ASSIGNMENT 3 - MATH 251, WINTER 2008

Submit by Monday, February 4, 12:00

- (1) Read $\S4.5$ in the notes and write a proof for Proposition 4.5.2.
- (2) Coding theory. Let $V = \mathbb{F}_2^n$ and let C be a code (= a subspace) of dimension k. Let d be the distance of C. Prove that $d \le n k + 1$.
- (3) Coding theory. Let G be a bipartite regular graph, whose set of left vertices is L and right vertices is R. For a set $S \subset L$ denote by $\partial S := \{r \in R : r \text{ is connected to a vertex in } S\}$. Suppose that |L| = n, |R| = 3n/4 and n is "large".

Suppose that G has the following expansion property. For every $S \subset L$ such that $|S| \leq \frac{n}{10d_L}$ we have $|\partial S| \geq \frac{5d_L}{8}|S|$. Prove that for every such S there is a vertex r_S (many, in fact) such that r_S is a neighbor of exactly one element of S.

Consider now the linear code defined by the "half adjacency matrix M" whose columns are indexed by the elements of L and rows by the elements of R, having 1 as an entry if the corresponding vertices are connected and 0 otherwise. (Refer to the previous assignment). Prove that if x is a non-zero vector in the code then x has more than $\frac{n}{10d_L}$ non-zero coordinates. Conclude that we get a code where the distance between any two code words is at least $\frac{n}{10d_L}$ and whose rate is at least 1/4.

- (4) (a) Find a linear map $T : \mathbb{R}^3 \to \mathbb{R}^3$ whose image is generated by (1, 1, 0) and (0, 1, 1). Here 'find' means represent by a matrix with respect to the standard basis.
 - (b) Find a linear map $T : \mathbb{R}^4 \to \mathbb{R}^3$ whose kernel is generated by (1, 2, 0, 4), (0, 1, 0, 1).
- (5) Let $W = \{(x, y, z, w) : x + y + z + w = 0, x y w = 0\}$, $U_1 = \{(x, x, x, x) : x \in \mathbb{R}\}$ be subspaces of \mathbb{R}^4 . Find a subspace $U \supset U_1$ such that $\mathbb{R}^4 = U \oplus W$. Let T be the projection of \mathbb{R}^4 on U along W. Write the matrix representing T with respect to the standard basis.
- (6) Let V and W be any two finite dimensional vector spaces over a field \mathbb{F} . Let $T: V \to W$ be a linear map. Prove that there are bases of V and W such that with respect to those bases T is represented by a matrix composed of 0's and 1's only. If T is an isomorphism, prove that with respect to suitable bases it is represented by the identity matrix.