(1) Use Proposition 7.2.9 to deduce Proposition 7.2.6 in the notes.

(2) Find an orthonormal basis for \(\mathbb{C}^2 \) with the inner product defined by the matrix \(\left(\begin{smallmatrix} 1 & 1+i \\ -1-i & 5 \end{smallmatrix} \right) \).

(3) Perform the Gram-Schmidt process for the basis \(\{1, x, x^2\} \) to \(\mathbb{R}[x]_2 \) with respect to the inner product
\[
(f, g) = \int_{-1}^{1} f(x)g(x)dx.
\]

(4) **Least squares approximation.** Consider an experiment whose results are given by a series of points:
\[
(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n),
\]
where \(x_1 < x_2 < \cdots < x_n \) and the \(x_i, y_i \) are real numbers.

We assume that the actual law governing this data is linear. Namely, that there is an equation of the form \(f_{A,B}(x) = Ax + B \) that fits the data up to experimental errors. Therefore, we look for such an equation \(Ax + B \) that fits the data best. Our measure for that is “the method of least squares”. Namely, given a line \(Ax + B \), let \(d_i = |y_i - (Ax_i + B)| \) (the distance between the theoretical \(y \) and the observed \(y \)). Then we seek to minimize
\[
d_1^2 + d_2^2 + \cdots + d_n^2.
\]

Let
\[
T : \mathbb{R}^2 \to \mathbb{R}^n,
\]
be the map
\[
T(A, B) = (f_{A,B}(x_1), \ldots, f_{A,B}(x_n)).
\]
Prove that \(T \) is a linear map and that the problem we seek to solve is to minimize
\[
\|T(A, B) - (y_1, \ldots, y_n)\|^2.
\]

Let \(W \) be the subspace of \(\mathbb{R}^n \) which is the image of \(T \). Prove that \(W \) is two dimensional and that \(\{s_1, s_2\} \) is a basis for \(W \), where \(s_1 = (1, 1, \ldots, 1), s_2 = (x_1, x_2, \ldots, x_n) \).

Assume for simplicity that \(\sum_{i=1}^{n} x_i = 0 \) (this can always be achieved by shifting the data). Find an orthonormal basis for \(W \) and use it to find the vector in \(W \) closest to \((y_1, \ldots, y_n) \).

Put now everything together to get explicit formulas for \(A, B \) such that \(f_{A,B}(x) \) is the best linear approximation to the data
\[
(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n).
\]
(Still under the assumption \(\sum_{i=1}^{n} x_i = 0 \).)

(5) **Angles.** Let \(V \) be an inner product space over \(\mathbb{R} \). Define the angle \(\theta \) between two non-zero vectors \(u, v \) in \(V \) to be the unique angle \(\theta, 0 \leq \theta \leq \pi \) such that
\[
\cos(\theta) = \frac{(u, v)}{\|u\| \cdot \|v\|}.
\]
This is well-defined by Cauchy-Schwartz. Prove the Law of cosines holds with this definition of \(\cos(\theta) \): That is, consider a triangle with sides \(A, B, C \) of lengths \(a, b, c \), respectively, and let \(\theta \) be the angle between \(A \) and \(B \) in the sense defined above. Then
\[
c^2 = a^2 + b^2 - 2ab \cos(\theta).
\]
Deduce from the fact that the law of cosines holds in plane **geometry** for angles defined in the usual way, that our definition of an angle **generalizes** the usual definition.

(6) Let \(W \) be the subspace of \(\mathbb{F}^4 \) defined by the equation \(x_1 + x_2 + x_3 + x_4 = 0 \). Find the orthogonal projection of \((1,0,0,0)\) on \(W \).