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(1) The following are vector spaces (verify that to yourself). Determine in each case if they are finite

dimensional or infinite dimensional by either providing an infinite independent set, or finding a
finite basis.
(a) Let S be a non-empty set and V = {f : S → R} the space of all R-valued functions on S,

where we define for f, g ∈ S, α ∈ R, the functions f + g and αf using the usual conventions:

(f + g)(x) = f(x) + g(x), (αf)(x) = αf(x), ∀x ∈ S.

(The answer in this case depends on S; distinguish two cases!)
(b) Let n ≥ 0 an integer. Let A0, . . . , An be scalars (elements of a field F) and let V be the set

of infinite vectors (x0, x1, x2, . . . ), with coordinates xi ∈ F that satisfy the recursion relation:

xm+1 = Anxm + An−1xm−1 + · · ·+ A0xm−n,

for every m ≥ n. (For example: for n = 1 these are the series satisfying x2 = A1x1 +
A0x0, x3 = A1x2 + A0x1, x4 = A1x3 + A0x2, etc.. In general, we may also express the
relation by 



xm−n+1

xm−n+2

...
xm+1


 =




0 1 0 . . . 0
0 0 1 . . . 0
...

A0 A1 A2 . . . An







xm−n

xm−n+1

...
xm




for all m ≥ n. )
(c) Let F be a field and V the vector space of all polynomials (of any degree) with coefficients in

F.

(2) Prove directly that if S is an independent spanning set then S is a minimal spanning set.

(3) Consider in R4 the span W of the following set

S = {(1,−1, 1,−1), (1, 3, 2, 2)}.
Describe W as the set of solutions for two linear equations.

(4) Let V be an n-dimensional vector space over a field F. Let T = {t1, . . . , tm} ⊂ V be a linearly
independent set. Let W = Span(T ). Prove:

dim(W ) = m.

(5) Let V1, V2 be finite dimensional vector spaces over a field F. Prove that

dim(V1 ⊕ V2) = dim(V1) + dim(V2).

(6) Prove that the set S = {(1, 3, 2, 0, 1), (2, 3, 2, 4, 5), (1,−1, 0, 0, 0)} is a linearly independent set
in R5. Use the proof of Steinitz’s lemma to find two vectors ei, ej , among the standard basis
{e1, . . . , e5} such that S ∪ {ei, ej} is a basis for R5.

(7) Let F be a finite field with q elements.
(a) Show that the kernel of the ring homomorphism

Z→ F
defined by n 7→ n · 1 = 1 + · · · + 1 (n times) is of the form pZ for some prime p. Conclude
that we may assume that F ⊇ Z/pZ for some prime p.

(b) Prove that F is a vector space of finite dimension over Z/pZ and if this dimension is n then
F has pn elements, and therefore that every finite field has cardinality pn for some prime p.


