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1. Let B = {(1, 1), (4, 5)} and C = {(2, 1), (1, 1)} be bases of R2. Find the change of basis matrices BMC
and CMB between the bases B and C. Let v = ( 8

28 ) with respect to the standard basis. Find [v]B and [v]C .

2. Which of the following functions is a linear map? (provide proof):

(1) T : R2 → R2, T (x, y) = (3x− 2y, x + y).
(2) T : R2 → R2, T (x, y) = (x2 − y, x + y + 1).
(3) T : R[x]3 → R2, T (f(x)) = (f(1), f ′(1)).
(4) T : R[x]3 → R[x]4, T (f(x)) = xf(x) + f(1).

In each case where T is a linear map, find its kernel.

3. Prove the following Proposition.

Proposition 0.1. Let V and W be vector spaces over F. Let B = {b1, . . . , bn} be a basis for V and let
t1, . . . , tn be any elements of W . There is a unique linear map

T : V → W,

such that
T (bi) = ti, i = 1, . . . , n.

5. Consider the following subspaces of R3:

U = {(x, y, z) ∈ R3 : x + y − z = 0;x− 2y + z = 0; }, W = {(x, y, z) ∈ R3 : x + y + z = 0}.
Answer the following questions.

(1) Find the dimensions of U and W .
(2) Find a linear map T : R3 → R3 such that U = Ker(T ), W = Im(T ).
(3) Find a linear map S : R3 → R3 such that W = Ker(S), U = Im(S).
(4) Find Im(T 2), Im(S2), Im(S ◦ T ) and Im(T ◦ S) (hint: it is possible to do that without any calcu-

lations).

7. Graphs. A graph G consists of a finite set of vertices V (G) and a set of edges E(G) ⊂ V (G)× V (G).
Thus, a vertex u is connected to a vertex v precisely if (u, v) ∈ E(G). We assume that the graph is
non-oriented, meaning (u, v) ∈ E(G) ⇔ (v, u) ∈ E(G). Note that by our definition there is at most one
edge between any two vertices. We shall also assume, for simplicity, that the graph has no loops. Namely,
(v, v) 6∈ E(G) for all v ∈ V (G).

Suppose that the vertices are labeled 1, 2, . . . , n. We may encode the graph by a symmetric matrix A,
called the adjacency matrix of the graph. We define

A = (aij), aij =

{
1 (i, j) ∈ E(G)
0 else.

A. Write the adjacency matrix of the graph whose vertices are {0, . . . , 6} where any i is connected to
i + 1 (mod 7) and i + 2 (mod 7). Draw the graph as well.

Let k be an integer. A graph is called k-regular if from every vertex there are exactly k edges.
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B. Show that the above graph is 4-regular. Prove that a graph is k-regular if and only if the sum of the
coefficients of every row (every column) of its adjacency matrix is k.

A graph is called bipartite if we can divide its vertices into two disjoint sets L and R such that vertices
from L are only connected to vertices in R and vertices in R are only connected to vertices in L. We shall
say that a bipartite graph is regular if for some dL, dR, every vertex in L connects to exactly dL vertices
in R and any vertex in R connects to exactly dR vertices in L.

C. Prove that in this case |L| · dL = |R| · dR. Is our example above bipartite?

D. For a bipartite graph G, with L = {`1, . . . , `n}, R = {r1, . . . , rm} define an m × n matrix M whose
ij entry is one if ri is connected to `j and zero otherwise. How can we write the adjacency matrix of G in
terms of M? How can we determine in terms of M whether the graph is regular?

Binary codes. A binary linear code, or just a code for us, is a subspace of Fn
2 . The elements of Fn

2

are referred to as “words” and those of C as “code words”. Codes are used in order to send messages
over noisy channels in such a way that the receiver can detect transmission errors and correct them, to
some extent. Here is a basic example, called a parity check code: Suppose we wish to send one of
the following four datum {(0, 0), (0, 1), (1, 0), (1, 1)}. If we just send the data and there is error in the
transmission, for example (0, 0) is sent but (1, 0) is received due to error in the transmission of the first
digit, then the receiver cannot know that an error has occurred, let alone correct the error. If instead of
sending the vector (x, y) we sent (x, y, x + y mod 2) (thus, instead of (1, 0) we send (1, 0, 1) and instead
of (1, 1) we send (1, 1, 0)), then if a single error occurs then the receiver will receive three digits such that
the last digit is not the sum of the first two. Thus, the receiver can recognize that an error has occurred,
though not correct it. Thus, by adding redundancy (sending 3 digits instead of 2) we are gaining ability
to detect errors. The code in this example is the subspace of F3

2 defined by x + y + z = 0.
In general, we are having some collection of messages (or data) we want to send, for example a blocks

of 0, 1 bits of length k, namely elements of Fk
2 . We are looking for a k-dimensional subspace C of Fn

2 and
we fix an isomorphism of Fk

2
∼= C, thus translating each original sequence of k bits into a code word, an

element of C. We transmit the element of C and not the original sequence of k-bits.
The receiver knows the code C - our goals is to transmit information overcoming errors, not to hide

it - and thus looks for the code word closest (relative to the Hamming distance) to the received message.
Here are some definitions:

The Hamming distance on Fn
2 is

d(x, y) = number of digits in which x and y differ.

This is a distance function (“metric”), i.e., (i) d(x, y) = 0 iff x = y; (ii) d(x, y) = d(y, x); (iii) d(x, z) ≤
d(x, y) + d(y, z). Note also the easy identity

d(x, y) = d(x− y, 0).

Let C ⊆ Fn
2 be a code (i.e., a subspace). The distance of C is

d(C) = min
c∈C,c 6=0

d(c, 0).

We say that a code detects k errors, if given an element v ∈ C there is no element w ∈ C such that
d(v, w) ≤ k, except v itself. The idea that is that more than k errors must occur in the transmission of a
code word v so that the received message is not detected as an error (namely, is also an element of C).

We say that a code corrects k errors, if for v ∈ Fn
2 and u,w ∈ C the inequalities d(v, u) ≤ k and

d(v, w) ≤ k imply that u = w. Namely, as long as no more than k errors have occurred there is a unique
way to retrieve the original code word, there is a unique element of C in distance at most k from the
received message.

E. Prove the following: Let C ⊆ Fn
2 be a linear code. One can detect d(C) − 1 errors and correct

(d(C)− 1)/2 errors if d(C) is odd and (d(C)− 2)/2 errors if d(C) is even.
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F. Let H7 the Hamming code of length 7. It’s defined as the subspace of F7
2 generated by

(1, 1, 0, 1, 0, 0, 0), (0, 1, 1, 0, 1, 0, 0), (0, 0, 1, 1, 0, 1, 0), (0, 0, 0, 1, 1, 0, 1).

Prove that it’s a four dimensional code with distance 3.

If C ⊂ Fn is a linear code, we define its rate to be

r(C) = dim(C)/n.

This magnitude measures the efficiency of the code. Note that 0 ≤ r(C) ≤ 1.

Now take the matrix M we have constructed in the context of bipartite graphs and consider it as a
linear map

T : Fn
2 → Fm

2 , T (v) := Mv,

(we think of the vectors as column vectors). Define a linear code by taking the kernel of this linear
transformation. For future reference we denote this code by CG,

CG := {v ∈ Fn : Mv = 0}.

G. Prove that the rate of CG is at least n−m
n .

H. Consider the following example. Let R = {1, 2, . . . , n} and let L the set whose elements are subsets
of order k of R. Thus, L has ( n

k )-elements. An element a of R is connected to an element S of L if and
only if a ∈ S. Show that this gives a regular bipartite graph. Find the rate and distance of the linear code
for n = 4 and k = 2.


