
[v]p = pMc[v]c = pMc( cMg[v]g) = ( pMc cMs)[v]s,
and so DMB =D MC CMB~
For (3) we note that by (1) and (2) we have
and so c Mg and g M are invertible and are each other’s inverse. O

Example 2.3.8. Here is a general principle: if B = {by,...,b,} is a basis of F" then each b; is
already given by coordinates relative to the standard basis. Say,

Then the matrix M = (m;;) obtained by writing the basis elements of B as column vectors one
next to the other is the matrix ¢ Mp. Since,

-1
sMs = stMp ",

this gives a useful method to pass from coordinates relative to the standard basis to coordinates
relative to the basis B.
For example, consider the basis B = {(5,1),(3,2)} of R?. Then

-1
_ 5 3 172 -3
pMst = (stMp) ' = (1 2) =7 <_1 5 ) :

Thus, the vector (2,3) has coordinates 1 < _21 —53> (é) — (I?)S//; ) .Indeed, 22(5,1) +£(3,2) =
(2,3).

Let C = {(2,2),(1,0)} be another basis. To pass from coordinates relative to the basis C to
coordinates relative to the basis B we use the matrix

1/2 -3 2 1 1/-2 2
BMC = BMSt StMC = 7 <_1 5 ) <2 0) = ? < 8 _1) .
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3. LINEAR TRANSFORMATIONS

Definition 3.0.1. Let V and W be two vector spaces over a field [F. A linear transformation
T:V—W,

isa function T : V — W such that

(1) T(v1 +v2) = T(v1) + T(vp) forall vy, v, € V;
(2) T(av) = aT(v) forallv e V,a € F.

(A linear transformation is also called a linear map, or mapping, or application.)
Here are some formal consequences of the definition:

(1) |T(0y) = Ow |Indeed, since T is a homomorphism of (abelian groups) we already know
that. For the same reason we know that:

@) [T(—0) = ~T(v)
(3) T(lxlvl + 0(2?)2) = alT(U1) —+ D(zT(Uz)

Lemma 3.0.2. Ker(T) = {v € V : T(v) = Ow} is a subspace of V and Im(T) is a subspace of W.

Proof. We already know Ker(T),Im(T) are subgroups and so closed under addition. Next, if
a € F,v € Ker(T) then T(av) = aT(v) = a0y = Oy and so av € Ker(T) as well. If w € Im(T)
then w = T(v) for some v € V. It follows that aw = aT(v) = T(av) is also in Im(T). O

Remark 3.0.3. From the theory of groups we know that T is injective if and only if Ker(T) = {0y }.

Example 3.0.4. The zeromap T : V — W, T(v) = O for every v € V, is a linear map with
kernel V and image {Ow }.

Example 3.0.5. The identity mapId : V — V,1d(v) = vforall v € V, is a linear map with kernel
{0} and i image V. More generally, if V C W is a subspace and i : V — W is the inclusion map,
i(v) = v, then i is a linear map with kernel {0} and image V.

Example 3.0.6. Let B = {by,...,b,} be a basis for V and let fix some 1 < j < n. Let
T:V—>YV, T(Dclbl + -4+ D‘nbn) = ch+1bj+1 + ocj+2b]'+2 + -+ aub,.

(To understand the definition for j = n, recall that the empty sum is by definition equal to 0.)
The kernel of T is Span({by,...,b;}) and Im(T) = Span({b;1,bj12,...,bn}).

Example 3.0.7. Let V = F",W = [F", written as column vectors. Let A = (a;;) be an m x n
matrix with entries in F. Define

T:F" — F",
be the following formula
aq aq
T =A| :
Xy Xy

Then T is a linear map. This follows from identities for matrix multiplication:

a1+ B1 aq B1 ao a1

an + ,Bn Xn ,Bn Xy Xn
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Those identities are left as an exercise. We note that Ker(T') are the solutions for the following
homogenous system of linear equations:

ayxy+ -+ apxy = 0

X1+ -+ + dmnxny = 0.

B1

The image of T is precisely the vectors | : | for which the following inhomogenous system of

Bom

linear equations has a solution:

a1 x1 + - -+ a1x, = P

A1 X1+ -+ AunXn = ,Bm
Example 3.0.8. Let V = F|t],, the space of polynomials of degree less than 1. Define
T:V =YV, T(f)=f,

the formal derivative of f. Then T is a linear map. We leave the description of the kernel and
image of T as an exercise.

The following Proposition is very useful. Its proof is left as an exercise.

Proposition 3.0.9. Let V and W be vector spaces over IF. Let B = {by, ..., b, } be a basis for V and let
t,...,t, be any elements of W. There is a unique linear map

T:V—>W,

such that

The following lemma is left as an exercise.
Lemma 3.0.10. Let V, W be vector spaces over [F. Let
Hom(V,W)={T:V — W: T isalinear map}.

Then Hom(V, W) is a vector space in its own right where we define for two linear transformations S, T
and scalar « the linear transformations S + T, «S as follows:

(S+T)(v) =S(v)+ T(v), (aS)(v) = aS(v).

In addition, if T : V — W and R : W — U are linear maps, where U is a third vector space over IF,
then

RoT:V —-U

is a linear map.
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3.1. Isomorphisms. Let T : V — W be an injective linear map. One also says that T is non-
singular. If T is not injective, one says also that it is singular. T is called an isomorphism if it is
bijective. In that case, the inverse map

S=T1'." WV

is also an isomorphism. Indeed, from the theory of groups we already know it is a group iso-
morphism. Next, to check that S(aw) = aS(w) it is enough to check that T(S(aw)) = T(aS(w)).
But, T(S(aw)) = aw and T(aS(w)) = aT(S(w)) = aw too.

As in the case of groups it follows readily from the properties above that being isomorphic is an
equivalence relation on vector spaces. We use the notation

VeWw
to denote that V is isomorphic to W.
Theorem 3.1.1. Let V be a vector space of dimension n over a field F then
V ="
Proof. Let B = {b,...,b,} be any basis of V. Define a function
T:V —F", T(v) = [v]p.

The formulas we have established in Lemma 2.3.5, [v + w|p = [v]p + |5, are

= afv
precisely the fact that T is a linear map. The linear map T is injective since | ( ) implies

thatv =0-by +---+0-b, = Oy and T is clearly surjective as [lebl + . ..ocnbn]B = < : )
Ky

Proposition 3.1.2. If T : V — W is an isomorphism and B = {by,...,b,} is a basis of V then
{T(by),...,T(by)} is a basis of W. In particular, dim(V') = dim(W).

Proof. We prove first that {T(b1),...,T(b,)} is linearly independent. Indeed, if " a;T(b;) = 0
then T(}_a;b;) = 0 and so }_«;b; = 0, since T is injective. Since B is a basis, each «; = 0 and so
{T(by1),...,T(by)} is a linearly independent set.

Now, if {T(b1), ..., T(b,)} is not maximal linearly independent then for some w € W we have
that {T(b1),...,T(by), w} is linearly independent. Applying what we have already proven to
the map T—1, we find that {by,...,by, T-1 (w)} is a linearly independent set in V, which is a
contradiction because B is a maximal independent set. 4

Corollary 3.1.3. Every finite dimensional vector space V over F is isomorphic to IF" for a unique n; this
n is dim(V'). Two vector spaces are isomorphic if and only if they have the same dimension.

3.2. The theorem about the kernel and the image.

Theorem 3.2.1. Let T : V — W be a linear map where V is a finite dimensional vector space. Then
Im(T) is finite dimensional and

dim(V) = dim(Ker(T)) 4+ dim(Im(T)).
Proof. Let {vy,...,v,} be abasis for Ker(T) and extend it to a basis for V,

B={vy,...,05,w1,..., W }.
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So dim(V) = n+r and dim(Ker(T)) = n. Thus, the only thing we need to prove is that
{T(w1),...,T(w,)} is a basis for Im(T). We shall show it is a minimal spanning set. First, let

v € V and write v as
n r
v = Zanvn + 2 Biw;.
i=1 i=1
Then

T(’U) = T(ilxnvn + ‘Zriﬁiwi)

since T(v;) = 0 for all i. Hence, {T(w1), ..., T(w,)} is a spanning set.
To show it’s minimal, suppose to the contrary that for some i we have that the set

{T(w1),..., T(w;),..., T(w,)} is a spanning set. W.l.o.g., i = r. Then, for some B,

r—1
T(w,) =) BiT(w;),
i=1
whence,
r—1
T(Z ﬁiwi - wr) =0.
i=1

Thus, Z;;ll Biw; — w, is in Ker(T) and so there are «; such that

r—1 n
Z ,Biwi — Wy — Zaivi =0.
i=1 i=1
This is a linear dependence between elements of the basis B and hence gives a contradiction. [

Remark 3.2.2. Suppose that T : V — W is surjective. Then we get that dim(V) = dim(W) +
dim(Ker(T)). Note that for every w € W we have that the fibre T~!(w) is a coset of Ker(T), a
set of the form v + Ker(T) where T(v) = w, and so it is natural to think about the dimension of
T~ (w) as dim(Ker(T)).

Thus, we get that the dimension of the source is the dimension of the image plus the dimen-
sion of a general (in fact, any) fibre. This is an example of a general principle that holds true in
many other circumstances in mathematics where there is a notion of dimension.

3.3. Quotient spaces. Let V be a vector space and U a subspace. Then V /U has a structure of
abelian groups. We also claim that it has a structure of a vector space where we define

a(v+U)=av+ U,
or, in simpler notation,
& -7 =Qv.
It is easy to check this is well defined and makes V /U into a vector space, called a quotient
space. The natural map
m:V—=V/U

is a surjective linear map with kernel U. The following Corollary holds by applying Theo-
rem3.2.1tothemap:V — V/U.
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Corollary 3.3.1. dim(V/U) = dim(V) — dim(U).
Theorem 3.3.2. (First isomorphism theorem) Let T : V. — W be a surjective linear map then
V/Ker(T) = W.

Proof. We already know that T induces an isomorphism T of abelian groups
T:V/Ker(T) = W, T(0) := T(v).

We only need to check that T is a linear map, that is, that also T(a7) = aT (7). Indeed, T(a?)
T(av) = T(av) = aT(v) = aT(3).

O

3.4. Applications of Theorem 3.2.1.

Theorem 3.4.1. Let Wy, W, be subspaces of a vector space V. Then,
dim(W1 + Wz) = dim(W1) + d1m(W2) — d1m(W1 N Wz).
Proof. Consider the function
T: W, ® W, — W +W,,
given by T (w1, w;) = wy + wy. Clearly T is a linear map and surjective. We thus have
dim(W; + W,) = dim(W; & W) — dim(Ker(T)).
However, dim(W; & W,) = dim(W; ) + dim(W,) by Example 2.2.5. Our proof is thus complete
if we show that
Ker(T) = W1 N WZ.
Let u € Wy N W, then (1, —u) € Wy & W and T(u, —u) = 0. We may thus define a map
L: Wi N W, — Ker(T), L(u) = (u, —u),

which is clearly an injective linear map. Let (w1, w;) € Ker(T) then wy + wp, = 0 and so wy =
—wy. This shows that wy € W, and so that w; € Wy N W,. Thus, (w1, w;) = L(w;) and so L is
surjective. U

Corollary 3.4.2. If dim(W;) + dim(W,) > dim(V') then Wy N W, contains a non-zero vector.
The proof is left as an exercise. Here is a concrete example:

Example 3.4.3. Any two planes Wy, W, through the origin in IR? are either equal or intersect in
a line.

Indeed, W1 N W is a non-zero vector space by the Corollary. If dim(W; N W,) = 2 then, since
WiNW, € W;,i = 1,2 we have that W; N W, = W; and so W; = W,. The only other option is
that dim(W; N W,) = 1, that is, W; N W, is a line.

Another application of Theorem 3.2.1 is the following.

Corollary 3.4.4. Let T : V — W be a linear map and assume dim(V) = dim(W).
(1) If T is injective it is an isomorphism.
(2) If T is surjective it is an isomorphism.
Proof. We prove that first part, leaving the second part as an exercise. We have that dim(Im(7T)) =
dim(V) — dim(Ker(T)) = dim(V) = dim(W), which implies by Corollary 2.2.4, that Im(T)
W. Thus, T is surjective and the proof is complete.

Ol
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3.5. Inner direct sum. Let U, ..., U, be subspaces of V such that:
O V=U+U+---+Uy; -
(2) Foreachiwehave U; N (U + -+ U; +-- -+ U,) = {0}.
Then V is called an inner direct sum of the subspaces Uj, . .., Uj,.

Proposition 3.5.1. V is the inner direct sum of the subspaces Uy, . .., Uy, if and only if the map
T:U1®---9U, =V, (U1, .o y) = U+ + Uy,
is an isomorphism.

Proof. The image of T is precisely the subspace U; + Uy + - -+ + U,. Thus, T is surjective iff
condition (1) holds. We now show that T is injective iff condition (2) holds.

Suppose that T is injective. If u € U; N (U + - - - + U+ -+ U,) forsomei,say u = u; +-- -+
i+ -+u,then0=T(0,...,0) = T(uy,..., ui—1, —U,Ujr1,...,Up)and so (Uy, ..., Uj_1, —U,Ujs1, ..., Uy) =
0 and in particular u = 0. So condition (2) holds.

Suppose now that condition (2) holds and T(uy,...,u,) = 0. Then —u; = uy +--- +i; +
o-Fupandsou; € U;N (U + -+ Uj+---+ Uy,) = {0}. Thus, u; = 0 and that holds for
every i. We conclude that Ker(T) = {(0,...,0)} and so T is injective. O

When V is the inner direct sum of the subspaces Uj, ..., U, we shall use the notation
Vv=U&- --oU,.
This abuse of notation is justified by the Proposition.

Proposition 3.5.2. The following are equivalent:

(1) V is the inner direct sum of the subspaces Uy, . .., Uy;
2) V=U+- - +Uyand dim(V) = dim(U;y) + - - - + dim(U,,);
(3) Every vector v € V can be written as v = uy + - - - + uy, with u; € U;, in a unique way.

The proof of the Proposition is left as an exercise.

3.6. Nilpotent operators. A linear map T : V — V from a vector space to itself is often called a
linear operator.

Definition 3.6.1. Let V be a finite dimensional vector space and T : V — V a linear operator. T
is called nilpotent if for some N > 1 we have TN = 0. (Here TN = ToTo---0o T, N-times.)

The following Lemma is left as an exercise:
Lemma 3.6.2. Let T be a nilpotent operator on an n-dimensional vector space then T" = 0.

Example 3.6.3. Here are some examples of nilpotent operators. Of course, the trivial example
is T = 0, the zero map. For another example, let V be a vector space of dimension n and let
B = {by,...,by} be a basis. Let T be the unique linear transformation (cf. Proposition 3.0.9)
satisfying

T(h) =
T(by) =y
T(b3) = by
T(bn)‘ =by1

We see that T" = 0.
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Example 3.6.4. Let T : F[t],, — F[t], be defined by T(f) = f’. Then T is nilpotent and T" = 0.

The following theorem, called Fitting’s Lemma, is important in mathematics because the state-
ment and the method of proof generalize to many other situations. We remark that later on
we shall prove much stronger “structure theorems” (for example, the Jordan canonical form, cf.
§ 9.2) from which Fitting’s Lemma follows immediately, but this is very special to vector spaces.

Theorem 3.6.5 (Fitting’s Lemma). Let V be a finite dimensional vector space and let T : V — V be a
linear operator. Then there is a decomposition

V=UoW
such that

(1) U, W are T-invariant subspaces of V, that is T(U) C U, T(W) C W;
(2) T|y is nilpotent;
(3) T|w is an isomorphism.

Remark 3.6.6. About notation. T, read “T restricted to U”, is the linear map
u—du, u— T(u).
Namely, it is just the map T considered on the subspace U.

Proof. Let us define
U; = Ker(T?), W; =Im(T").
We note the following facts:

(1) U;, W; are subspaces of V;
(2) dim(U;) 4+ dim(W;) = dim(V);
@G {ojc,CcUL, <.
@ VOWDW,D....
It follows from Fact (4) that dim (V) > dim(W;) > dim(W,) > ... and so, for some N we have

dim(Wy) = dim(Wy 1) = dim(Wn42) = ...
It then follows from Fact (2) that also
dim(Uy) = dim(Uyn41) = dim(Uyn42) = ...
Hence, using Corollary 2.2.4, we obtain
Wn=Wn11=Wnp2=..., Uvn=Unp1=Unt2="...

We let
W = Wy, U = Uy.

We note that T(Wy) = W41 and so T|w : W — W is an isomorphism since the dimension of
the image is the dimension of the source (Corollary 3.4.4). Also T(Ker(TV)) C Ker(TN"!) C
Ker(TN) and so T|y : U — U and (T|y)N = (TN)|y = 0. That is, T is nilpotent on U.

It remains to show that V = U & W. First, dim(U) + dim(W) = dim(V). Second, ifv € UNW
is a non-zero vector, then T(v) # 0 because T| is an isomorphism and so TN (v) # 0, but on
the other hand TN (v) = 0 because v € U. Thus, U N W = {0}. It follows that the map

UDW =V, (u,w) —»u+w,

which has kernel U N'W (cf. the proof of Theorem 3.4.1) is injective. The information on the
dimension gives that it is an isomorphism (Corollary 3.4.4) and so V = U @& W by Proposi-
tion 3.5.1. t
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3.7. Projections.

Definition 3.7.1. Let V be a vector space. A linear operator, T : V — V, is called a projection if
T2 =T.

Theorem 3.7.2. Let V be a vector space over F.
(1) Let U, W be subspaces of V such that V = U & W. Define a map
T:V =YV, T(v) =u if v=u+w, uelweW.

Then T is a projection, Im(T) = U, Ker(T) = W.
(2) Let T : V — V be a projection and U = Im(T),W = Ker(T). Then V. = U@ W and
T(u+ w) = u, that is, T is the operator constructed in (1).

Definition 3.7.3. The operator constructed in (1) of the Theorem is called the projection on U
along W.

Proof. Consider the first claim. If u € U then u is written as u + 0 and so T(#) = u and so
T?(v) = T(u) = u = T(v) and so T?> = T. Now, v € Ker(T) if and only if v = 0 + w for some
w € W and so Ker(T) = W. Also, since for u € U, T(u) = u, we also get that Im(T) = U.
We now consider the second claim. Note that
v="T(v)+ (v—T(v)).

T(v) € Im(T) and T(v — T(v)) = T(v) — T?>(v) = T(v) — T(v) = 0 and so v — T(v) € Ker(T).
It follows that U + W = V. Theorem 3.2.1 gives that dim(V) = dim(U) 4 dim(W) and so
Proposition 3.5.2 gives that

V=UDW.

Now, writing v = u+w = T(v) + (v — T(v)) and comparing these expressions, we see that
u="T(v). O

3.8. Linear maps and matrices. Let [F be a field and V, W vector spaces over FF of dimension n
and m respectively.

Theorem 3.8.1. Let T : V — W be a linear map.

(1) Let B be a basis for V and C a basis for W. There is a unique m x n matrix, denoted ¢[T|p and
called the matrix representing T, with entries in IF such that

[TU]C = C[T]B[U]B/ YoeV.
(2) If S : V. — W is another linear transformation then
C[S+T]B =c [S]B+C[T]B, C[IXT]BZIX-C[T]B.

(3) For every matrix M € My,xn(IF) there is a linear map T : V. — W such that c[T]p = M. We
conclude that the map

T—c [T]s
is an isomorphism of vector spaces
Hom(V, W) = My, (FF).

(4) If R : W — U is another linear map, where U is a vector space over [F, and D is a basis for U
then

p[Ro T]g = p[R]cc[T]s-
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Proof. We begin by proving the first claim. Let B = {s1,...,s,},C = {t1,...,ty}. Write
di dip

[Te)le=1| + [,/ [Tla)le=| :
dml dmn

Mol = [T(0)]c-
Indeed, write v = 51 + - - - + &S, and calculate

M[U]B = M[(xlsl S —|—D€nsn]3

()

Now suppose that N = (8;;)1<i<m,1<j<n is another matrix such that

PSS >

[T(v)]c = N[v]g, YoveV.

Then,
dy; o1

That shows that N = M.

We now show the second claim is true. We have for every v € V the following equalities:

(c[S]s +c[Tlp) [v]p = c[S]slv]s + c[T]s[v]s

= [S(v)]c + [T(0)]c

= [S(0) + T(v)]c

= [(8+T)(®)]c.
Namely, if we call M the matrix ¢[S]p + ¢[T]p then M[v]g = [(S + T)(v)]c, which proves that
M =[S+ T]s.

[S%r]nilarly, a-c [T)glv]p = a[T(v)]c = [a- T(v)]c = [(aT)(v)]c and that shows that w -c [T]p =

c|lxl|B.

The third claim follows easily from the previous results. We already know that the maps

H12V—>IFH, UI—>[U]B, H3:W|—>1Fm,w»—>[w]c,
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and
H, :F" — F", x — Mx
are linear maps. It follows that the composition T = Hy 1o H, 0 H; is a linear map. Furthermore,
[T(0)]lc = H3(T(v)) = M(Hi(v)) = M[o]s,
and so
M = ¢[T]p.

This shows that the map

Hom(V, W) — M, (F)

is surjective. The fact that it’s a linear map is the second claim. The map is also injective, because
if ¢[T]p is the zero matrix then for every v € V we have [T(v)|c = ¢[T]g[v]p = 0andso T(v) =0
which shows that T is the zero transformation.

It remains to prove that last claim. For every v € V we have

(p[Rlcc[T]s)[v]s = p[R]c(c[T]s[v]B)
= p[R]c[T(v)]c
= [R(T(v))]p
= [(RoT)(0)]p
It follows then that p[R]cc[T]|g = p[R o T]p. O

Corollary 3.8.2. We have dim(Hom(V,W)) = dim(V) - dim(W).
Example 3.8.3. Consider the identity Id : V — V, but with two different basis B and C. Then
c[ld]g[v]s = [v]c,
Namely, ¢[Id]p is just the change of basis matrix,
clld]p = cMsp.

Example 3.84. Let V = F[t],+1 and take the basis B = {1,f,...,t"}. Let T : V — V be the
formal differentiation map T(f) = f’. Then

010 0
0 0 2
0 0 0 3
slTlg=1|. .
n
0 00 -0

Example 3.8.5. Let V = F[t],,1, W = F?, B = {1,t,...,t"}, St the standard basis of W, and

T:V—=W, T(f)=(f(1),f(2)
Then
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3.9. Change of basis. Itis often useful to pass from a representation of a linear map in one basis
to a representation in another basis. In fact, the applications of this are hard to overestimate! We
shall later see many examples. For now, we just give the formulas.

Proposition 3.9.1. Let T : V — V be a linear transformation and B and C two bases of V. Then
8[T]s = Mcc([T]ccMp.
Proof. Indeed, for every v € V we have
sMcc[T]ccMs[v]p = pMcc[T]c[o]c
= pMc[To]c
= [Tv]s.
Thus, by uniqueness, we have g[T]p = pMcc[T]ccMp. O

Remark 3.9.2. More generally, the same idea of proof, gives the following. Let T : V — W be a
linear map and B, B bases for V, CC bases for W. Then

C[T]g = GMCC[T]BBMﬁ

Example 3.9.3. We want to find the matrix representing in the standard basis the linear transfor-
mation T : R®* — R3 which is the projection on the plane {(x1,x2,x3) : x1 + x3 = 0} along the
line {#(1,0,1) : t € R}.

We first check that {(1,0, —1), (1,1, —1) } is a minimal spanning set for the plane. We complete
it to a basis by adding the vector (1,0, 1) (since that vector is not in the plane it is independent of
the two preceding vectors and so we get an independent set of 3 elements, hence a basis). Thus,

B={(1,0,-1),(1,1,—-1),(1,0,1)}

Bmg( )

1
0) . One can calculate that
1

1/2 -1 -1/2
sMge=| 0 1 0 |.
/2 0 1/2

is a basis of IR3. Tt is clear that

S O
o = O
o OO

Thus, we conclude that
st[T]st = seMpp[T]ppMst

1 1 1 1 00 1/2 -1 -1/2
=10 1 0 010 0 1 0
-1 -1 1 000 1/2 0 1/2

1/2 0 —-1/2
= 0 1 0 .
-1/2 0 1/2
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4. THE DETERMINANT AND ITS APPLICATIONS

4.1. Quick recall: permutations. We refer to the notes of the previous course MATH 251 for ba-
sic properties of the symmetric group S, the group of permutations of n elements. In particular,
recall the following;:

e Every permutation can be written as a product of cycles.
Disjoint cycles commute.
In fact, every permutation can be written as a product of disjoint cycles, unique up to
their ordering.
e Every permutation is a product of transpositions.

4.2. The sign of a permutation.

Lemma 4.2.1. Let n > 2. Let S,, be the group of permutations of {1,2,...,n}. There exists a surjective
homomorphism of groups

sgn:S, — {£1}
(called the sign). It has the property that for every i # |,

sgn( (if) ) = —1.
Proof. Consider the polynomial in n-variables®

p(xi,...,xn) =] J(xi — x)).
i<j

Given a permutation o we may define a new polynomial

[ (o) = 2e)-

i<j
Note that (i) # c(j) and for any pair k < ¢ we obtain in the new product either (x; — x;) or
(x; — x;). Thus, for a suitable choice of sign sgn(c’) € {41}, we have*

[ TG = xo(j)) = sgn(o) T [(xi — xj).
i<j i<j
We obtain a function
sgn:S, — {£1}.
This function satisfies sgn( (kf) ) = —1 (for k < ¢): Let 0 = (k¢) and consider the product

[T = xo) = e —x6) [T (o) — %) T T(xe — %)) T T(xi — 2x0)

i<j i<j k<j i<t
ik j#L j# i#k
Counting the number of signs that change we find that
[Tt = %) = (=D (DHFIH(D)HEO T (2 - x) = = T (i — y).
i<j i<j i<j

It remains to show that sgn is a group homomorphism. We first make the innocuous observation
that for any variables v, ..., y, and for any permuation ¢ we have

[ 1oty = vo() = sgn(o) [ [(vi — vj)-

i<j i<j
S3Forn =2 we get x1 — xp. For n = 3 we get (x1 — x2) (1 — x3) (x2 — x3).
4For example, if n = 3 and ¢ is the cycle (123) we have
(Xo(1) = Xo(2)) (Xo(1) = Xo(3)) (Xo(2) = Xo(3)) = (x2 —x3)(x2 — x1) (x5 — x1) = (%1 — x2) (%1 — x3) (%2 — x3).
Hence, sgn( (123) ) =1.
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Let T be a permutation. We apply this observation for the variables y; := x;). We get
sgn(to)p(x1, .-, Xn) = P(Xeo()s -+ r Xro(n))
= P(Yo1)r- - Yo(n))
—-Sgn(U)P(ylp- 'Yn)
= sgn(o)p(x:
= sgn(c) sgn ( ) (x1p..,xn)
This gives
sgn(to) = sgn(t) sgn(o).

4.2.1. Calculating sgn in practice. Recall that every permutation ¢ can be written as a product of

disjoint cycles

o= (alﬂg)(blbm) (flfn)
Lemma4.2.2. sgn(aj...a;) = (—1)""L
Corollary 4.2.3.  sgn(c) = (—1)#even lengthcycles,

Proof. We write
(ay...ap) = (aap)... (alag)(alaz)j

¢—1 transpositions

Since a transposition has sign —1 and sgn is a homomorphism, the claim follows. D

Example 4.2.4. Letn = 11 and
o — 1234567 8 910
\254317 8106 9)°

= (125)(34)(678109).

Then

Now,
sgn((125))=1, sgn((34))=-1, sgn((678109)) =
We conclude that sgn(c) = —1.

4.3. Determinants. Let IF let a field. We will consider n x n matrices with entries in IF, namely
elements of M, (IF). We shall use the notation (v1v;...v,) to denote such a matrix whose
columns are the vectors vq, vy, ..., v, of [F".

Theorem 4.3.1. Let IF be a field. There is a function, called the determinant,
det: M,(F) - F

having the following properties:
(1) det(v1vy...a0;...v,) = a - det(v1v; ... 0p).
(2) det(v1vy...v;4+v}...v,) = det(v1v2...0;...0,) +det(v102...0]...0y).
(3) det(v1v2...0;...0;...0,) = 0ifv; = v; fori <j.
(4) det(erey...ey) = 1.
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Corollary 4.3.2. For every permutation T € S, we have
det(v1v2...v,) = sgn(T) - det(vy(1)Vr(2) - - - Vr(n))-
Proof. Suppose the formula holds for ¢, T € S, and any choice of vectors. Then
det(wqw; ... wy) = sgn(T) - det(we ()W () - - - We())-
Let w; = v,(;), then
det(0y(1) 0 (2) - - - Vo(n)) = 8gN(T) - det(Vgr(1)Vor(2) - - - Vorr(n))-
Therefore,
sgn(c) - det(v102...0,) = sgn(T) - det(Vyr(1)Vr(2) - - - Vor(n))-
Rearranging, we get
det(v1v2...v,) = sgn(oT) - det(Vyr(1)Vor(2) - - - Vor(n))-

Since transpositions generate Sy, it is therefore enough to prove the corollary for transpositions.
We need to prove then that for i < j we have

det(v1v2...9;...0;...0,) +det(v102...0;...0;...0,) = 0.
However,
0 = det(v102...(v; +v;)...(vi +})...vn)
= det(v102...0;...0;...0,) + det(v102...0;...0j...0y)
+det(v102...0;...9j...0,) +det(v102...0;...0;...0,)

= det(v102...0;...0j...0,) + det(v1v2...0;...0;...0p).

Proof. (Of Theorem) We define the function
det : Mn(]F) — TF, A= (ﬂﬁ) — det A,

by the formula

det(ai]') = ZUESn sgn(a)aa(l) 1" " Ag(n)n

We verify that it satisfies properties (1) - (4).
(1) Let us write (v102...9;...0,) = (ay;) and let
by = 1% j#i
J xag =1
Namely,
(0102.. . av;...0y) = (by;).

By definition,
det(vlvz Y A Z)n) = det((bg])) = Z Sgl’l(O’)bU(l) 1 bg(n) ne

eSS,
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Since in every summand there is precisely one element of the form b;;, namely, the ele-
ment by(;) ; = ady(;) ;, we have

det(v1v2...a0;...0,) = Y sgN(0)Ap(1y 1" Ap(n) n
0ES,

~ adet((a;)
= adet(v10...0;...0,).
(2) We let
(0102...0;...04) = (ag;), (0102...00 ... 0y) = (a’gj).

We note that if j # i then a;; = a’éj. Define now

Then we have

Now,
det(v1vy...v; 4+ ;... 0v,) = det(by;)

eSS,

= Z sgn(a)aa(l)l ’ (aa(l)z + afr(l)z) Ag(n)n
oEeSy,

= ) sgn(0)ag(1y1 Aoy Ao(mn + Y SEN(O) (1)1 Ay Bo(m)n
oeSy oEeSs,

= det(v10p...0;...0y) +det(v10y...0}...0y).

(3) Let S C S, be a set of representatives for the subgroup {1, (ij)}. Then S,, = STIS(ij).
For o € Sleto’ = o(ij). We have

det(v1v2...0;...0j...0,) = Y sgO(0)Ae(1) 1" " * Ae(n) n
oEeSy,

= Z Sgn(a)aa(l) 1" " Ag(n)n + Z Sgn(al)ao’(l) 1" Qg (n) n

oEeS cEeS
= Z Sgn(U)%u) 17 Ag(n)yn — Z Sgn(U)%f(l) 17 o' (n) ne
cEeS cEeS

It is enough to show that for every o we have

A1 bom)n = 4o'(1) 1" " Ao’ (n) n-
Ife ¢ {Z,]} then Ay (0) ¢ = Ago(ij)(0) ¢ = Ag(0) ¢- If / = i then Ao (iyi = Ao(j) i = o(j) j and if
¢ = jthen Agr(j) j = Ao(i) | = Ao(i)i- We get (1)1 Ao(n)n = Aor(1) 1" " Ao’ (n) n-
(4) Recall the definition of Kronecker’s delta J;;. By definition 6;; = 1if i = j and zero
otherwise.
For the identity matrix I, = (¢;;) we have

det In = Z sgn(U)(Sg(U 1--- (517(11) ne
oEeSy,

If there’s a single i such that (i) # i then J,(;; = 0 and 0 65(1) 1 - - - 65(n) » = 0. Thus,
detl, = sgn(1)d11 - 6pn = 1.
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Remark 4.3.3. In the assignments you are proving that
det(A) = det(A").

From the it follows immediately that the determinant has properties analogous to (1) - (4) of
Theorem 4.3.1 relative to rows.

4.4. Examples and geometric interpretation of the determinant.

4.4.1. Examples in low dimension. Here we calculate the determinants of matrices of size 1,2,3
from the definition.

(1) n=1.
We have
det(a) = a.
2) n=2.

S» ={1,(12)} = {1,0} and so
ap a
det <a; ali) = sgn(1)anaxn + Sgn(a’)%(l) 144(2) 2
= 411422 — az1412.
(B) n=23.

S3 = {1,(12),(13), (23),(123), (132) }. The sign of a transposition is —1 and of a 3-cycle
is 1. We find the formula,

a1 42 413
det | ax1 ax a3 | = a11a24a33 + 421432013 + 431012423 — 411423032 — A31A22013 — A21412033.
az1 asz 4ass

One way to remember this is to write the matrix twice and draw the diagonals.

a1 a1z ai13

/
AN

as1 ap az3

/S XX

a3 as as3

a1l a1 ai3

N\

az1 az az3

as1 as as3

You multiply elements on the diagonal with the signs depending on the direction of the
diagonal.
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4.4.2. Geometric interpretation. We notice in the one dimensional case that | det(a)| = |a| is the
length of the segment from 0 to 4. Thus, the determinant is a signed length function.
In the two dimensional case, it is easy to see that

aip a2
det < 0 a22>
is the area, up to a sign, of the parallelogram with sides (0,0) — (a1,0) and (0,0) — (a12, a421). The
sign depends on the orientation of the vectors. Similarly, for the matrix

0 ap
ax axn)’
Using the decomposition,

det (P11 H12) _ et (%11 12 + det 0 a2 ,
a1 axp 0 axn a1 ax

one sees that the signed area (the sign depending on the orientation of the vectors) of the par-
allelogram with sides (0,0) — (a11,421) and (0,0) — (a12,422) is the determinant of the matrix
<011 a12>

a1 axp)’

More generally, for every n we may interpret the determinant as a signed volume function.
It associates to an n-tuple of vectors vy, . .., v, the volume of the parallelepiped whose edges are
V1,02, ...,0, by the formula det(vyv;...v,). Itis scaled by the requirement (4) that detl,, = 1,
that is the volume of the unit cube is 1. The other properties of the determinant can be viewed
as change of volume under stretching one of the vectors (property (1)) and writing the volume
of a parallelepiped when we decompose it in two parallelepiped (property (2)). Property (3)
can be viewed as saying that if two vectors lie on the same line then the volume is zero; this
makes perfect sense as in this case the parallelepiped actually lives in a lower dimensional vector
space spanned by the n — 1 vectors vy,...,v;,...90j,...,v,. We shall soon see that, in the same
spirit, if the vectors vy, . . ., v, are linearly dependent (so again the parallelepiped lives in a lower
dimension space) then the determinant is zero.

4.43. Realizing S, as linear transformations. Let IF be any field. Let ¢ € S,. There is a unique
linear transformation

T, : F" — F",
such that
T(ei) :ea(i), 1= 1,...7’1,

where, as usual, e, . . ., ¢, are the standard basis of [F”. Note that

X1 Xo=1(1)
T, X2 _ x07.1 (2)
Xn xg—l(n)

(For example, because Tyx1e1 = x1€,(1), the o (1) coordinate is x1, namely, in the o (1) place we
have the entry xa_l(g(l)).) Since for every i we have ToTe(e;) = TaeT(i) = €rr(i) = Tyre;, we have
the relation

T Ty = Tyr.
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The matrix representing T, is the matrix (a;;) with a;; = 0 unless i = o (j). For example, for

n = 4 the matrices representing the permutations (12)(34) and (1 2 3 4) are, respectively
0100 0 001
1 000 1 0 00
0001} 0100
0010 0010
Otherwise said,’
Co-1(1)
o-1(2)
To = (eoq) | o) | -+ | o)) =
6071(,1)
It follows that
sgn(c) det(T,) = sgn(c) det (ex1) | €r2) | -+ | €rm))
=det(e; | e2 | ... | en)
= det(I,)
=1

Recall that sgn(c) € {£1}. We get

det(T,) = sgn(o).
Corollary 4.4.1. Let IF be a field. Any finite group G is isomorphic to a subgroup of GL,, (IF) for some n.
Proof. By Cayley’s theorem G — S, for some n, and we have shown S, — GL, (F). O

4.5. Multiplicativity of the determinant.
Theorem 4.5.1. We have for any two matrices A, B in M, (FF),
det(AB) = det(A) det(B).

Proof. We first introduce some notation: For vectors r = (r1,...,74),5 = (51,...,5,) we let

n
(r,s) = Zrisi.
i=1
We allow s to be a column vector in this definition. We note the following properties:

(r,s) = (s,r), (r,s+s")=(r,s)+(r,s), (ras)=alrs), forr,s,s’ € F*,a € F.

Let A be a n X n matrix with rows
Uy

Uy
and let B be a n x n matrix with columns

B = (v1]--|va) .

SThis gives the interesting relation T, 1 = T¢. Because ¢ + T is a group homomorphism we may conclude that
T, ! = Tt. Of course for a general matrix this doesn’t hold.
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In this notation,

) (uy,v1) ... (uy,0p)

AB = ((ui,0)));;_, =

<un;vl> (un;vn>

Having set this notation, we begin the proof. Consider the function
h:M,(F) —F, h(B) = det(AB).
We prove that I has properties (1) - (3) of Theorem 4.3.1.

(1) We have
(u1,01) oo a(uy,v;) ... (U1,0n)
h((vl...avi...vn)):det< : )
(un:vl> w0 (U, 0p) . (un:vn>
This is equal to
(u1,01) (u1,0n)
a det ( : : ) = wdet(AB) =« - h(B).
(un,01) <o (Un,0n)
(2) We have

(uy,01) o (ur,00)+(ur,07) . (u1,0n)
h((v1...a0;+)...0,)) = det : ,

<Ll,,,‘01> <lln,vi>+<un,vz,'> (”nzvn>

which is equal to

(uy,01) .. (u1,0;) ... (u1,04) (u1,01) .. (ur,00) ... (u1,00)
det ( : : > + det ( : : )
(n,01) o (Un,0;) oo (Up,0n) (Un,01) oo (U,00) oo (Un,0n)
=h((v1...0i...0n)) + h((v1...0}...04)).
(3) Suppose that v; = v; fori < j. Then

(u,,‘,m) e (U0 o (n,f) . <un:vn>

(,00) oo (i) o (ur,v) o (u1,00)
h((v1...0;...0j...0,)) = det :

This last matrix has its i-th column equal to its j-th column so the determinant vanishes
and we get h((v1...0;...0;...0,)) = 0.

Lemma 4.5.2. Let H : M,(IF) — F be a function satisfying properties (1) - (3) of Theorem 4.3.1 then
H = v - det, where v = H(I,).

We note that with the lemma the proof of the theorem is complete: since & satisfies the assump-
tions of the lemma, we have
h(B) = h(I,) - det(B).
Since h(B) = det(AB),h(I,) = det(A), we have
det(AB) = det(A) - det(B).

It remains to prove the lemma.
Proof of Lemma. Let us write v; = Yy ajje;, where e; is the i-th element of the standard basis,

written as a column vector (all the entries of e; are zero except for the i-th entry which is 1). Then
we have

('0102 Ce Z)n) = ((11])
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Now, by the linearity properties of H, we have

n n
H(vy...vy) = H(Zailei, ce, Zainei)
i=1 i—1
= Y ay-c-ai.-Hieiy, ... e,),
(11+eesin)

where in the summation each 1 < i; < n. Ifin thissum i, = i; forsome ¢ # kthen H(e;,, ..., ¢;,) =
0. We therefore have,

H(Ul...Un): E aﬁl"'ainn'H(EiuH'/ein)

(1,001 ). j distinet

= Z Ar(1)1 " " Ao(n) HH(e(T(l)/' : ~/ea(n))'

oES,
Now, inspection of the proof of Corollary 4.3.2 shows that it holds for H as well. We therefore
get,

H(vi...vy) = Z sgn(a)agm 17 Ag(n) H(ei, ..., en)

oEeSs,,

=7 Z Sgn(a)aa(l) 1" Ao(n)n

ogeS,

=y -det(vy...v,).

4.6. Laplace’s theorem and the adjoint matrix. Consider again the formula for the determinant
of an n x n matrix A = (a;;):

det(aij) = Z Sgn(o-)aa(l) 1 Ag(n) n-

oeSy,

Choose an index j. We have then

4) det(A):Zuij Z sgn(a)HaU(W.
i=1

{o:0(j)=i} (4]

Let A; j be the ij-minor of A. This is the matrix obtained from A by deleting the i-th row and j-th
column. Let A’/ be the ij-cofactor of A, which is defined as

AT = (=1)" det(Ay).
Note that Ajj is an (n — 1) x (n — 1) matrix, while A" is a scalar.
Lemma 4.6.1. }_y.(j)=i} 80(0) [Tr; Ao(e)e = Al

Proof. Let f = (jj+1 ... n),g = (ii+1 ... n) be the cyclic permutations, considered as an
elements of S,,. Define

bup = ag(a) (p)-
Note that
Aij = (bag)1<ap<n—1



Then,
Y. sgn@)lacwye= Y, sgn(o)[1bg1(000) 10
{owo(j)=i} U#] {owo(j)=i} U]
n—1
= 2 sgn(@) [Tl ot v
{0 ()=i} =1
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because {f~1(¢) : ¢ #j} = {1,2,...,n— 1}. Now, the permutations ¢’ = ¢~ lof, where ¢(j) =i
are precisely the permutations in S, fixing n and thus may be identified with S,,_;. More-

over, sgn(c) = sgn(f) sgn(g) sgn(g 1o f) = (—1) )01 sgn(g-lof) = (~1)"*I sgn(g Lo f).

Thus, we have,

. . n_l ..
Y sgn(@) [ Jasye= (1"}, sgn(o) [] b= A"
t=1

{owo(j)=i} (] 0'€Su1

Theorem 4.6.2 (Laplace). For any i or j we have
det(A) = ag A + apA? 4 - 4 a;, A™, (developing by row)

and

det(A) = a1jAY + 1A + - - + a,jA", (developing by column).

Also, if £ # j then (for any j)
n .
ZaijAlg =0,
i=1
and if £ # i then
n .
Z az-]-AEJ =0.
j=1

Example 4.6.3. We introduce also the notation

|a;j| = det(ajj).
We have then:
1 2 3
5 6 4 6 4 5
45 6:1-' ’—2-‘ ‘+3-‘ ‘
78 9 8 9 7 9 7 8
5 6 2 3 2 3
1 i 3R
2 3 1 3 1 2
=4 g 9'*5'7 9'_6"7 8|

Here we developed the determinant according to the first row, the first column and the second
row, respectively. When we develop according to a certain row we sum the elements of the
row, each multiplied by the determinant of the matrix obtained by erasing the row and column
containing the element we are at, only that we also need to introduce signs. The signs are easy

to remember by the following checkerboard picture:

- -

- -

+ I+ |
+ |+ |
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Proof. The formulas for the developing according to columns are immediate consequence of
Equation (4) and Lemma 4.6.1. The formula for rows follows formally from the formula for
columns using det A = det A’

The identity Y /", aijAM = 0 can be obtained by replacing the /-th column of A by its j-th
column (keeping the j-column as it is). This doesn’t affect the cofactors A and changes the
elements a; ¢ to a;;. Thus, the expression Y, aiinZ is the determinant of the new matrix. But
this matrix has two equal columns so its determinant is zero! A similar argument applies to the
last equality. 0

Definition 4.6.4. Let A = (a;;) be an n X n matrix. Define the adjoint of A to be the matrix
Ad](A) = (Cij)/ Cl']' = A]l
That is, the ij entry of Adj(A) is the ji-cofactor of A.

Theorem 4.6.5.
Adj(A)- A=A -Adj(A) = det(A) - L.

Proof. We prove one equality; the second is completely analogous. The proof is just by noting
that the ij entry of the product Adj(A) - A is

n n )
Z Ad](A)lg . (/Zg]' = Z Elg]‘ : Ael.
(=1 =1

According to Theorem 4.6.2 this is equal to det(A) if i = j and equal to zero if i # j. O
Corollary 4.6.6. The matrix A is invertible if and only if det(A) # 0. If det(A) # 0 then
1
-1

= -Adj(A).
det(a) AdiA)
Proof. Suppose that A is invertible. There is then a matrix B such that AB = I,,. Then det(A) det(B) =
det(AB) = det(I,) = 1and so det(A) is invertible (and, in fact, det(A~!) = det(B) = det(A)™).
Conversely, if det(A) is invertible then the formulas,
Adj(A)-A=A-Adj(A) =det(A) - I,,
show that
A~ =det(A) T Adj(A).
O

Corollary 4.6.7. Let B = {vy,...,v,} be a set of n vectors in F". Then B is a basis if and only if
det(v1v;...0,) # 0.

Proof. If B is a basis then (v10vp...v,) = ¢Mp. Since ssMppMs; = pMgisiMp = I, then
(0107 . ..vy) is invertible and so det(v1v; ... vy,) # 0.

If B is not a basis then one of its vectors is a linear combination of the preceding vectors. By
renumbering the vectors we may assume this vector is v,. Then v, = 2?:_11 «;v;. We get

n—1
det(v1v;...v,) = det(v10;. .. Un,l(z a;0v;))
i=1

n—1

=) a;det(v10;...0,_10;)
i—1
= O,

because in each determinant there are two columns that are the same. O
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5. SYSTEMS OF LINEAR EQUATIONS

Let IF be a field. We have the following dictionary:

system of m linear equations in n variables ‘

< |matrix A in My, x,(FF)

> ‘ linear map T : F" — [F™ ‘

anxy + -+ amxn an ... din T:F*" — F"
. N A — . . o x1 x1
: = : T(:)=af:
A1 X1+ -+ AmnXn Am1 -+ Amn Xn Xn

X1

In particular: ( :

Xn

) solves the system
apxy+ -+ apx, = b

A1 X1+ - -+ ApnXy = bm;
X1 by
Al - | =1 : ],
X b
X1 b]
T : =1 :1].
x.” b;n

by 0 x1
A special case is ( : ) = ( : ) . We see that ( : ) solves the homogenous system of equations

Xn

if and only if

if and only if

aix1+ -+ agx, =0

Am X1+ -+ QpnXn = 0/

if and only if

We therefore draw the following corollary:
Corollary 5.0.1. The solution set to a non homogenous system of equations

anxi+ -4 apx, = b
A1 X1 + -+ Ay Xp = by,

h f

is either empty or has the form Ker(T) + | : |, where < : > is (any) solution to the non homogenous
tn tn

system. In particular, if Ker(T) = {0}, that is if the homogenous system has only the zero solution, then
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any non homogenous system

ay Xy + -+ Xy = b1

A1 X1+ -+ ApnXn = by,

has at most one solution.
We note also the following:

Corollary 5.0.2. The non homogenous system

anxy + -+ ax, = b

Am1X1 + -+ AunXn = bmr

by
has a solution if and only if < : ) is in the image of T, if and only if
by

by an a1n
(:)ESpan{( : ),...,( : )}
b;n ar'nl ar:rm

Corollary 5.0.3. If n > m there is a non-zero solution to the homogenous system of equations. That is,
if the number of variables is greater than the number of equations there’s always a non-trivial solution.

Proof. We have dim(Ker(T)) = dim(F") — dim(Im(T)) > n —m > 0, therefore Ker(T) has a
non-zero vector. O

a1l A1n
Definition 5.0.4. The dimension of Span { < : ) Sy, ( : ) }, i.e., the dimension of Im(T), is
am1

called the column rank of A and is denoted rk.(A). We also call Im(T) the column space of A.
Similarly, the row space of A is the subspace of F" spanned by the rows of A. Its dimension
is called the row rank of A and is denoted rk,(A).

Amn

Example 5.0.5. Consider the matrix

Its column rank is 2 since the third column is the sum of the first two and the fourth column
is the second minus the third. The first two columns are independent (over any field). Its
row rank is also two as the first and third rows are independent and the second row is 3 x (the
first row) - 2x(the third row). As we shall see later, this is no accident. It is always true that
rk.(A) = rk,(A), though the row space is a subspace of F" and the column space is a subspace
of F"™!

We note the following identities:

1k, (A) = rk.(A"), rk.(A) = rk,(A").
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5.1. Row reduction. Let A be an m x n matrix with rows Ry, ..., R;;. They span the row space

of A. The row space can be understood as the space of linear conditions a solution to the ho-
X1

mogenous system satisfies. Let x = ( : ) be a solution to the homogenous system
Xn

anxi+ -+ apx, =0

AmiX1+ -+ ApnXn = 0
We can also express it by saying
(Ri,x) =+ = (R, x) =0.

Then

<sziRi,x> = ZOCZ'<RZ',X> =0.

This shows that ( : ) satisfies any linear condition in the row space.
Xn

Corollary 5.1.1. Any homogenous system on m equations in n unknowns can be reduced to a system of
m'’ equations in n unknowns where m' < n.

Proof. Indeed, x solves the system

(Ry,x) =+ =(Ry,x) =0
if and only if

(S1,x) =+ = (S, x) =0,
where Sy, ...,S,, are a basis of the row space. The row space is a subspace of F"” and so m’ <
n. U

Let again A be the matrix giving a system of linear equations and Ry, ..., R, its rows. Row
reduction is (the art of) repeatedly performing any of the following operations on the rows of A
in succession:

R;i— AR;, A€~ (multiplying a row by a non-zero scalar)
R; < R; (exchanging two rows)
Ri— R; +AR;j, i#j (adding any multiple of a row to another row)

Proposition 5.1.2. Two linear systems of equations obtained from each other by row reduction have the
same space of solutions to the homogenous systems of equations they define.

Proof. This is clear since the row space stays the same (easy to verify!). U

Remark 5.1.3. Since row reduction operations are invertible, it is easy to check that row reduction
defines an equivalence relation on m x n matrices.
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5.2. Matrices in reduced echelon form.
Definition 5.2.1. A matrix is called in reduced echelon form if it has the shape
0 ... 0 a1,

0 ... 0 a2,
0 0 azi,

0 0
where each a;;, = 1 and for every ¢ # k we have a;, = 0. The columns iy,...,i, are distin-

guished. Notice that they are just part of the standard basis — they are equal to ey, .. ., ¢;.

Example 5.2.2. The real matrix

0 211
0012
0 00O

is in echelon form but not in reduced echelon form. By performing row operations (do R; >
Ri — Ry, then Ry — %Rl) we can bring it to reduced echelon form:

010 —1/2
0 01 2
000 0

Theorem 5.2.3. Every matrix is equivalent by row reduction to a matrix in reduced echelon form.

We shall not prove this theorem (it is not hard to prove, say by induction on the number of
columns), but we shall make use of it. We illustrate the theorem by an example.

32 0 11 1 1 1 1
Example 5'2'4' ]- 1 1 — R1<Ry 3 2 0 — Ry—>Ry—3Rq,R3—R3—2R; 0 _1 _3 — R3+—R3—R3,Ry—~—Rp
21 -1 21 -1 0 -1 -3

Theorem 5.2.5. Two m x n matrices in reduced echelon form having the same row space are equal.
Before proving this theorem, let us draw some corollaries:
Corollary 5.2.6. Every matrix is row equivalent to a unique matrix in reduced echelon form.

Proof. Suppose A is row-equivalent to two matrices B, B’ in reduced echelon form. Then A and
B and A and B’ have the same row space. Thus, B and B’ have the same row space, hence are
equal. U

Corollary 5.2.7. Two matrices with the same row space are row equivalent.

Proof. Let A, B be two matrices with the same row space. Then A is row equivalent to A’ in
reduced echelon form and B is row equivalent to B’ in reduced echelon form. Since A’, B’ have
the same row space they are equal and it follows that A is row equivalent to B. 0
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Proof. (Of Theorem 5.2.5) Write

Rq S1
Ry S2
A - R.:x 7 B = Sﬁ 4
0 0
0 0

where the R;, S; are the non-zero rows of the matrices in reduced echelon form. We have
Ri = (0,...0,&1‘]'1. = 1,)

and ag; =0 for ¢ # i. We claim that Ry, ..., R, is a basis for the row space. Indeed, if 0 = ) ¢;R;
then since Y ¢;R; = (...c1...¢2...¢Cy...), where the places the c¢;’s appear are ji, o, . .., ja, We
must have ¢; = 0 for all i. An independent spanning set is a basis. It therefore follows also that
« = B, there is the same number of rows in A and B.

Let us also write

Si=1(0,...0,by, =1,...).

Suppose we know already that R;11 = S;i+1,..., Ry = S, for some i < « and let us prove that for
i. Suppose that k; > j;. We have

Rl‘ = (00 aij,- ...... Elin)
and
Si=1(0...0...0 by, ...bjy)
with a;j, = by, = 1. Now, for some scalars ¢, we have
S;=HR1+---+t,Ry = (...tl...tz...ti...t“...),

where t, appears in the j, place. Now, at those place ji, . . ., j; the entry of S; is zero (because also
ji < ki). We conclude thatt; = --- =t; = 0 and so

Si=titaRip1 + -+ taRa = tip1Sip1 + - - + 1aSa,

which contradicts the independence of the vectors {S, ..., S, }. By symmetry, k; < j; is also not
possible and so k; = j;.
Again, we write

Si=hRi+ 4 tRe=(..ti...tp. i ity...),
where t, appears in the j, place. The same reasoning tells us that t; = --- =t;_; = 0 and so
S; =tiR;j+ti11Siy1+ - -+ 1,5, = (0~--0ti--~ti+1---toc-~~)/

where t, appears in the k, place. However, at each k, place where a > i the coordinate of S;
is zero and at the k; coordinate it is one. It follows that t; = 1,t;y; = --- = t, = 0 and so
Si=R;. O

5.3. Row rank and column rank.
Theorem 5.3.1. Let A € My, (IF). Then
rk,(A) = rk.(A).
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Proof. Let T : F" — IF™ be the associated linear map. Then
rk.(A) = dim(Im(T)) = n — dim(Ker(T)).

Let A be the matrix in reduced echelon form which is row equivalent to A. Since Ker(T) are
the solutions to the homogenous system of equations defined by A, it is also the solutions to
the homogenous system of equations defined by A. If we let T be the linear transformation
associated to A then

Ker(T) = Ker(T).
We therefore obtain

rk.(A) = n —dim(Ker(T)) = dim(Im(T)).
(We should remark at this point that this is not a priori obvious as the column space of A and A
are completely different!)

Now dim(Im(T)) = rk.(A) is equal to the number of non-zero rows in A. Indeed, if A has k
non-zero rows than clearly we can get at most k non-zero entries in every vector in the column

space of A. On the other hand, the distinguished columns of A (where the steps occur) give us
the vectors ey, ..., e, and so we see that the dimension is precisely k. However, the number of
non-zero rows is precisely the basis for the row space that is provided by those non zero rows.
That is,

dim(Im(T)) = rkr(g) =rk,(A),
because A and A have the same row space. O

Corollary 5.3.2. The dimension of the space of solutions to the homogenous system of equations is n —
rk,(A), namely, the codimension of the space of linear conditions row-space(A).

Proof. Indeed, this is dim(Ker(T)) = n — dim(Im(T)) = n — rk.(A) = n — rk,(A). O

5.4. Cramer’s rule. Consider a non homogenous system of n equations in 7 unknowns:

a1 xy + -+ ayxy = by
5)
Ap1X1 + -+ ApnXn = by.

Introduce the notation A for the coefficients and write A as n-columns vectors in F":
A= <v1|vz| . ]vn) .

Let
by
p=|"
by
Theorem 5.4.1. Assume that det(A) # 0. Then there is a unique solution (x1,Xa,...,X,) to the non
homogenous system (5). Let A; be the matrix obtained by replacing the i-th column of A by b:

A= (z)1| o vica| b o] - |vn> :
Then,
det(A;)
det(A)
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Proof. Let T be the associated linear map. First, since Ker(T) = {0} and the solutions are
a coset of Ker(T), there is at most one solution. Secondly, since dim(Im(T)) = dim(F") —
dim(Ker(T)) = n, we have Im(T) = F" and thus for any vector b there is a solution to the
system (5).

Now,

det(A;) = det (v1| o vis)xor 4 - xg0 |0 ] |vn)

n
Y xjdet (01| oo vica]vj|viga] - - |W)
=1

= x; det (01| i |vilviga] - |Un)
= x;det(A).

(In any determinant in the sum there are two vectors that are equal, except when we deal with
the i-th summand.) U

5.5. About solving equations in practice and calculating the inverse matrix.

Definition 5.5.1. An elementary matrix is a square matrix having one of the following shapes:

(1) A diagonal matrix diag[1,...,1,A,1,...,1] for some A € F*.

(2) The image of a transposition. That is, a matrix D such that for some i < j has entries
dix = 1fork & {i,j}, dij = d;; = 1 and all its other entries are zero.

(3) A matrix D whose diagonal elements are all 1, has an entry d;; = A for some i # j and
the rest of its entries are zero. Here A can be any element of IF.

Let E be an elementary m X m matrix and A a matrix with m rows, Ry, ..., R,. Consider the
product EA.

(1) If E if of type (1) then the rows of EA are
Ry,...,Ri_1,AR;,Ris1,..., Ry.
(2) If E if of type (2) then the rows of EA are
Ry,...,Ri-1,Rj,Riy1,-- ., Rj—1, R, Rj1, ..., R
(3) If E is of type (3) then EA has rows
Ry,...,Ri-1,Ri + AR}, Riy1, ..., R

It is easy to check that any elementary matrix E is invertible. Any iteration of row reduction
operations (such as reducing to the reduced echelon form) can be viewed as

A~ EA,

where E is product of elementary matrices and in particular invertible. Therefore:

x1 by x1 by
()-(0) = e (i)-+(2)
Xn b Xn b

by
This, of course, just means that the following. If we perform on the vector of conditions ( : )

bm
exactly the same operations we perform when row reducing A then a solution to the reduced
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system

X1 by
ea(()-1()
Xn b

is a solution to the original system and vice-versa.

This reduction can be done simultaneously for several conditions, namely, we can attempt to

solve
X1 Y1 b1 C1
Al : : S
Xn Yn b.m C;n

Again,

X1 W1 bl C1 X1 Y1 bl C1
x.n y.n b.m C;n x.n y'n b;n C;n

X1 Y1 21 ...
We can of course do this process for any number of condition vectors ( :

Xn Yn Zn ...

) . We note that

if A is a square matrix, to find A~! is to solve the particular system:

If A is invertible then the matrix in reduced echelon form corresponding to A must be the iden-
tity matrix, because this is the only matrix in reduced echelon form having rank n. Therefore,
there is a product E of elementary matrices such that EA = I,. We conclude the following;:

Corollary 5.5.2. Let A be an n x n matrix. Perform row operations on A, say A ~» EA so that EA is in
reduced echelon form and at the same time perform the same operations on I,, I, ~ EI,. A is invertible
if and only if EA = I,,; in that case E is the inverse of A and we get A~1 by applying to the identity
matrix the same row operations we apply to A.

11
Example 5.5.3. Let us find out if A =

a1 O 3

0
0 1 | isinvertible and what is its inverse. First, the
8 0
determinantof Ais7-0-0+0-8-0+5-11-1—-0:-0-5—-1-8-7—0-11-0 = —1. Thus, A is
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invertible. To find the inverse we do

7 11 01 0 O
0 0 1 0 1 O — R;—5R;,R3+5R;
5 8 00 01
35 55 05 0 O
O 0 1 0 1 0 — R3}—>R3*Rl
35 56 0 0 0 7
35 55 0 5 0 O
0 0 1 0 1 0| — R;y—R,—55R;3
0O 1 0 -5 0 7
35 0 0 280 0 -—385
0O 01 o0 1 0 T Ry £ Ry,RyRs

010 -50 7

100 8 0 -—11
010 -50 7
001 0 1 0
Thus, the inverse of A is
8 0 -—11
-5 0 7
0 1 0
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6. THE DUAL SPACE

The dual vector space is the space of linear functions on a vector space. As such, it is a natural
object to consider and arises in many situations. It is also perhaps the first example of duality
you will learn. The concept of duality is a key concept in mathematics.

6.1. Definition and first properties and examples.

Definition 6.1.1. Let [F be a field and V a finite dimensional vector space over [F. We let
V* = Hom(V, F).

Since FF is a vector space over IF, we know by a general result, proven in the assignments, that
V* is a vector space, called the dual space, under the operations

(S+T)(v) =S(v)+T(v), (aS)(v)=aS(v).
The elements of V* are often called linear functionals.

Recall the general formula
dimHom(V, W) = dim(V) - dim(W),
proved in Corollary 3.8.2. This implies that dim V* = dim V. This also follows from the follow-
ing proposition.

Proposition 6.1.2. Let V be a finite dimensional vector space. Let B = {by,...,b,} be a basis for V.
There is then a unique basis B* = {f1, ..., fu} of V* such that

fi(bj) = 6.
The basis B* is called the dual basis.
Proof. Given an index i, there is a unique linear map,
fi:V—=F,
such that,
fi(bj) = &ij.
This is a special case of a general result proven in the assignments. We therefore get functions
fl,...,fn . V%IF.

We claim that they form a basis for V*. Firstly, {f1,..., fu} are linearly independent. Suppose
that ) a;f; = 0, where 0 stands for the constant map with value Or. Then, for every j, we have
0 = (Caifi)(bj)) = X0 = w;. Furthermore, {f1,...,f,} are a maximal independent set.
Indeed, let f be any linear functional and let &; = f(b;). Consider the linear functional f’ =
Y aifi. We have for every j, f'(b;) = (L aifi)(bj) = ¥ a;0;; = aj = f(b;). Since the two linear
functions, f and f’, agree on a basis, they are equal (by the same result in the assignments). [J

Example 6.1.3. Consider the space [F" together with its standard basis St = {e1,...,e,}. Let f;
be the function
(x1,..., %) |£> X;.
Then,
St ={f1,..., fu}.
To see that we simply need to verify that f; is a linear function, which is clear, and that fi(e;) =
dij, which is also clear.
Therefore, the form of the general element of IF"* is a function }_ 4, f; given by

(x1,...,Xn) — a1x1 + -+ - + apxy,
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for some fixed a; € [F. We see that we can identify F"* with F", where the vector (ay,...,a,) is
identified with the linear functional (x1,...,%,) > a1X1 + - - + apXy.

Example 6.1.4. Let V = F|t],11 be the space of polynomials of degree at most n. Consider the
basis
B={1,tt%...,t"}.
The dual basis is
B*={fo,..-, fu},

where,
n
f](z a;t') = Q.
i=0

In general that’s it, but if the field IF contains the field of rational numbers we can say more. One

checks that i
1d
filf) = ]-7@(0)-

(Forj =0, % is interpreted as f.) Thus, elements of the dual space, which are just linear

combinations of { fy, ..., fu }, can be viewed as linear differential operators.
Now, quite generally, if B = {vy,...,v,} is a basis for a vector space V and B* = {fy,..., fu}
is the dual basis, then any vector in V satisfies:

V= Z fi(v)v;.
i=1

(This holds because v = Y ; a;v; for some a; and now apply f; to both sides to get f;(v) = a;.)

Applying these general considerations to our example above for real polynomials (say) we
find that ‘
v ldf ;
f= ;) 0
which is none else than the Taylor expansion of f around 0!

6.2. Duality.

Proposition 6.2.1. There is a natural isomorphism
V=V

Proof. We first define a map V — V**. Let v € V. Define,

¢$o: V" = F
by

$o(f) = f(0).
We claim that ¢, is a linear map V* — [F. Indeed,

¢o(f +8) = (f +8)(v) = f(v) +8(v) = ¢o(f) + do(g),
and
Po(ag) = (ag)(v) = ag(v) = ago(g)-
We therefore get a map
V = V*, V= Py

This map is linear:

Po+w(f) = f(o+w) = f(v) + f(w) = (o + Pu) (f),
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and

Puo(f) = f(av) = ago(f) = (agpo)(f)-
Next, we claim that v — ¢, is injective. Since this is a linear map, we only need to show that its
kernel is zero. Suppose that ¢, = 0. Then, for every f € V* we have ¢,(f) = f(v) =0.Ifv # 0
then let v = v; and complete it to a basis for V, say B = {vy,...,v,}. Let B* = {f1,..., fu} be
the dual basis. Then f;(v1) = 0, which is a contradiction. Thus, v = 0.
We have found an injective linear map

V — V™, V= Py
Since dim(V) = dim(V*) = dim(V**) the map V — V** is an isomorphism. O

Remark 6.2.2. It is easy to verify that if B is a basis for V and B* its dual basis, then B is the dual
basis for B* when we interpret V as V**.

Definition 6.2.3. Let V be a finite dimensional vector space. Let U C V be a subspace. Let
Ut:={feVv*:f(u)=0vuc U}
U+ (read: U perp) is called the annihilator of U.

Lemma 6.2.4. The following hold:

(1) U+ is a subspace.

(2) If U C Uy then U+ D Uf-.

(3) U+ is a subspace of dimension dim (V) — dim(U).
(4) We have U+ = U.

Proof. Itis easy to check that U~ is a subspace. The second claim is obvious from the definitions.
Let vy,...,v, be a basis for U and complete to a basis B of V, B = {vy,...,v,}. Let B* =
{fi,..., fu} be the dual basis. Suppose that Y"" ; a;f; € U* then for every j = 1,...,a we have

0= (é“l’fi)(v}') = aj.

Thus, U+ C Span(fy41, ..., fn). Conversely, it is easy to check that each f;,i =a+1,...,n,isin
U+ and so U+ D Span(f11,-- -, fu). The third claim follows.
Note that this proof, applied now to U+ gives that U+ = U. [l

Proposition 6.2.5. Let Uy, U, be subspaces of V. Then
(U + W)t =UifnUy, (Nt =Ui + Us.
Proof. Let f € (U; + Up)*. Since U; C Uy + U we have f € U and so f € Uj NU;-. Con-
versely, if f € Ull N UZL then for v € Uy + Uy, say v = uy + up, we have
f(o) = flur +u2) = f(ur) + f(u2) =0+ 0=0,

and we get the opposite inclusion.
The second claim follows formally. Note that Uy N U, = Ui+ N U5+ = (U + Us )+ Taking
1 onboth sides we get (U; N )+ = Uit + Uy O

Proposition 6.2.6. Let U be a subspace of V then there is a natural isomorphism
u* = ve/u-.

Proof. Consider the map
S:V =U',  f flu
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It is clearly a linear map. The kernel of S is by definition U*. We therefore get a well defined
injective linear map
s':vr/ut — ur
Now, dim(V*/U"*) = dim(V) — dim(U*) = dim(U) = dim(U*). Thus, S’ is an isomorphism.
O

Corollary 6.2.7. We have (V/U)* = U+,

Proof. This follows formally from the above: think of V as (V*)* and U = (U*)*. We already
know that (V*)*/(U+)+ = (U*)*. Thatis, V/U = (U4)*. Then, (V/U)* = (U+)* =2 U*.

Of course, one can also argue directly. Any element of U~ is a linear functional V — FF that
vanishes on U and so, by the first isomorphism theorem, induces a linear functional V /U — F.
One shows that this provides a linear map U+ — (V/U)*. One can next show it’s surjective
and calculate the dimensions of both sides. U

Given a linear map
T:V =W,
we get a function
T :W* = V¥, (T*(f))(v) := f(To).
We leave the following lemma as an exercise:

Lemma 6.2.8. (1) T* is a linear map. It is called the dual map to T.
(2) Let B,C be bases to V, W, respectively. Let A = ¢[T|p be the m x n matrix representing T,
where n = dim(V), m = dim(W). Then the matrix representing T* with respect to the bases
B*,C* is the transpose of A:
g [T = c[T]5".
(3) If T is injective then T* is surjective.
(4) If T is surjective then T* is injective.

Proposition 6.2.9. Let T : V — W be a linear map with kernel U. Then Im(T*) is U*.

Proof. Let uy,...,u, be a basis for U and B = {uy,..., Uy, tgt1,..., Uy} an extension to a basis
of V. Let B* = {f1,..., fu} be the dual basis. We know that U+ = Span({fzs1,..., fu}). We
also know that {wy, ..., wy—4}, w; = T(u,), is a linearly independent set in W (cf. the proof of
Theorem 3.2.1). Complete it to a basis C = {wy, ..., w,,} of W and let C* = {g1,...,9m} be the
dual basis. Let us calculate T*(g;).

We have T*(g;)(uj) = gi(T(uj)) = 0if j = 1,...,a because T(u;) is then 0. We also have
T*(gi)(tayj) = &i(T(4ayj)) = gi(w;) = &jj, for j = 1,...,n —a. It follows that if i > n—a
then T*(g;) is zero on every basis element of V and so must be the zero linear functional; it
also follows that for i < n —a, T*(g;) agrees with f,; on the basis B and so T*(g;) = fy4i,i =
1,...,n —a. We conclude that Im(T*), being equal to Span({T*(g1),..., T*(gm)}) is precisely

Span({fat+1,..-, fu}) = u+t. O

6.3. An application. We provide another proof of Theorem 5.3.1.
Theorem 6.3.1. Let A be an m x n matrix. Then rk,(A) = rk.(A).

Proof. Let T be the linear map associated to A, then A’ is the linear map associated to T*. Let
U = Ker(T). We have rk.(A) = dim(Im(T)) = n — dim(U). We also have rk,(A) = rk.(A!) =
k. (T*) = dim(Im(T*)) = dim(U*) = n — dim(U). O



52

7. INNER PRODUCT SPACES

In contrast to the previous sections, the field IF over which the vector spaces in this section are
defined is very special: we always assume F = R or C. We shall denote complex conjugation
by r — 7. We shall use this notation even if F = R, where complex conjugation is trivial, simply
to have uniform notation.

7.1. Definition and first examples of inner products.

Definition 7.1.1. An inner product on a vector space V over F is a function:
(-,+): VxV —F,
satisfying the following:
(1) (v1 4+ vo, w) = (v1,w) + (vy, w) for vy, vy, w € V;
(2) (av,w) =wa - (v,w) fora € F, v,w e V.
(3) (v,w) = (w,v) forv,w € V.
(4) (v,v) > 0 with equality if and only if v = 0.

Remark 7.1.2. First note that (v,v) = (v,v) by axiom (3), so (v,v) € R and axiom (4) makes
sense! We also remark that it follows easily from the axioms that:

o (w,01 +v2) = (w,01) + (W, 02);
o (v,aw) =a-(v,w).
e (v,0) = (0,v) =0.
Definition 7.1.3. We define the norm of v € V by
loll = (v,0)'/2,
and the distance between v and w by
d(v,w) = ||lv—w]|.

Example 7.1.4. The most basic example is F" with the inner product:

(1, x0), Y1, yn)) = éxi]/z‘-

Theorem 7.1.5 (Cauchy-Schwartz inequality). Let V' be an inner product space. For every u,v € V
we have
(w0 < fJull - o]

Proof. Tf ||o]| = 0 then v = 0 and the inequality holds trivially. Else, let & = 4% We have:

2
0 < [lu— av|?
= (U —av,u — av)
= [[ul® + aa||o|* — a(u,v) - @(u,0)

— HMHZ o ’<u/v>|2
0[]

The theorem follows by rearranging and taking square roots. O

Proposition 7.1.6. The norm function is indeed a norm. That is, the function v — ||v|| satisfies:
(1) ||v|| > 0 with equality if and only if v = 0;
(2) ||ao]| = |af - o]
(3) (Triangle inequality) ||u + v|| < ||u|| + ||v||.
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The distance function is indeed a distance function. Namely, it satisfies:
(1) d(v,w) > 0 with equality if and only if v = w;
(2) d(v,w) = d(w,v);
(3) (Triangle inequality) d(v,w) < d(v,u) +d(u, w).

Proof. The first axiom of a norm holds because (v, v) > 0 with equality if and only if v = 0. The
second is just

leoll = / (e, 00) = \/o® - (0,0) = I Jo].
The third axiom is less trivial. We have:

lu+o|> = (u+0v,u+0)
= flul? + o]l + (u,0) + (v,u)
= J|ull® + [o]|* +2R(u, v)
< [l + [lol* +2/{u, v)|
< ulf? +[[ol* +2[|ul| - [[o]
= ([full + [[o])*.

(In these inequalities we first used that for a complex number z the real part of z, Rz, is less or
equal to |z|, and then we used the Cauchy-Schwartz inequality.)

The axioms for the distance function follow immediately from those for the norm function
and we leave the verification to you. 0

Example 7.1.7. (Parallelogram law). We have
lu+ )1 + [Ju — 0| = 2][u® + 2|0

This is easy to check from the definitions.
Suppose now, for simplicity, that V is a vector space over IR. Note that we also have

1
(w,0) = 5 (lu+ol* = fJuf*  [o]*) .

Suppose that we are given any continuous norm function || - || : V — R. Namely, a continuous
function satisfying the axioms of a norm function but not necessarily arising from an inner
product. One can prove that

1
(,0) =3 (llu + o> = ul* = [|o]1?)
defines an inner product if and only if the parallelogram law holds.

Example 7.1.8. Let M € M, (FF). Define
t

M =M.
That is, if M = (m;;) then M* = (mj;). A matrix M € M,,([F) is called Hermitian if
M = M*.

Note that if F = R then M* = M! and a Hermitian matrix is simply a symmetric matrix.
Now let M € M, (FF) be a Hermitian matrix such that for every vector (x1,...,x,) # 0 we
have
X1

(x1,...,xp) M| : | >0,
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(one calls M positive definite in that case) and define

Y1
(1, xn), (1, ym)) = (1,0, x) M| 2 | = Zmijxijj.
w)
This is an inner product. The case of M = I, gives back our first example ((x1,...,x,), (Y1,...,Yn)) =
Y.it1 x;y;. It is not hard to prove that any inner product on F" arises this way from a positive
definite Hermitian matrix (Exercise).

Deciding whether M = M* is trivial. Deciding whether M is positive definite is much harder,
though there are good criterions for that. For 2 x 2 matrices M, we have that M is Hermitian if

and only if
M= (")
b d

Such M is positive definite if and only if 2 and d are positive real numbers and ad — bb > 0
(Exercise).
For such an inner product on ", the Cauchy-Schwartz inequality says the following:

S < S [Smi
i,j i,j i,j

In the simplest case, of R” and M = I,,, we get a well known inequality:

le-y]- < /inz- /Zyiz.
L] 1 1

Example 7.1.9. Let V be the space of continuous real functions f : [4,b] — R. Define an inner
product by

(f.8) = /ubf(x)g(x)dx.

The fact that this is an inner product uses some standard results in analysis (including the
fact that the integral of a non-zero non-negative continuous function is positive). The Cauchy-

Schwartz inequality now says:
b 172 b
< ([ rerax) ([ sorx)
a a

b 1/2
| Fsax
7.2. Orthogonality and the Gram-Schmidt process. Let V/IF be an inner product space.

Definition 7.2.1. We say that u,v € V are orthogonal if
(u,v) = 0.
We use the notation u | v. We also say u is perpendicular to v.

Example 7.2.2. Let V = " with the standard inner product. Then e¢; L e;. However, if we

1 141
take n = 2, say, and the inner product defined by the matrix (1 . —5H> then e; is not
—1

perpendicular to v. Indeed,

(1,0) (1: 1?) (?) —11i#0.
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So, as you may have suspected, orthogonality is not an absolute notion, it depends on the inner
product.

Definition 7.2.3. Let V be a finite dimensional inner product space. A basis {v1,...,0,} for Vis
called orthonormal if:

(1) Fori # jwehave v; 1 vj;

(2) ||vi|| =1 for all i.

Theorem 7.2.4 (The Gram-Schmidt process). Let {s1,...,s,} be any basis for V. There is an or-
thonormal basis {v1, ..., v, } for V, such that for every i,

Span({vy,...,v;}) = Span({s1,...,si}).

Proof. We construct vy, ..., v, inductively on i, such that Span({vy,...,v;}) = Span({s1,...,s;}).
Note that this implies that dim Span({vy,...,v;}) =i and so that {vy,...,v;} are linearly inde-
pendent. In particular, {v4,...,v,} is a basis.

We let
51

ELl
Then ||v1|| = 1 and Span({v1}) = Span({s1}).

Assume we have defined already vy, . . ., vy such that for all i < k we have Span({vy,...,v;}) =
Span({si,...,si}). Let

U1

k

s§{+1 = Sk4+1 — Z<Sk+1/vi> " Uiy Uk+1 = st
i=1 ke

/
Ska1

First, note that s} , ; cannot be zero since {sy, ..., 541 } are independent and Span({vy, ..., v }) =
Span({si,...,sx}). Thus, vy, is well defined and ||vy,1|| = 1. Itis also clear from the definitions
and induction that Span({vy,...,vks1}) = Span({s1,..., 5k vk11}) = Span({sy,..., S5 .1 }) =
Span({si,..., Sk, sk+1,s;{+1}) = Span({si,...,Sk Ski1}). Finally, for j <k,

(k41 ))
<vk 1,*0‘> — S MRS
T sl
1 k
= E “(Sk41 — E<Sk+lrvi> %z Uj>
k+1 i=1
1 k
= | (Sk41,9j) — ) (Sk1,0) - (03, 05)
551 i=1
1 k
= A | (Skr1s Uj> - Z<5k+1/ v;) ‘(Sij
k+1 i=1
=0.
Thus, {v1, ..., 01} is an orthonormal set. |

Here are some reasons an orthonormal basis is useful. Let V be an inner product space and
B = {vy,...,v,} an orthonormal basis for V. Let v,w € V and say [v]g = (a1,..., &), [w]p =



56

(B1,--.,Bn)- Then
<u/ Z)> = <Z X;i0;, Z ,31‘?)1‘>

= Z “1}87]«01'/ U]>

ij=1

n J—
= ) wip;dy

i,j=1

n —
= leiﬁi.
i=1

That is, switching to the coordinate system supplied by the orthonormal basis, the inner product
looks like the standard one and, in particular, the formulas are much easier to write down and
work with.

A further property is the following: Let v € V and write v = Y #;v;. Then (v,v;) =
Y1 i(v;,v;) = a;. That is, in any orthonormal basis {vy,...,v,} we have

(6) 0= ix’(), Z)l‘> - 0;.
i=1

1

Example 7.2.5. Let W C IR3 be the plane given by
W = Span({(1,0,1),(0,1,1)}).

Let us find an orthonormal basis for W and a line perpendicular to it.
One way to do it is the following. Complete {(1,0,1),(0,1,1)} to a basis of R3. For example,
{s1,s2,s3} = {(1,0,1),(0,1,1),(0,0,1)}. Note that

1 01
det|0 1 1| =1,
0 01

and so this is indeed a basis. We now perform the Gram-Schmidt process on this basis.
We have v; = % -(1,0,1). Then

sh =82 — (s2,01) - 01
1
=(0,1,1) — 5(1,0,1)
= (=1/2,1,1/2),

and .
vy = —(—1,2,1).
2 \@( )
Therefore,
1 1
v, =< —-(1,0,1), —(-1,2,1
(o) = {55 00, So12)
is an orthonormal basis for W. Next,
53 = 53 — (83,01)01 — (83, 02)02
1 1 1 1
=(0,0,1) — ((0,0,1), — - (1,0,1)) - —=(1,0,1) — {(0,0,1), —=(—1,2,1)) - —=(-1,2,1
( ) —(( )\@( ) \/i( ) —(( )\@( )) \@( )
1 1

=(0,01) - 5(1,0,1) - £(-1,2,1)
= (~1/3,-1/3,1/3).
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If we want an orthonormal basis for R? we can take v3 = %(—1 /3,—1/3,1/3) but, to find a
line orthogonal to W, we can just take the line through s} which is Span((—1, —1,1)).

Definition 7.2.6. Let S C V be a subset and let
St={veV:(sv)=0,Vs €S}

It is easy to see that St is a subspace and in fact, if we let U = Span(S) then

St=u-.
Proposition 7.2.7. Let U be a subspace of V then
V=Uuesu,
and
utt=u.

The subspace U™ is called the orthogonal complement of U in V.

Proof. Find a basis {sq,...,s,} to U and complete it to any basis of V, say {s1,...,s,}. Apply the
Gram-Schmidt process and obtain an orthonormal basis {v, ..., v, } then

U := Span({v1,...,04}).
We claim that U+ = Span({v,;1,...,0,}). Indeed, let v = Y, &;v;. Then v € U if and only
if (v,0;) = 0for1 <i < a. But, (v,9;) = a;sov € Ut if and only if v = Y a1 v;, which is
equivalent to v € Span({v,11,...,v4}).
It is clear then that V = U @ U+, and U+ = U. O

Let us consider linear equations again: Suppose that we have m linear equations over R in n
variables:

a11x1 + -+ appx, =0

A1 X1+ -+ ApnXy = 0

IfweletS = {(a11,...,a1n),---,(@m1, ..., amn)} then the space of solutions is precisely U~*. Con-
versely, given a subspace W C R" to find a set of equations defining W is to find WL, The
Gram-Schmidt process gives a way to do that: Find a basis {s1,...,s,} to W and complete it to
any basis of V, say {si,...,s,}. Apply the Gram-Schmidt process and obtain an orthonormal
basis {v1,...,v,} then, as we have seen,

W+ := Span({v411,...,0n}).

7.3. Applications.
7.3.1. Orthogonal projections. Let V be an inner product space of finite dimensionand U C V a
subspace. Then V = U & U and we let
T:V—=U,
be the projection on U along U+. We also call T the orthogonal projection on U.

Theorem 7.3.1. Let {vy, ..., v, } be an orthonormal basis for U. Then:

(1) T(v) =Yi (v, v) - v;
(2) (v—"T(v)) L T(v);
(3) T(v) is the vector in U that is closest to v.
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Proof. Clearly the function

.
v T'(v) =) (0,0) - v;
i=1

is a linear map from V into U. If v € U~ then T'(v) = 0, while if v € U we have v = Y/_; a;0;
and as we have noted before (see 6) a; = (v,v;). That s, if v € U then T'(v) = v. It follows, see
Theorem 3.7.2, that T is the projection on U along U+ and so T" = T.

We have seen that if T is the projection on a subspace U along W thenv — T(v) € W, T(v) € U;
apply that to W = U+ to get v — T(v) € Ut and, in particular, (v — T(v)) L T(v).

We now come to the last part. We wish to show that

.
o =Y ajvi|
i=1

is minimal (equivalently, ||v — Y/_; a;v;]| is minimal) when &; = (v,v;) foralli =1,...,r.

Complete {vy, ..., v, } to an orthonormal basis of V, say {v1,...,v,} (this is possible because
we first complete to any basis and then apply Gram-Schmidt, which will not change {v1,...,v,}
as is easy to check). Then

0= iﬁivi, ‘Bi = <Z7, Ul'>.

Then,
T
lo— Z“ivin = [(B1 —1)o1+ -+ (Br — &) Vr + Bri1Vpp1 + -+ + anvn”z
i=1
T n
=Y [Bi—al*+ ) (B~
i=1 i=r+1
Clearly this is minimized when a; = B; fori =1,...,r. Thatis, when a; = (v, v;). O

Remark 7.3.2 (Gram-Schmidt revisited). Recall the process. We have an initial basis {s1,...,s,},
which we wish to transform into an orthonormal basis {v1,...,v,}. Suppose we have already
constructed {vy,...,vx}. They form an orthonormal basis for U = Span({vy, ..., v, }). The next
step in the process is to construct:
k
Sky1 = Sk+1 — Y (Sk41,0i) - Ui
i=1
We now recognize Y¥_, (si41,0;) - v; as the orthogonal projection of s;,; on U (by part (1) of
the Theorem). si; is then decomposed into its orthogonal projection on U and s;, ; which lies
in Ut (by part (2) of the Theorem). It only remains to normalize it and we indeed have let

7.3.2. Least squares approximation. (In assignments).
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8. EIGENVALUES, EIGENVECTORS AND DIAGONALIZATION

We come now to a subject which has many important applications. The notions we shall
discuss in this section will allow us: (i) to provide a criterion for a matrix to be positive definite
and that is relevant to the study of inner products and extrema of functions of several variables;
(ii) to compute efficiently high powers of a matrix and that is relevant to study of recurrence
sequences and Markov processes, and many other applications; (iii) to give structure theorems
for linear transformations.

8.1. Eigenvalues, eigenspaces and the characteristic polynomial. Let V be a vector space over
a field IF.

Definition 8.1.1. Let T : V — V be a linear map. A scalar A € F is called an eigenvalue of T if
there is a non-zero vector v € V such that

T(v) = Av.
Any vector v like that is called an eigenvector of T. The definition applies for n x n matrices,

viewed as linear maps F" — IF".

Remark 8.1.2. A is an eigenvalue of T if and only if A is an eigenvalue of the matrix 3[T]p, with
respect to one (any) basis B. Indeed, we have

Ty =Av & B[T]B[U]B = )\[U]B.

Note that if we think about a matrix A as a linear transformation then this remark show that A
is an eigenvalue of A if and only if A is an eigenvalue of M~ AM for one (any) invertible matrix
M. This is no mystery... you can check that M~1v is the corresponding eigenvector.

-1

CA0-0- G900

Definition 8.1.4. Let V be a finite dimensional vector space over F and T : V — V a linear
map. The characteristic polynomial Ar of T is defined as follows: Let B be a basis for V and
A = [T]p the matrix representing T in the basis B. Let

Ar = det(t -1, — A),

6
Example 8.1.3. A = 1,2 are eigenvalues of the matrix A = ( 4) . Indeed,

where f is a free variable and n = dim(A).

t 0 -1 6 t+1 -6
Ar = Ay = det — —det|'T =2 _3t+2.
0 t -1 4 1 t—-4
. . 3\ (2 o
With respect to the basis B = { <1> , <1> }, T is diagonal.
10
Tlg = ,
o7l (o 2)

-1 6
Example 8.1.5. Consider T = A = ( 4) . Then
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and

t—1 0
Ar = det =(t-1)(t-2)=F#-3t+2.
: ( o 2) (t=1)(t-2)
Proposition 8.1.6. The polynomial At has the following properties:

(1) Ar is independent of the choice of basis used to compute it. In particular, if A is a matrix and M
an invertible matrix then Ay = Dyp-1 qp-
(2) Suppose that dim(V) = nand A = p[T|p = (a;;). Let

n
A) = Z ai.
i=1

Then,
Ar =" —Tr(A)" 1 .. 4 (=1)"det(A).
In particular, Tr(A) and det(A) do not depend on the basis B and we let Tr(T) = Tr(A),det(T) =

det(A).
Proof. Let B, C be two bases for V. Let A = g[T|p, D = ¢[T]|c, M = cMp. Then,
det(t- I, — A) = det(t- I, — M~ 'DM)
=det(MY(t- I, — D)M)
= det(M 1) det(t - I, — D) det(M)
=det(t- I, — D).

This proves the first assertion.
Put A= (aij) and let us calculate Ar. We have

Ar =det(t- I, — A) = Zs: sgn(0)bis(1)baw(2) = * buo(n),
oESy,

where (b;;) = t- I, — A. Each b;; contains at most a single power of t and so clearly Ar is a
polynomial of degree at most n. The monomial t" arises only from the summand by1b2; - - - by, =
(t —ay1)(t — ax) - - (t — any) and so appears with coefficient 1 in Ar. Also the monomial #"~!
comes only from this summand, because if there is an i such that o (i) # i then there is another
index j such that 0(j) # j and then in bio(1)b20(2) * * * Duo(n) the power of ¢ is at most n — 2. We see
therefore that the coefficient of t"~! comes from expanding (t — ay1)(t — az) - - (t — au,) and is

—a11 —Aaxp — - —Uyp = —TI‘(A).
Finally, the constant coefficient is Ar(0) = (det(¢t- I, — A)) (0) = det(—A) = (—1)" det(A).
O

Example 8.1.7. We have

A(’é ) = 1> — (a+d)t + (ad — bc).
Example 8.1.8. For the matrix
A 0 - 0
0 A
0 An

we have characteristic polynomial
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Theorem 8.1.9. The following are equivalent:
(1) A is an eigenvalue of A;
(2) The linear map Al — A is singular (i.e., has a kernel, not invertible);
(3) Aa(A) =0, where A4 is the characteristic polynomial of A.

Proof. Indeed, A is an eigenvalue of A if and only if there’s a vector v # 0 such that Av = Av.
That is, if and only if there’s a vector v # 0 such that (AI — A)v = 0, which is equivalent to
Al — A being singular. Thus, (1) and (2) are equivalent.

Now, a square matrix B is singular if and only if B is not invertible, if and only if det(B) = 0.
Therefore, AI — A is singular if and only if det(AI — A) = 0, if and only if [det(t] — A)](A) = 0.
Thus, (2) is equivalent to (3).

O

Corollary 8.1.10. Let A be an n x n matrix then A has at most n distinct eigenvalues, i.e., the roots of
its characteristic polynomial.

Definition 8.1.11. Let T : V — V be a linear map, V a vector space of dimension n. Let
Ey={veV:Tv=Av}.

We call E, the eigenspace of A. The definition applies to matrices (thought of as linear transfor-
mations). Namely, let A be an n x n matrix then

Ey={veF": Av = Av}.

If A is the matrix representing T with respect to some basis the definitions agree.

-1 6
Example 8.1.12. A = ( 4) ,A4(t) = (t—1)(t—2). The eigenvalues are 1,2. The eigenspaces
are
10 -1 6 2 —6 3
E; = Ker — = Ker = Span ,
01 -1 4 1 -3 1
and

a9 9) ()6

01
Example 8.1.13. A = <1 ), A4(t) = t2 — t — 1. The eigenvalues are

1
M= +\@, Ao

1-45
: _1-v5

The eigenspaces are

L5 0 1 L5 g 1
E), = Ker o 5]\ g = Ker 1 1 =Spanq (. 5] (-
2 2 2

and

SV 0 1 IEV R | 1
eroe((8 56) (0 )) xe (% o)) e )}
2 2 2

Definition 8.1.14. Let A be an eigenvalue of a linear map T. Let
mg(A) = dim(E,);
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mg(A) is called the geometric multiplicity of A. Let us also write, using unique factorization,

Ar(t) = (t=A)"We(t),  g(A) £0;
mq(A) is called the algebraic multiplicity of A.

Proposition 8.1.15. Let A be an eigenvalue of T : V — V, dim(V) = n. The following inequalities
hold:

1 <mg(A) <mu(A) <.

Proof. Since A is an eigenvalue we have dim(E,) > 0 and so we get the first inequality. The
inequality m,(A) < n is clear since deg(Ar(t)) = dim(V) = n. Thus, it only remains to prove
that mg(A) < m,(A).

Choose a basis {v1,...,0,} (m = mg(A)) to E, and complete it to a basis {v1,...,v,} of V.
With respect to this basis T is represented by a matrix of the form

) = (Aé ﬁ) :

where B is an m x (n — m) matrix, C = (n — m) X (n — m) matrix and 0 here stands for the
(n —m) x m matrix of zeros. Therefore,

B (t—A)I,  -B
AT(t) = det ( 0 tIn_m B C)

= det((t — A) L) - det(tly_m — C)
= (t— A" det(tl,_p — C).

This shows, m = mg(A) < mu(A). O

@)

Example 8.1.16. Let A be the matrix (}1). We have A4(t) = (t — 1) Thus, m,(1) = 2. On
the other hand m, (1) = 1. To see that, by pure thought, note that 1 < m,(1) < 2. However, if
mg(1) = 2 then E; = F? and so Av = v for every v € F%. This implies that A = (| 9) and that’s
a contradiction.

8.2. Diagonalization. Let V be a finite dimensional vector space over a field F, dim(V) = n.
We denote a diagonal matrix with entries Ay, ..., A, by

diag(Ay, ..., An).

Definition 8.2.1. A linear map T (resp., a matrix A) is called diagonalizable if there is a basis B
(resp., an invertible matrix M) such that

s[T]p = diag(A,...,An),
with A; € F, not necessarily distinct (resp.
M 'AM = diag(Ay, ..., An).)

Remark 8.2.2. Note that in this case the characteristic polynomial is [T/, (t — A;) and so the A;
are the eigenvalues.

Lemma 8.2.3. T is diagonalizable if and only if there is a basis of V consisting of eigenvectors of V.
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Proof. If T is diagonalizable and in the basis B = {vy,...,v,} is given by a diagonal matrix
diag(Aq, ..., An) then [Tv;|p = [T|g[vi]ls = Aiei = Ailvi]g so Tv; = Ajv;. It follows that each v; is
an eigenvector of V.

Conversely, suppose that B = {vy,...,v,} is a basis of V consisting of eigenvectors of V. Say,
Tv; = Ajv;. Then, by definition of [T]p, we have [T]p = diag(Ay, ..., An). O

Theorem 8.2.4. Let V be a finite dimensional vector space over a field F, T : V — V a linear map. T is
diagonalizable if and only if mg(A) = m,(A) for any eigenvalue A and the characteristic polynomial of T
factors into linear factors over IF.

Proof. Suppose first that T is diagonalizable and with respect to some basis B = {v1,..., 00} we
have

[T]B = diag(/\l, .. .,)Ln).
By renumbering the vectors in B we may assume that in fact

[T]B = diag(/\l,...,)\1,)\2,...,/\2,...,/\k,...,/\k),

where the A; are distinct and A; appears n; times. We have then

>

Ar(t) =] [(t—Ay)".
i=1
We see that the characteristic polynomial factors into linear factors and that the algebraic mul-
tiplicity of A; is n;. Since we know that m4(A;) < m,(A;) = n;, it is enough to prove that there
are at least n; independent eigenvectors for the eigenvalue A;. Without loss of generality, i = 1.
Then {v, ..., vy, } are independent and Tvj = Mvj, j=1,...,n1.
Conversely, suppose that the characteristic polynomial factors as

Ar(t) =] [(t=A)",

=

i=1
and that for every i we have mg(A;) = m,(A;). Then, (for eachi = 1,..., k) we may find vectors
{v},...,v}}, which form a basis for E,.

Lemma 8.2.5. Let yy, ..., u, be distinct eigenvalues of a linear map S and let w; € E,, be non-zero
vectors. If Y i, ajw; = 0 then each a; = 0.

Proof of lemma. Suppose not. Then {wy, ..., w,} are linearly dependent and so there is a first
vector which is a linear combination of the preceding vectors, say w,1. Say,

a
Wat1 = Zﬁz " w;.
i=1
Apply S to get
a
War1Wo41 = Z.uiﬁi - Wi,
i=1
and also,
a
Hat1Wat1 = Zﬂaﬂﬁi - W;.
i=1
Subtract to get

0=Y (Mar1 — pi)Bi - w;.
=1
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Note that if B; # 0 the coefficient (p,11 — pi)Bi # 0. Let 1 < j < a be the maximal index so that
B; # 0 then we get by rearranging

j—1

wj =Y —((Har1 — Vj)ﬁj)ilxyawtl — i) Bi - wi.

i=1
This shows that a is not minimal and we got a contradiction. 4

Coming back now to the proof of the Theorem, we shall prove that

{oi:i=1,..k j=1,..,m}

is a linearly independent set. Since its cardinality is Y"5_; #; = 1, it is a basis. Thus T has a basis
consisting of eigenvectors, hence diagonalizable.

Suppose that we have a linear relation y¥_, Z}il zx}v} = 0. Let w; = Z}il uc;v; then w; € Ej,
and we have w; + - - - + wy = 0. Using the lemma, it follows that each w; must be zero. Fixing

an i, we find that 2;11 oc;v; = 0. But {v; :j=1,...,n;} is abasis for E), so each 0(} =0. O

The problem of diagonalization will occupy us for quite for a while. We shall study when we can
diagonalize a matrix and how to do that, but for now, we just notice an important application of
diagonalization using “primitive methods”.

Lemma 8.2.6. Let A bean n x n matrix and M an invertible n x n matrix such that A = Mdiag(A4,...,Ay)M ™1
then for N > 1,

®) AN = Mdiag(AY, ..., AN)M

Proof. This is easily proved by induction. The case N = 1is clear. Suppose that AN = Mdiag(AY,..., AN )M™!
then

ANTL = AN A = (Mdiag(AY,...,ANYM ) (MAM™)
= Mdiag(AY,..., AN)diag(Ay, ..., Ay )M}
= Mdiag(AN !, .. AN M,
O

If we think about A as a linear transformation T : F” — F" then A = [T|s; and B is the basis
of eigenvectors so that [T]p = diag(AY,...,AY), then

and, as we have seen, is simply the matrix whose columns are the elements of the basis B.

8.2.1. Here is a classical application. Consider the Fibonacci sequence :
0,1,1,2,3,5,8,13,21,34,55, . ..
It is defined recursively by

ap=0,a1 =1, Apyo = Apy1 +a,, n > 0.

1
Let A = 0 . Then
11
A an An+1 )
Ap41 Ap42
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Therefore,

AN ap _ an
Mm AN+1
If we find a formula for AN we then get a formula for ay. We shall make use of Equation (8).

1
We saw in Example 8.1.13 that A has a basis of eigenvectors B = {v1, v} where v; = A )
1

corresponds to the eigenvalue Ay = H\f and v, = (/\ > corresponds to the eigenvalue A, =
2

1*2—‘/5. Let
1 1 1 Ay —1
M= =gMp, M= = pMs;.
(Al A) My - (_M 1) M
Then
A= 1 1 1 A0 Ay —1
-\ ) \o A A 1)
and so
0 Ay —1
/\2_/\1 O )\N —/\1 1
Ay —1
/\2 _ /\1 )\N+1 AN+1 _)\1 1
_ A{\’)\z - )\é\])\l )\é\’ - /\{\’
Az — Al ANFIN G — AFHA ANHE AN
Therefore,
)\N,)\N
an ) _ N (O) _(Fen )
AN+1 1 *
We conclude that

s (5 05)

8.2.2. Diagonalization Algorithm I. We can summarize our discussion of diagonalization thus far
as follows.

Given: T : V — V over a field F.
(1) Calculate Ar(t).
(2) If Ar(t) does not factor into linear terms, stop. (Non-diagonalizable). Else:
(3) Calculate for each eigenvalue A, E, and mg(A). If for some A, mg(A) #
my(A), stop. (Non-diagonalizable). Else:
(4) For every A find a basis B = {v?,. ) .,UQ(A)} for E,. Then B = U B! =
{v1,..., v} isabasis for V. If Tv; = A;v; then [T]p = diag(A1,..., An).
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We note that this is not really an algorithm, since there is no method to determine if a polynomial
p factors into linear terms over an arbitrary field. This is possible, though, for a finite field IF with
g elements (the first step is calculating d(t) = ged(p(t),t7 — t) and repeating that for p(t)/d(t),
and so on) and for the field of rational numbers since the numerators and denominators of
rational roots are bounded. It is also possible to do over R (and trivial over C). Thus, the issue
of factorization into linear terms is not so crucial in the most important cases. The real problem
is that there is no algorithm for calculating the roots in general. Again, for finite fields one may
proceed by brute force, and over the rationals this is possible as we have mentioned but, for
example, there is no algorithm for finding the real or complex roots in a closed forms (i.e., in
radicals).

Now, to actually diagonalize a linear map T, there is no choice but finding the roots. However,
it will turn out that it is algorithmically possible to decide whether T is diagonalizable or not
without finding the roots. This is very useful because, once we know T is diagonalizable, then
for many applications it is enough to approximate the roots and this is certainly possible over R
and C.

8.3. The minimal polynomial and the theorem of Cayley-Hamilton.

Let g(t) = amt™ + - - - + a1t + ap be a polynomial in F[t] and let A € M, (FF). Then, by g(A)
we mean 4, A" + - - - + a1 A + ag - I,. It is again a matrix in M, (IF). We note that (f +g)(A) =
f(A) +8(A), (f8)(A) = f(A)g(A).

We begin with a lemma:
Lemma 8.3.1. Let A € M, (F), f(t) € F[t] a monic polynomial. One can solve the equation
()1 — A)(Bat" + By 1t '+ -+ By) = f(t) - L,

with matrices B; € M, (FF) if and only if f(A) = 0. (If B = (bj;) is a matrix then by Bt®, or t*B, we
mean the matrix (b;;t*).)

Proof. Suppose we can solve the equation and w.l.o.g. B, # 0. It then follows that f(t) has
degree a + 1. Write

F(t) =t £ bt + - - + by.
Equating coefficients we get
Ba - I

Ba_l - ABa - bal
B, »—AB, 1 = ba—ll

By — ABy = byl

By — AB1 =111
—ABy = bol.

Multiply from the left the first equation by A®*!, the second by A?, etc. and sum (the last
equation is multiplied by the identity). We get

0=A""1 4 b A"+ -+ 1A+ bl = f(A).
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Conversely, suppose that f(A) = 0. Define, using the equations above,
B, =1
Bs—1 = b+ AB,
By 2="b, 11+ AB, 1

By = byl + AB,
By = b1 + AB;.
We then have equality
()1 — A)(Bat" + By 1t '+ -+ By) = f(t) - L,
if and only if —ABy = bpl. But,
ABy = ABy — A’B; + A’B; — A’By+ -+ A"B,_1 — A""'B, + A"*!B,
= A(By — ABy) + A*(B; — ABy) +--- + A"(B,_1 — AB,) + A""'B,
= Aby + A%y + - + A", + A"

= f(A) = bol
— hyl.

Theorem 8.3.2 (Cayley-Hamilton). Let A be a matrix in M, (IF). Then
Aa(A) =0.
Namely, A solves its own characteristic polynomial.

Proof. We have

(tI — A)Adj(t] — A) = det(t] — A) - I, = Aa(t) - L.
Note that Adj(t] — A) is a matrix in M, (IF[t]) and so can be written as B;#* + B, _1t*~! + - - + By
with B; € M, (F) (and in fact 2 = n — 1). It follows from Lemma 8.3.1 that A4 (A) = 0. O

Proposition 8.3.3. Let A € M, (IF). Let ms(t) be a monic polynomial of minimal degree among all
monic polynomials f in E[t] such that f(A) = 0. Then, if f(A) = 0 then m4(t)|f(t) and in particular,
deg(ma(t)) < deg(f(t)). The polynomial m 4 (t) is called the minimal polynomial of A.

Proof. First note that since A4 (t) = 0, it makes sense to take a monic polynomial of minimal
degree vanishing on A. Suppose that f(A) = 0. Let h(t) = ged(ma(t), f(t)) = a(t)ma(t) +
b(t)f(t). Then, by definition, & is monic and h(A) = a(A)mas(A) +b(A)f(A) = 0. Since
h(t)|ma(t) we have deg(h(t)) < deg(ma(t)) and so, by definition of the minimal polynomial,
we have deg(h(t)) = deg(ma(t)). Since h is monic, divides m 4 (t), and of the same degree, we
must have h(t) = m(t) and thus ma (t)|f(¢).

In particular, if there are two monic polynomials m 4 (t), m(t)" of that minimal degree that
vanish on A they must be equal. Thus, the definition of m 4 (t) really depends on A alone. [

Theorem 8.3.4. The polynomials m 4 and A 4 have the same irreducible factors. More precisely,
ma(t)|Aa(t)|malt)".

Proof. By Cayley-Hamilton A4(A) = 0 and so m4|A4. On the other hand, because m4(A) = 0
we can solve the equation in matrices:

(t1 — A)(Bat" + By 1t" ' + - -+ By) = ma(t) - I,
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which we write more compactly as
(tI — A)G(t) = ma(t) - I,
where G(t) € M, (F[t]). Taking determinants, we get
A(E) - det(G(H) = ma(t)",
and so Ay |m’y. O
Corollary 8.3.5. If A4(t) is a product of distinct irreducible factors then my = A 4.

Example 8.3.6. The matrix A = (71 §) has A4(t) = (t —1)(t —2) and so ma(t) = Aa(t).

The matrix A = (}9) has Aa(t) = (t —1)% so we know m4(t) is either t — 1 or (f — 1)2. Since
A —1=0,we conclude that my(t) =t — 1.

On the other hand, the matrix A = (} 1) also has A,(t) = (t — 1)? so again we know that
ma(t)iseither t —1or (t—1)% Since A — I = (3}) # 0, we conclude that m4 (t) = (t —1)%

8.4. The Primary Decomposition Theorem. Recall the definition of internal direct sum from
§ 3.5. One version is to say that a vector space V is the internal direct sum of subspaces
Wy, ..., W, if every vector v € V has a unique expression

V=w1+ -+ Wy, w; € W;.
We write then
) V=W o - OW,.

Definition 8.4.1. Let T : V — V be a linear map. We say that a subspace W C V is T-invariant
if T(W) C W. In this case, we can consider T|w : W — W, the restriction of T to W,

Tlw(w) = T(w), weW.

Suppose that in the decomposition (9) each W; is T-invariant. Denote T'|w, by T;. We then
write

T=T& --&T,
meaning
T(v) = Ti(w1) + - + Tr(wy),

which indeed holds true! Conversely, given any linear maps T; : W; — W, we can define a linear
mapT:V — V by

T(v) = Ti(wy) + -+ + Tr(wy).

We have then Ty, = T;.
In the setting of (9) we have dim(V) = dim(W;) + - - - + dim(W;,). More precisely, we have
the following lemma.

Lemma 8.4.2. Suppose that
Bl = {wll,. . ,w;(l)}
is a basis for W;. Then
B - U::]Bl - {w%,...,wi(l),. . .,w’i,. . .,wz(r)}

is a basis of V.
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Proof. Indeed, B is a spanning set, because v = w; + - -+ + w, and we can write w; using the

basis B;, w; = L, n(7) oc]w], and so
r n(i) ‘
Z ol w}.

i=1j=1

—.

B is also independent. Suppose that
- L i
i=

Let w; = 2] n(i) a]w] Then w; € W; and, since the subspaces W; give a direct sum, each w; = 0.

Since B; is a basis for W;, each (x; =0. [l

n

—

i )

i=

u [\15
u [\1

We conclude that if T; is represented on W; by the matrix A;, relative to the basis B;, that is,
[Tils, = Ai,

then T is given in block diagonal form in the basis B,

Example 8.4.3. Here is an example of a T-invariant subspace. Take any vector v € V and let
= Span({v, Tv, T?>v,T%v...,}). This is called a cyclic subspace. In fact, any T-invariant
space is a sum (not necessarily direct) of cyclic subspaces.
Another example is the following. Let ¢(t) € F[t] and let W = Ker(g(T)). Namely, if g(t) =
amt™ + -+ - + art 4 ag, then W is the kernel of the linear map a,,T™ + - - - + a1 T + apld. Since
¢(T)T = Tg(T), it is immediate that W is T-invariant.

Theorem 8.4.4 (Primary Decomposition Theorem). Let T : V — V be a linear operator with
mr(t) = f(t)" - fr(8)",
where the f; are the irreducible factors of m. Let
W; = Ker(fi(T)™).
Then,
V=W & - -aW,
and f;(t)" is the minimal polynomial of T; := T |w..

Lemma 8.4.5. Suppose T : V. — V is a linear map, f(t) € F[t] satisfies f(T) = 0and f(t) = g(t)h(t)
with ged(g(t),h(t)) = 1. Then
V = Ker(g(t)) ® Ker(h(t)).
]

Proof. For suitable polynomials a(t ) b(t) € F[t] we have

= g(t)a(t) + h(t)b(t),
and so,
Id = g(T)oa(T) + h(T) o b(T).
For every v we now have
v=g(T)oa(T)v+h(T)ob(T)v.
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We note that g(T) o a(T)v € Ker(h(T)),h(T) o b(T)v € Ker(g(T)). Therefore,

V =Ker(h(T)) + Ker(g(T)).
Suppose that v € Ker(g(T)) NKer(h(T)). Then, v = g(T) ca(T)v+ h(T) o b(T)v = a(T) o
¢2(T)o+b(T) oh(T)v =0+ 0 = 0. Thus,

V =Ker(g(T)) & Ker(h(T)).

Corollary 8.4.6. We have
Ker(h(T)) = g(T)V,  Ker(g(T)) = m(T)V.

Proof. WehaveseenV = ¢g(T)oa(T)V +h(T)ob(T)V, which implies that V = ¢g(T)V + h(T)V.
Thus, dim(g(T)V) + dim(h(T)V) > dim(V). On the other hand ¢g(T)V C Ker(h(T)) an

h(T)V C Ker(g(T)) and so dim(g(T)V) + dim(h(T)V) < dimKer(h(T)) + dimKer(g(T)) =
dim(V). We conclude that dim(g(T)V) + dim(h(T)V) = dim(V) and so that dim(g(T)V) =
dimKer(h(T)),dim(h(T)V) = dimKer(g(T)). Therefore, Ker(h(T)) = g(T)V and Ker(g(T)) =
h(T)V. O
Lemma 8.4.7. In the situation of the previous Lemma, let Wy = Ker(g(T)), Wo = Ker(h(T)). Assume

that f is the minimal polynomial of T then g(t) is the minimal polynomial of Ty := T|w, and h(t) is the
minimal polynomial of Tp := T |w,.

Proof. Let m;(t) be the minimal polynomial of T;. Clearly ¢(T1) = 0 and h(T,) = 0. Thus,
my|g, ma|h and mymy|gh = f, which is the minimal polynomial. But it is clear that (mymy)(T) =
mq (T)my(T) is zero because it is a linear transformation whose restriction to W; is m1 (T;)ma(T;) =
0. Therefore f|mym; and it follows that my = g, my = h. O

With these preparations we are ready to prove the Primary Decomposition Theorem.

Proof. We argue by induction on r. The case r = 1 is trivial. Assume the theorem holds true for
some r > 1. We prove it for r + 1.

Write
10) mr(t) = (fi(0)" - fr(O)) - fraa (8)™
= g() - h(o).
Applying the two lemmas, we conclude that
V=W oW,

where the W/ are the T-invariant subspaces W] = Ker(g(T)), W; = Ker(h(T)) and, furthermore,
g(t) is the minimal polynomial of Ty := T|w;, h(t) of To := T|y;.
We let W1 = Wj. Using induction applied to Wj, since

g(t) = A()" - f ()",
we get
Wizwl@"'@wr/
with W; = Ker(f;(T)" : W] — Wj). It only remains to show that W; = Ker(f;(T)" : V — V)
and the inclusion C is clear. Now, if v € V and f;(T)"(v) = 0 then g(t)v = 0 and so v € Wj.
Thus we get the opposite inclusion 2. O
We can now deduce one of the most important results in the theory of linear maps.

Corollary 8.4.8. T : V — V is diagonalizable if and only if the minimal polynomial of T factors into
distinct linear terms over IF,

mT(t):(t—)\l)---(t—)\r), )\iEIF,)\i#)\]‘ fori#j.
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Proof. Suppose that T is diagonalizable. Thus, in some basis B of V we have
A= [T]B = diag()\l,. . .,/\1,/\2,. . .,)Lz,. . ‘//\r/- . .,)Lr)‘

Then, the minimal polynomial divides []/_; (t — A;) and equal to it if this polynomial has A as a
root. Note that

ﬁ(A—)\iIn) =diag(0,...,0,A2 —A1,..., Ao —Aq, oo A — A A — A)
i=1
x diag(AM — Az, ..., A1 —A2,0,...,0,..., A, — Ao, ..., A — Ag)
x diag(A — A, oo, AL — A A — Ay oo, A0 — Ay, 00,0,...,0) = 0.
Now suppose that
mr(t) = (t—A1)--- (t=Ap), Ai €, Ai #Aj fori #j.
Consider the Primary Decomposition. We get that
T=T& T,

where T; is T|w, and W; = Ker(T — A;) = E,,. And so, Ti|w, is represented by a diago-
nal matrix diag()»i,...,)ti). Since V. = W1 ® --- ® W,, we have that if we take as a basis
for V the set B = Uj_;B;, where B; is a basis for W; then T is represented in the basis B by
diag(A1,..., A, A0, ., An, oo A A, O

Corollary 8.4.9. Let T : V — V be a diagonalizable linear map and let W C V be a T-invariant
subspace. Then Ty := T\ is diagonalizable.

Proof. We know that mr is a product of distinct linear factors over the field F. Clearly mr(T;) = 0
(this just says that my(T) is zero on W, which is clear since mr(T) = 0). It follows that mr, |m7
and so is also a product of distinct linear terms over the field [F. Thus, T; is diagonalizable. []

Here is another very useful corollary of our results; the proof is left as an exercise.

Corollary 8.4.10. Let S, T : V — V be commuting and diagonalizable linear maps (ST = TS). Then
there is a basis B of V in which both S and T are diagonal. (“commuting matrices can be simultaneously
diagonalized”.)

Example 8.4.11. For some numerical examples see the files ExampleA, ExampleB, ExampleB1
on the course webpage.

8.5. More on finding the minimal polynomial. In the assignments we explain how to find the
minimal polynomial without factoring.

8.5.1. Diagonalization Algorithm II.

Given: T : V — V over a field F.

(1) Calculate mr(t), for example using the method of cyclic subspaces (see as-
signments).

(2) If ged(mr(t), mr(t)') # 1, stop. (Non-diagonalizable). Else:

(3) If mr(t) does not factor into linear terms, stop. (Non-diagonalizable). Else:

(4) The map T is diagonalizable. For every A find a basis B* = {v7,..., 02( A)}

for the eignespace E,. Then B = U B* = {vy,...,0,} is a basis for V. If
TUi = )\ivi then [T]B = diag(/\l, ceey )\n)
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We make some remarks on the advantage of this algorithm. First, the minimal polynomial
can be calculated without factoring the characteristic polynomial (which we don’t even need
to calculate for this algorithm). If ged(mr(t), mr(t)’) = 1 then my(t) has no repeated roots.
The calculation of ged(mr(t), mr(t)") doesn’t require factoring. It is done using the Euclidean
algorithm and is very fast. Thus, we can efficiently and quickly decide if T is diagonalizable or
not. Of course, the actual diagonalization requires finding the eigenvalues and hence the roots
of mr(t). There is no algorithm for that. There are other ways to simplify the study of a linear
map which do not require factoring (and in particular do not bring T into diagonal form). This
is the rational canonical form, studied in MATH 371.
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9. THE JORDAN CANONICAL FORM

Let T : V — V be a linear map on a finite dimensional vector space V. In this section we assume
that the minimal polynomial of T factors into linear terms:

mT:(t—)Ll)ml-“(t—/\r)m’, A €F

We therefore get by the Primary Decomposition Theorem (PDT)
V=W, & --&W,

where W; = Ker((T — A -1d)™) and the minimal polynomial of T; = T|w, on W; is (t — A;)™.
If we use the notation Ar(f) = (t — A1)™ - - (t — A,)™ then, since the characteristic polynomial
of T; is a power of (t — A;), we must have that the characteristic polynomial of T; is precisely
(t — A;)" and in particular dim(W;) = n;.

9.1. Preparations. The Jordan canonical form theory picks up where PDT is signing off. Using
PDT, we restrict our attention to linear transformations T : V — V whose minimal polynomial
is of the form (f — A)™ and, say, dim(V) = n. Thus,

mr(t) = (E=A)",  Ar(t) = (E=A)"
We write
T=A-Id+U = U=T-A-1d,
then U is nilpotent. In fact,
mu(t) = tm, Au(t) = t"
The integer m is also called the index of nilpotence of U. Let us assume for now the following
fact.

Proposition 9.1.1. A nilpotent operator U is represented in a suitable basis by a block diagonal matrix

such that each N; is a standard nilpotent matrix of size k;, i.e., of the form:

01 0 --- 0
o1 0 --- 0

N =
0 1
0

Relating this back to the transformation T, it follows that in the same basis T is given by

AT, + Ny
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The blocks have the shape

A1 0 0
A1 0 0
AT+ N =
Al
A

Such blocks are called Jordan canonical blocks.

Suppose that the size of N is k. If the corresponding basis vectors are {by, ..., bx} then N has the
effect

by > b1 — ... > by—>b —0.

From that, or by actually performing the multiplication, it is easy to see that

00 01
0 1
N = :
01
0
0

where the first row begins with a zeros. In particular, if N has size k, the minimal polynomial
of N is t*. We conclude that m, the index of nilpotence of U, is the maximum of the index of
nilpotence of the matrices Ny, ..., Ny. That s,

m=max{k;:i=1,...,d}.

We introduce the following notation: Let S be a linear map, the nullity of S is
null(S) = dim(Ker(S)).
Then null(N) = 1 and, more generally,

a a<k

null(N%) = {k > %
a>k.

We illustrate it for matrices of small size:
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0 01 0 0 0O
01 0 00 0 0 0O
0 0 0
0100 0010 0001 0 00O
0010 0 001 0 00O 0 00O
0001 0 00O 0 00O 0 00O
0000 0 00O 0000 0 00O
We have
null(U) = § 1-blocks + # 2-blocks + £ 3-blocks + § 4-blocks + # 5-blocks + ...
and so
null(U) = { -blocks.
Similarly,

null(U?) = 4 1-blocks + 2 - # 2-blocks + 2 - § 3-blocks + 2 - # 4-blocks + 2 - § 5-blocks + . . .,

null(U®) = # 1-blocks + 2 - # 2-blocks + 3 - 4 3-blocks + 3 - # 4-blocks + 3 - # 5-blocks + . . .
null(U*) = # 1-blocks + 2 - # 2-blocks + 3 - # 3-blocks + 4 - # 4-blocks + 4 - # 5-blocks + . . .

To simplify notation, let U° = Id. Then we conclude that
# 1-blocks = 2 - null(U) — (null(U?) + null(U?)),
# 2-blocks = 2 - null(U?) — (null(U?) + null(U)),
# 3-blocks = 2 - null(U?) — (null(U*) + null(U?)),
and so on. We summarize our discussion as follows.

Proposition 9.1.2. The number of blocks is null(U) and the size of the largest block is m, the index of
nilpotence of U, where my(t) = ™. The number of blocks of size b, b > 1, is given by the following
formula:

4 b-blocks = 2 - null(U?) — (null(U’1) + null(U’~1))
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9.2. The Jordan canonical form. Let A € F. A Jordan block J,(A) is an a X a matrix with A on
the diagonal and 1’s above the diagonal (the rest of the entries being zero):

Al 0
]a<)‘):

Al

A

Thus, J,(A) — Al, is a standard nilpotent matrix. Here are how Jordan blocks of size at most 4

look like:
A1 0
Al
<A)/ 7 O A 1 7
0 A
0 0 A

We can now state the main theorem of this section.

o o o >
S O > =
o > = O
> = o o

Theorem 9.2.1 (Jordan Canonical Form). Let T : V — V be a linear map whose characteristic and
minimal polynomials are

Ar() = (F— A" (E—A)™,  mp(E) = (E— A)™ - (£ — A,)™.

Then, in a suitable basis, T has a block diagonal matrix representation | (called a Jordan canonical form)
where the blocks are Jordan blocks of the form J,;1)(Ai), Jagio) (Ai), - .- witha(i, 1) > a(i,2) > ....
The following holds:
(1) Forevery A, a(i,1) = m;. (“The maximal block of A; is of size equal to the power of (t — A;) in
the minimal polynomial.”)
(2) For every A, Y i~1 a(i, j) = nj. (“The total size of the blocks of A; is the algebraic multiplicity of
A7)
(3) For every A;, the number of blocks of the form ], (A;) is mg(A;). (“The number of blocks
corresponding to A; is the geometric multiplicity of A;.”)
(4) Forevery A;, the number of blocks J,(; k) (A;) of size bis 2 - null(U?) — (null(U) + null(U?1)),
where U; = T; — Aildw,. One may also take in this formula U; = T — A;1d.

The theorem follows immediately from our discussion in the previous section. Perhaps the only
remark one should still make that is that null(T — A; - Id) = null((T — A; - Id) |w,) = null(T; —
Aildw;,), where W; = Ker((T — A;Id)"), simply because the kernel of (T — A; - I1d)? for any a is
contained in W;.

It remains to explain Proposition 9.1.1 and how one finds such basis in practice. This is our
next subject.

9.3. Standard form for nilpotent operators. Let U : V — V be a nilpotent operator,
mu(t) = tm, Au(f) = t".

We now explain how to find a basis for V' with respect to which U is represented by a block
diagonal form, where the blocks are standard nilpotent matrices, as asserted in Proposition 9.1.1.

Write
Ker(U™) = Ker(U™ ') @ C™,
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for some subspace C™ (“C” is for Complementary). We note the following:
UC™ C Ker(U™ 1),  UC™NKer(U"?) = {0}.
Find C"~1 D UC™ such that
Ker(U™ 1) = Ker(U™ %) @ C" L.
Suppose we have already found a decomposition of V' as

V=Ker(U HelColCle.  -acCm
—_——

Ker(U?)

Ker(U*1)
such that UC/ C C/~1. We note that
UC' C Ker(U'™!),  UC NKer(U'2) = {0}.

We may find therefore a subspace C'~! such that C'~! O UC’ and Ker(U'~!) = Ker(U'~2) @ C1,
and so on. We conclude that

V = C1 2 3 . m
eCeC’@---0C
Ker(U)
N —
Ker(U?)

Ker(U3)

and
uct c ci-1, 1<i<m.

We also note that the map U : C' — C~! (1 < i < m) is injective. We therefore conclude the
following procedure for finding a basis for V:
e Find a basis {v",... ,v%ﬂ)} for C™, where V = ker(U™) = ker(U" 1) & C™.
o {Ud,..., LIZ)Z( m)} are linearly independent and so can be completed to a basis for C" !
by vectors {o1" 1, ..., vf(;nlfl) }, where C"~1is such that ker(U"~!) = ker(U™~2) @ C" L.
e Now the vectors {Uzv’lﬂ, e, u%gf(m), LIUT’l, e, le;”(:nlfl)} are linearly independent and
so can be completed to a basis for cm-2 by vectors {0’1”_2, o2 )}, where C"2 is

n(m—2
such that ker(U™~2) = ker(U™~3) @ C"2.
o etc.

We get a basis of V,
(U9 :1<j<m1<i<n(j),0<a<j—1}.

The basis now is ordered in the following way (first the first row, then the second row, etc.):
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umn-—lym umn—2ot .. ... uo’t ol
-1 -2

U™ vy U™ vy Uoyi, Ury(m)
U’”*ZUT’l Um*3v’1”’1 e Uv’lnfl vi”’l

—2, m—1 —3,.m—1 -1 -1
ur=oyc,qy  U"700, 0y Uy, 1) V1)

UU% v%

2 2

Uz, ) Yu(2)

v

1

Uu)

A row of length k contributes a standard nilpoten matrix of size k. In particular, the last rows
01
are the zero matrices, the rows before them that have length 2 give blocks of the form (O 0)

and so on.

Example 9.3.1. Here is a toy example. More complicated examples appear as ExampleC on the
course webpage. Consider the matrix

c

I
o o o
o o -
o N -

which is nilpotent. The kernel of U is Span(e; ). The kernel of U? is the whole space. The kernel
0 0 3

of U= [0 0 0| isSpan(ey,ez). Therefore, we may take C® = Span(e3) and let v3 = e3. Then
000

Uv$ = (1,2,0). We note that ker(U?) = ker(U) & Span((1,2,0)). It follows that the basis we

want is just {U%v3, Uv3, 03}, equal to {(2,0,0), (1,2,0), (0,0,1) }. In this basis the transformation
is represented by a standard nilpotent matrix of size 3.

9.3.1. An application of the Jordan canonical form. One problem that arises often is the calculation
of a high power of a matrix. Solving this problem was one of our motivations for discussing
diagonalization. Even if a matrix is not diagonalizable, the Jordan canonical form can be used
to great effect to calculate high powers of a matrix.

Let A therefore be a square matrix and | its Jordan canonical form. There is an invertible
matrix M such that A = MJM~! and so AN = MJNM~!. Now, if | = diag(]y, ..., J;), where the
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J; are the Jordan blocks then
JN = diag (1", ..., )
We therefore focus on calculating | N assuming ] is a Jordan block J(A) of size N. Write
JA)=A-I,+U.
Since A - I, and U commute, the binomial formula gives

](/\)N — i <N> ANfiui‘

1

Notice that if i > n then U’ = 0. We therefore get a convenient formula. We illustrate the
formula for 2 x 2 and 3 x 3 matrices:

Al
e Fora2 x 2matrix A = we have
0 A
AN _ )\N nANfl ‘
0 AN

e Fora3 x 3 matrix A = we have for N > 2

o o >

1
A
0

> = O

0 AN NAN-1
0 0 AN

AN NAN-1 N(Z\;—l)ANfz
AN = (
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10. DIAGONALIZATION OF SYMMETRIC, SELF-ADJOINT AND NORMAL OPERATORS

In this section, we marry the theory of inner products and the theory of diagonalization, to
consider the diagonalization of special type of operators. Since we are dealing with inner prod-
uct spaces, we assume that the field F over which all vector spaces, linear maps and matrices in
this section are defined is either R or C.

10.1. The adjoint operator. Let V be an inner product space, of finite dimension.

Proposition 10.1.1. Let T : V — V be a linear operator. There exists a unique linear operator T* :
V — V such that

(Tu,v) = (u, T*v), Yu,v e V.

The linear operator T* is called the adjoint of T. © Furthermore, if B is an orthonormal basis then

[T*]p = [T]} (:= [TT}).

Proof. We first show uniqueness. Suppose that we had two linear maps Sy, S such that

(Tu,v) = (u, S;v), Yu,v € V.
Then, for all u,v € V we have
<1/l, (51 — 52)U> =0.
In particular, this equation holds for all v with the vector u = (S; — Sz)v. This gives us that for
all v, ((S1 — S2)v, (S1 — S2)v) = 0, which in turn implies that for all v (S; — Sp)v = 0. That is,
S1=5s.
1We r210w show T* exists. Let B be an orthonormal basis for V. We have,

(Tu,0) = ([T][u]p)" - [0]5
= [ul} - [T]5[e]s
= [uly - [T]5[0]5-

Let T* be the linear map represented in the basis B by [T], i.e., by [T]3. O

Lemma 10.1.2. The following identities hold:
(1) (T1—|—T2) Tl*—i—Tz*;
(2) (TloTz) TZ* OTl*,'
(3) (aT)* =aT*;

(4) (T*)* =T.

Proof. This all follows easily from the corresponding identities of matrices (using that [T1]p =
C, [Tz]p = D implies [Ty + Tz]p = C + D etc.):

(1) (C+D)* = C* + D%;

(2) (CD)* = D*C*; (Use that (CD)! = D!C".)
(3) (aC)* =acCr;

@) (C)r=C.

6Caution: If A is the matrix representing T, the matrix representing T* has nothing to do with the adjoint Adj(A)
of the matrix A that was used in the section about determinants.
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10.2. Self-adjoint operators. We keep the notation of the previous section.

Definition 10.2.1. T is called a self-adjoint operator if T = T*. This equivalent to T being
represented in an orthonormal basis by a matrix A satisfying A = A*. Such a matrix was also
called Hermitian.

Theorem 10.2.2. Let T be a self-adjoint operator. Then:
(1) Every eigenvalue of T is a real number.
(2) Let A # u be two eigenvalues of T then
Er L E,.
Proof. We begin with the first claim. Suppose that Tv = Av for some vector v # 0. Then
(Tv,v) = (Av,v) = A||v||?>. On the other hand, (Tv,v) = (v, T*v) = (v, Tv) = (v, Av) = A||o||%.
It follows that A = A.
Now for the second part. Letv € E),w € E,. We need to show v L w. We have (Tv,w) =
A{v,w) and also (Tv, w) = (v, T*w) = (v, Tw) = (v, pw) = u(v, w) (we have already established
that u is real). It follows that (A — u) (v, w) = 0 and so that (v, w) = 0. O

Theorem 10.2.3. Let T be a self-adjoint operator. There exists an orthonormal basis B such that [T|p is
diagonal.

Proof. The proof is by induction on dim (V). The cases dim(V) = 0,1 are obvious. Assume that
dim(V) > 1.

Let A1 be an eigenvalue of T. By definition, there is a corresponding non-zero vector v; such
that Tv; = A1 and we may assume that ||v1]] = 1. Let W = Span(v;).
Lemma 10.2.4. Both W and W+ are T-invariant.

Proof of lemma. This is clear for W since vy is an eigenvector. Suppose that w € W+. Then
(Tw, av1) = (w, T*av1) = (w, Tav1) = A(w,av1) = 0. This shows that Tw is orthogonal to W
and so is in W+ O

We can therefore decompose V and T accordingly:
V=WaWwH, T=T,9T.
Lemma 10.2.5. Both Ty and T, are self adjoint.
Proof. Ty is just multiplication by the real scalar Ay, hence is self-adjoint. Let wy, w, be in W+.

Then: (Twy,w,) = (w1, Tw,). Since W is T-invariant, Tw; is just Tow; and we get (Tywy, w;) =
(w1, Thwy), showing T is self-adjoint. O

We may therefore apply the induction hypothesis to Tp; there is an orthonormal basis B, of
W+, say By = {03, ...,0,}, such that [T]g, is diagonal, say diag(A, ..., Ay,). Let
B = {Ul} U Bz.
Then B is an orthonormal basis for V and [T]p = diag(A1, A2, ..., Ay). O

Corollary 10.2.6. Let T : V — V be a self adjoint operator whose distinct eigenvalues are Ay, ..., Ar.
Then

VIE/\I@"-@E)\.

r

Choose an orthonormal basis B' for E,,. Then
B=B'UB*U---UP,
is an orthonormal basis for V and in this basis
[T]p = diag(A1,..., A1, .o, Ar e Ay).
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Proof. Such a decomposition exists because T is diagonalizable. For any bases B we get that [T]p
is diagonal of the form given above. If the B' are orthonormal then so is B, because E,, L E,; for
i <j. 0

Definition 10.2.7. A complex matrix M is called unitary if M* = M. If M is real and unitary
we call it orthogonal.

To say M is unitary is the same as saying that its columns form an orthonormal basis. We
therefore rephrase Corollary 10.2.6. (Note that the point is also that we may write M* instead of
M. The usefulness of that will become clearer when we deal with bilinear forms.)

Corollary 10.2.8. Let A be a self-adjoint matrix, A = A*. Then, there is a unitary matrix M such that
*MAM is diagonal.

It is worth noting a special case.

Corollary 10.2.9. Let A be a real symmetric matrix. Then there is an orthogonal matrix P such that
'PAP is diagonal.

Example 10.2.10. Consider the symmetric matrix

X

I
—_ =N
_ N -

1
11,
2
whose characteristic polynomial is (+ —4)(t — 1)2. One finds

E, =Span((1,1,1)),

with orthonormal basis given by
1

5L,
and
E; = Span({(1,-1,0),(0,1,—1)}).
We get an orthonormal basis for E; by applying Gram-Schmidt: v; = (1, -1,0),s5 = (0,1, 1) —

V2
<(0,1,—1),%(1,—1,0)> : %(1,—1,0) =(0,1,-1) + £(1,—1,0) = 3(1,1,—2). An orthonormal

basis for E; is given by

1 1
—(1,-1,0), —=(1,1,-2) ;.
{\/E( ) \@( )}
The matrix
1 1 1
V3 V2 Ve
p—| 1 =1 1
V3 V2 V6
1 o0 =2
V3 NG

—_

is orthogonal, thatis 'P - P = I3, and 'PAP = diag(4,1,1).
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10.3. Application to symmetric bilinear forms. To simplify the exposition, we assume that V
is an n-dimensional vector space over the real numbers R, even though the basic definitions and
results hold in general.

Definition 10.3.1. A bilinear form on V is a bilinear symmetric function
[,]: VXV =R
That is, for all v1,v,,v, w € V and scalars a4, a»:

(1) [a102 4 a0, w] = a1[v1, W] + az[vy, w);
(2) [v,w] = [w,v].

Note that there is no requirement of positivity such as [v,v] > 0 for v # 0 (and that would
also make no sense if we wish to extend the definition to a general field). However, the same
arguments as in the case of inner products allow one to conclude that the following example is
really the most general case.

Example 10.3.2. Let C be any basis for V and let A € M, (IR) be a real symmetric matrix. Then
[0, w] = "[vlcAlw]c,
is a bilinear form.

Suppose that we change a basis. Let B be another basis and let M = -Mgp be the transition
matrix. Then, in the basis B the bilinear form is represented by

'MAM,

because [v|gf MAM[w]p = {(M[v]g) AM[w]p = ![v]cAw]c. Since we can find an orthogonal
matrix M such that tMAM is diagonal, we conclude the following;:

Proposition 10.3.3 (Principal Axis Theorem). Let A be a real symmetric matrix representing a sym-
metric bilinear form [-, -] in some basis of V. Then, there is an orthonormal basis B with respect to which
the bilinear form is given by

t[U]B diag(/\l,. . .,)Ln) [w]B = Z/\ﬂ)iwl',
i=1

where

[v]p = (v1,...,0n), [w]g=(w1,..., wp).
Moreover, the diagonal elements A4, ..., Ay, are the eigenvalues of A, each appearing with the same mul-
tiplicity as in the characteristic polynomial of A.

Example 10.3.4. Consider the bilinear form given by the matrix

A=

— =N

1
1
2

— N -

This is the function

[(x1,%2,%3), (Y1, Y2, ¥3)] = 2x1y1 + 2%2y2 + 2X3Y3 + X1Y2 + Xoy1 + X1Y3 + X3Y1 + X2Y3 + X31/2.

There is another orthogonal coordinate system (see Example 10.2.10), given by the columns of

P =

S S-S
SRSIRSE
S-S
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in which the bilinear form is given by

S O =
[ )
- O O

Namely, in this coordinate system the bilinear form is just the function

[(x1,%2,%3), (Y1, Y2, ¥3)] = 4x1y1 + X212 + X3Y3;

a more palatable formula than the original one!

10.4. Application to inner products. Recall that a matrix M € M, (FF), F = R or C, defines a

function
t

<(x1/ e /xn>/ (]/1/ .. -/]/n)> - (xll e Ixﬂ) M (yli .. ~,]/n) 7
which is an inner product if and only if M is Hermitian, thatis M = M* (which we also call now
“self-adjoint”) and for every non-zero vector (x1,...,xn), ((x1,..., %), (x1,...,%,)) is a positive
real number. We called the last property “positive-definite”.

Theorem 10.4.1. Let M be a Hermitian matrix then M is positive-definite if and only if every eigenvalue
of M is positive.

Proof. We claim that M is positive definite if and only if AMA* is positive definite for some
(any) invertible matrix A. Note the formula (A*)~! = (A~1)* obtained by taking * of both sides
of AA1 = I,. Using it one sees that it is enough to show one direction. Suppose M is positive
definite. Given a vector v we write v = A~1w then

"WAMA*S = (' Av) Mt Av = 'wMw.

If v # 0 then w # 0 and then ‘wMw > 0. This shows AMA* is positive definite.

We now choose A to a unitary matrix such that AMA* is diagonal, say diag(A4,...,A,), and
the A; are the eigenvalues of M (because AMA* = AMA™~'). This is possible by Corollary 10.2.8.
It is enough to prove then that a diagonal real matrix is positive definite if and only if all the
diagonal entries are positive. The necessity is clear, since ‘¢; diag(Aq,...,A,) e¢; = A; should be
positive. Conversely, if each A; is positive, for any non-zero vector (x, ..., x,) we have

. 2 EEEE——— !
(xl,...,xn) dlag()\l,...,)\n) (xl,...,xn) = E/\Z-|xi|2 > 0.
i—=1

1

Example 10.4.2. Consider the case of a two-by-two matrix Hermitian matrix

M:(g Z).

The characteristic polynomial is t* — (a + d)t + (ad — bb).

Now, two real numbers «, 8 are positive if and only if « 4 f and af are positive. Namely,
the eigenvalues of M are positive if and only if Tr(M) > 0,det(M) > 0. That is, if and only if
a+d > 0,ad — bb > 0, which is equivalent toa > 0,d > 0 and ad — bb > 0.
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10.4.1. Extremum of functions of several variables. Symmetric bilinear forms are of great impor-
tance everywhere in mathematics. For instance, given a twice differentiable function f : R” — R,

the local extremum points of f are points« = (a1, ..., &, ) where the gradient (% (a),..., % (oc))
vanishes. At these points one construct the Hessian matrix
P P
2 e mde @)
(axiaxj <DC)> B aZf: a2f: ’
oo (@) . @(‘X)

which is symmetric by a fundamental result about functions in several variables. The function
has a local minimum (maximum) iff and only if the Hessian is a positive definite (resp. minus
the Hessian is positive definite). See also the assignments. We illustrate that for one pretty
function.

2

Consider the function f(x,y) = sin(x)? + cos(y)?. The gradient vanishes at points where

sin(x) = 0 or cos(x) = 0 and also sin(y) = 0 or cos(y) = 0. Namely, at points of the form
{(x,y) : x,y € FZ}. The Hessian is

2(1 — 2sin(x)?) 0
0 2(1—2cos(y)?) )

This matrix is positive definite at an extremum point {(x,y) : x,y € FZ} iff x € 7Z and
y € m(Z +1/2); those are the minima of the function. Similarly, we get maxima at the points
x € m(Z+1/2) and y € Z. The rest of the points are saddle points.

10.4.2. Classification of quadrics. Consider an equation of the form
ax® + bxy +cy* = N,

where N is some positive constant. What is the shape of the curve in R?2, called a quadric,
consisting of the solutions for this equation?
We can view this equation in the following form:

a b/2 x\
s "7 (1)
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Let

b
A= P2
b/2 ¢
We assume for simplicity that A is non-singular, i.e., det(A) # 0. We can pass to another or-
thonormal coordinate system (the principal axis) such that the equation is written as

Mx%+ Ay* =N

in the new coordinates. Here A; are the eigenvalues of A. Clearly, if both eigenvalues are positive
we get an ellipse, if both are negative we get the empty set, and if one is negative and the other
is positive then we get a hyperbole. We have

AM+ A= TI‘(A), AMAy = det(A).

The case where A, Ay are positive (negative) corresponds to Tr(A) > 0,det(A) > 0 (resp.
Tr(A) < 0,det(A) > 0). The case of mixed signs is when det(A) < 0.

L ( a b/2>‘
b/2 ¢

ax* +bxy +cy* = N,

Proposition 10.4.3. Let

The curve defined by

is an:
e cllipse, if Tr(A) > 0,det(A) > 0;
o hyperbole, if det(A) < 0;
o empty, if Tr(A) < 0,det(A) > 0.

10.5. Normal operators. The normal operators are a much larger class than the self-adjoint op-
erators. We shall see that we have a good structure theorem for this wider class of operators.

Definition 10.5.1. A linear map T : V — V is called normal if
TT" =T*T.
Example 10.5.2. Here are two classes of normal operators:
e The self adjoint operators. Those are the transformations T such that T = T*. In this case
TT* =T? = T*T.
e The unitary operators. Those are the transformations T such that T* = T~!. In this case,
TT* =1d = T*T.
Suppose that S is self-adjoint and U is unitary and, moreover, SU = US. Let T = SU. Then T
isnormal since TT* = SUU*S* = §§* = S*Sand T*T = U*S*SU = S*U*US = §*S, where we
have also used that if U and S commute so do U* and S*.

In fact, one can prove that any normal operator T can be written as SU, where S is self-adjoint,
U is unitary, and SU = US.

Our goal is to prove orthonormal diagonalization for normal operators. We first proves some
lemmas needed for the proof.

Lemma 10.5.3. Let T be a linear operator and U C V a T-invariant subspace. Then U+ is T*-invariant.
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Proof. Indeed, v € Ut iff (u,v) = 0,Vu € U. Now, for every u € U and v € U+ we have
(u, T*v) = (Tu,v) =0,
because Tu € U as well. That shows T*v € U-+. O

Lemma 10.5.4. Let T be a normal operator. Let v be an eigenvector for T with eigenvalue A. Then v is
also an eigenvector for T* with eigenvalue A.

Proof. We have
(T*v — Av, T*v — Av) = ((T — A-1d)*0, (T — A -1d)*0)

= (0, (T—A-1d)(T — A-1d)*0)
(11) = (0,(T —A-1d)*(T — A -1d)0)
T/

= 0.

(We have used the identity (T — A -1d)(T — A -Id)* = (T — A -1d)*(T — A - 1d), which is easily
verified by expanding both sides and using TT* = T*T.) It follows that T*v — Av = 0 and the
lemma follows. 0

Theorem 10.5.5. Let T : V — V be a normal operator. Then there is an orthonormal basis B for V such
that

[T]B = diag(/\l,. . .,)Ln).

Proof. We prove that by induction on n = dim(V); the proof is very similar to the proof of
Theorem 10.2.3. The theorem is clearly true for n = 1. Consider the case n > 1. Let v be a non-
zero eigenvector, of norm 1, U = Span(v). Then U is T invariant, but also T* invariant, because
v is also a T*-eigenvector by Lemma 10.5.4. Therefore, U" is T-invariant and T*-invariant by
Lemma 10.5.3 and clearly T|;;. is normal. By induction there is an orthonormal basis B’ for
Ut in which T is diagonal. Then B = {v} U B’ is an orthonormal basis for V in which T is
diagonal. U

Theorem 10.5.6 (The Spectral Theorem). Let T : V — V be a normal operator. Then
T =Mer+ -+ A€y,
where Ay, . .., A, are the eigenvalues of T and the €; are orthogonal projections’ such that
€ Le,i#] Id=e;+---+e¢.
Proof. We first prove the following lemma.
Lemma 10.5.7. Let A # u be eigenvalues of T. Then
Ey L E,.
Proof. Letv € E),w € E,. On the one hand,
(To,w) = (Av,w) = A({v,w).

On the other hand,
(Tv,w) = (v, T*w) = (v, iw) = u(v, w).
Since A # p it follows that (v, w) = 0. O
7IfRis a ring and €y, ..., €, are elements such that €i€j = 5ij€i and 1 = €1 + - - - + €, we call them orthogonal

idempotents. This is the situation we have in the theorem for R = End (V).



88

Now, by Theorem 10.5.5, T is diagonalizable. Thus,
V=E\® --DE,,.
Let
€ :V = E),
be the projection. The Lemma says that the eigenspaces are orthogonal to each other and that

implies that €;6; = 0 for i # j. The identity, Id = €1 + --- + €, is just a restatement of the
decomposition V =E,, @ --- D E,,. O

10.6. The unitary and orthogonal groups. (Time allowing)



89

11. APPENDIX: ZORN’S LEMMA

A set S is called partially ordered set, or a poset for short, if it is equipped with a relation <.
The relation does not need to be defined for any two elements. We use the notation x < y. This
relation is required to satisfy the following properties

o x < xforallx € X.

e x <yandy < x implies x = y.

e x <yandy < zimplies x < z.
The simplest example is perhaps the set R of real numbers where x < y is the usual relation.
For another example, take as a set IN of natural numbers and say that m < n if m|n. Note that
the same definition doesn’t work for Z as 2| — 2 and —2|2, for example, but we cannot conclude
that 2 = —2. Yet another example, is a set A and where S is the set of all subsets of A. We say
for twosubsets U, Vthat U < VifU C V.

Let S then be a poset. Let T C S be a subset. We say that an element s € S is an upper bound
of T if for all t € T we have t < s. In general an upper bound need not exist. For example, in R
the set R itself doesn’t have an upper bound. A chain C in S is a subset of S such that for any
two elements x,y in C we have either x < y or y < x. For example {1,2,6,...n!,...} is a chain
inIN asis {2,4,8,...,2",... }.

Lemma 11.0.1 (Zorn’s Lemma). Let S be a non-empty poset such that every non-empty chain in S has
an upper bound. Then S has a maximal element. Namely, there is an element s € S such that s < t
implies s = t.

Zorn’s lemma is equivalent to the axiom of choice but the proof of Zorn’s lemma from the axiom
of choice is not easy and is best left to a course in set theory. Based on Zorn’s lemma, we can
draw the following corollary.

Corollary 11.0.2. Every vector space has a basis.

Proof. Let V be a vector space over a field F. If V = {0} the empty set is a basis.®> and that
matches the fact that V then “ought to” have dimension 0. Otherwise, V has some independent
set. Indeed, if v € V is a non-zero vector the set {v} is a linearly independent set.

Let S then be the set of all linearly independent subsets of V. It is a non-empty poset where
we define for two subsets U,V that U < V if U C V. We claim that every chain in S has an
upper bound. Let C be a chain, say C = {U, : i € I} such that each U; is a linearly independent
set and for each i # j either U; C U; or U; C U;. Note that this implies that for any finitely many
subsets Uj, ..., U, of C one of them, say Uj;, contains all the others (argue by induction on 7).

In any case, let U = sup,_; U; be the union of all the sets in the chain C. Note that we do not
require the upper bound to belong to the chain. However, we claim that U € S, namely, that U
is a linearly independent set. Indeed, let vy, ..., v, be vectors in U. Then, from the definition of
U, for each i there is some U; € C such that v; € U;. By the remark above, there is thus some
U;, € Csuchthatoy,...,v, all belong to U;,. But U, is a linearly independent set so if } | «;v; = 0
then every a; = 0. This shows that U is a linearly independent set and so U € C. Clearly U is
an upper bound for C.

The set S satisfies the conditions of Zorn’s lemma and we thus conclude that it has a maximal
element B. A moment reflection shows that B is a maximal linear independent set of V, i.e., a
basis of V. O

A modification of the proof above yields the following stronger (and useful fact).

Theorem 11.0.3. Let V be a vector space and S C 'V a linearly independent set then S is contained in a
basis of V.

81f this causes you a splitting headache that’s natural.
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We leave the proof as an exercise.
Zorn’s lemma is used in many proofs in algebra, but most of them require more advanced
concepts. However, the following theorem is not too hard to prove and is left as an exercise.

Theorem 11.0.4. Let R be a commutative non-zero ring then R has a maximal ideal. °

90r, more generally, any non-zero ring has a maximal left ideal and a maximal right ideal.
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vector space, 21
Fitting’s lemma, 23

Gram-Schmidt process, 55, 58
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simple, 3

Hamming distance, 3
Hessian matrix, 2

index of nilpotence, 73
inner product, 52
intersection (of subspaces), 6

isomorphism (of vector spaces), 19

Jordan
block, 76
canonical form, 76

Laplace’s Theorem, 36
linear code, 3
linear combination, 7
linear functional, 48
linear operator, 22
linear transformation, 17
adjoint, 80
diagonalizable, 62, 70
isomorphism, 19
matrix, 24
nilpotent, 22, 76
normal, 86
nullity, 74
projection, 24, 27
orthogonal, 57
self-adjoint, 81
singular, 19
linearly dependent, 8
linearly independent, 8
maximal, 8

Markov chain, 2

matrix
standard nilpotent, 73
diagonalizable, 62
elementary, 45
Hermitian, 53, 81
Hessian, 85
orthogonal, 82
positive definite, 54, 84
unitary, 82

minimal polynomial, 67

minor, 36

multiplicity
algebraic, 62
geometric, 62

norm, 52

ordinary differential equation, 4

orthogonal
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complement, 57

idempotents, 87

vectors, 54
orthonormal basis, 55

Parallelogram law, 53
permutation
sign, 28
perpendicular, 54
Primary Decomposition Theorem, 69
Principal Axis Theorem, 83

quadric, 85
quotient space, 20

reduced echelon form, 42
row

rank, 40

reduction, 41

space, 40

scalar, 5

span, 7

spanning set, 7
minimal, 7, 8

Spectral Theorem, 87

subspace, 5
cyclic, 69
invariant, 68
trivial, 5

sum (of subspaces), 6

symmetric bilinear form, 83

triangle inequality, 52

vector, 5

vector space, 5
F[t]n, 6
F",5

volume function, 33

Zorn’s lemma, 11
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