## ASSIGNMENT 10 - MATH 251, WINTER 2007

Submit by Wednesday, April 9, 12:00, Answer questions 2, 3, 4, 5, 7, 8, 9 for full marks and the additional questions for bonus. It is unlikely the assignment will be marked before the final; you may want to leave yourself a copy.

- (1) Let A be the adjacency matrix of a k-regular graph G.
  - (a) Prove that k is an eigenvalue of A and find the eigenvector.
  - (b) Prove that every eigenvalue  $\lambda$  of A is real and satisfies  $|\lambda| \leq k$ .
  - (c) Prove that if G is not connected, the geometric multiplicity of the eigenvalue k is greater than 1. (The converse is also true.)
  - (d) Assume that G is connected. Prove that if G bipartite then -k is an eigenvalue. (The converse is also true.)
- (2) Determine the possibilities for the Jordan canonical form of a matrix A with characteristic polynomial  $\Delta_A(t) = (t-1)^6(t-2)^4(t-4)^5$  and minimal polynomial  $m_A(t) = (t-1)^3(t-2)^2(t-4)$ . What if you are given that  $\text{null}(A^2 3 \cdot A + 2 \cdot I) = 4$ ?
- (3) Find the Jordan canonical form (including the change of basis matrix) of the matrix

$$A = \begin{pmatrix} 5 & 9 & -2 & 0 & 0 \\ -1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 5 & 9 \\ 0 & 0 & 0 & -1 & -1 \end{pmatrix}.$$

(4) Find a formula for the general term of the sequence

$$0, 1, 4, 12, 32, 80, \dots$$

$$(a_{n+2} = 4a_{n+1} - 4a_n).$$

- (5) Let  $T: \mathbb{C}^n \to \mathbb{C}^n$  be a linear map and  $\alpha \in \mathbb{C}$  a scalar such that  $(T \alpha Id)^n = Id$ . Prove that T is diagonalizable.
- (6) It is known that a differentiable function  $f: \mathbb{R}^2 \to \mathbb{R}$  has a
  - maximum at a point P if  $\partial f/\partial x = \partial f/\partial y = 0$  at P and the 2 × 2 symmetric matrix

$$- \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix}$$

is positive definite;

• minimum at a point P if  $\partial f/\partial x = \partial f/\partial y = 0$  at P and the 2 × 2 symmetric matrix

$$\begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix}$$

is positive definite;

• saddle point at P if the  $2 \times 2$  symmetric matrix

$$\begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix}$$

has one negative eigenvalue and one positive eigenvalue.

If P is either a maximum, minimum or saddle point, we call it a simple critical point. Determine the nature of the simple critical point of the following functions at the origin (0,0)

$$f(x,y) = 2x^2 + 6xy + y^2$$
,  $f(x,y) = x\sin(x) - \cos(y) - xy$ .

(You may view the graphs and rotate them in Maple using

plot3d(
$$2*x^2+6*x*y+y^2$$
,  $x=-4..4$ ,  $y=-4..4$ );  
plot3d( $x*\sin(x) - \cos(y) - x*y$ ,  $x=-4..4$ ,  $y=-4..4$ , numpoints=3000); ).

**Remark.** This criterion can be generalized to functions  $f: \mathbb{R}^n \to \mathbb{R}$ . If all the first partials vanish at a point P and the matrix of mixed derivatives is positive definite (resp. negative definite) at P, then the function has a minimum (resp. maximum) at P.

(7) Find an orthogonal matrix P such that  $P^{-1}AP$  is diagonal, where

$$A = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{pmatrix}.$$

- (8) Prove that the determinant of a unitary matrix has absolute value 1.
- (9) Prove that the following are equivalent for a matrix  $A \in M_n(\mathbb{F})$  ( $\mathbb{F} = \mathbb{R}$  or  $\mathbb{C}$ ):
  - (a) A is unitary.
  - (b) A preserves inner products:  $\langle v, w \rangle = \langle Av, Aw \rangle$  for all  $v, w \in \mathbb{F}^n$ ;
  - (c) A preserves lengths: ||Av|| = ||v|| for all  $v \in \mathbb{C}^n$ .
- (10) Let  $T: \mathbb{F}^n \to \mathbb{F}^n$  be a normal operator. Prove the following:
  - (a) T is self-adjoint if and only its eigenvalues are real;
  - (b) T is unitary if and only if its eigenvalues have absolute value one;
  - (c) T is a product US where U is unitary, S is self-adjoint and US = SU.
- (11) Let A be a real symmetric matrix,  $A = (a_{ij})$  of size n. For every  $1 \le r \le i$  let  $A_r = (a_{ij})_{1 \le i,j \le r}$ , be the upper left corner  $r \times r$  submatrix of A. Prove that A is positive definite if and only if  $\det(A_i) > 0$  for i = 1, 2, ..., n.

(For example, the matrix  $\begin{pmatrix} 1 & 2 & 1 \\ 2 & 5 & 0 \\ 1 & 0 & 8 \end{pmatrix}$  is positive definite because  $\det(1) = 1 > 0$ ,  $\det\left( \begin{smallmatrix} 1 & 2 & 1 \\ 2 & 5 & 0 \\ 1 & 0 & 6 \end{smallmatrix} \right) = 3 > 0$ .)