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1. Introduction

This course is about vector spaces and the maps between them, called linear transformations

(or linear maps, or linear mappings).

The space around us can be thought of, by introducing coordinates, as R3. By abstraction we

understand what are

R,R2,R3,R4, . . . ,Rn, . . . ,

where Rn is then thought of as vectors (x1, . . . , xn) whose coordinates xi are real numbers.

Replacing the field R by any field F, we can equally conceive of the spaces

F,F2,F3,F4, . . . ,Fn, . . . ,

where, again, Fn is then thought of as vectors (x1, . . . , xn) whose coordinates xi are in F. Fn is

called the vector space of dimension n over F. Our goal will be, in the large, to build a theory

that applies equally well to Rn and Fn. We will also be interested in constructing a theory which

is free of coordinates; the introduction of coordinates will be largely for computational purposes.

Here are some problems that use linear algebra and that we shall address later in this course

(perhaps in the assignments):

(1) An m× n matrix over F is an arraya11 . . . a1n
...

...
am1 . . . amn

 , aij ∈ F.

We shall see that linear transformations and matrices are essentially the same thing.

Consider a homogenous system of linear equations with coefficients in F:

a11x1 + · · ·+ a1nxn = 0

...

am1x1 + · · ·+ amnxn = 0

This system can be encoded by the matrixa11 . . . a1n
...

...
am1 . . . amn

 .

We shall see that matrix manipulations and vector spaces techniques allow us to have a

very good theory of solving a system of linear equations.

(2) Consider a smooth function of 2 real variables, f(x, y). The points where

∂f

∂x
= 0,

∂f

∂y
= 0,
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are the extremum points. But is such a point a maximum, minimum or a saddle point?

Perhaps none of there? To answer that one defines the Hessian matrix,(
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2

)
.

If this matrix is “negative definite”, resp. “positive definite”, we have a maximum, resp.

minimum. Those are algebraic concepts that we shall define and study in this course. We

will then also be able to say when we have a saddle point.

(3) This example is a very special case of what is called a Markov chain. Imagine a system

that has two states A,B, where the system changes its state every second, say, with given

probabilities. For example,

A

0.7

660.3 88 B

0.2

vv
0.8gg

Given that the system is initially with equal probability in any of the states, we’d like to

know the long term behavior. For example, what is the probability that the system is in

state B after a year. If we let

M =

(
0.3 0.2
0.7 0.8

)
,

then the question is what is

M60×60×24×365
(

0.5
0.5

)
,

and whether there’s a fast way to calculate this.

(4) Consider a sequence defined by recurrence. A very famous example is the Fibonacci
sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

It is defined by the recurrence

a0 = 1, a1 = 1, an+2 = an + an+1, n ≥ 0.

If we let

M =

(
0 1
1 1

)
,

then (
an
an+1

)
=

(
0 1
1 1

)(
an−1
an

)
= · · · = Mn

(
a0
a1

)
.

We see that again the issue is to find a formula for Mn.
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(5) Consider a graph G. By that we mean a finite set of vertices V (G) and a subset E(G) ⊂
V (G)× V (G), which is symmetric: (u, v) ∈ E(G)⇔ (v, u) ∈ E(G). (It follows from our

definition that there is at most one edge between any two vertices u, v.) We shall also

assume that the graph is simple: (u, u) is never in E(G).

To a graph we can associate its adjacency matrix

A =

a11 . . . a1n
...

...
an1 . . . ann

 , aij =

{
1 (i, j) ∈ E(G)

0 (i, j) 6∈ E(G).

It is a symmetric matrix whose entries are 0, 1. The algebraic properties of the adjacency

matrix teach us about the graph. For example, we shall see that one can read off if the

graph is connected, or bipartite, from algebraic properties of the adjacency matrix.

(6) The goal of coding theory is to communicate data over noisy channel. The main idea is

to associate to a message m a uniquely determined element c(m) of a subspace C ⊆ Fn2 .

The subspace C is called a linear code. Typically, the number of digits required to write

c(m), the code word associated to m, is much larger than that required to write m itself.

But by means of this redundancy something is gained.

Define the Hamming distance of two elements u, v in Fn2 as

d(u, v) = no. of digits in which u and v differ.

We also call d(0, u) the Hamming weight w(u) of u. Thus, d(u, v) = w(u− v). We wish

to find linear codes C such that

w(C) := min{w(u) : u ∈ C \ {0}},

is large. Then, the receiver upon obtaining c(m), where some known fraction of the digits

may be corrupted, is looking for the element of W closest to the message received. The

larger is w(C) the more errors can be tolerated.

(7) Let y(t) be a real differentiable function and let y(n)(t) = ∂ny
∂tn . The ordinary differential

equation:

y(n)(t) = an−1y
(n−1)(t) + · · ·+ a1y

(1)(t) + a0y(t)

where the ai are some real numbers, can be translated into a system of linear differential

equations. Let fi(t) = y(i)(t) then

f ′0 = f1

f ′1 = f2

...

f ′n−1 = an−1fn−1 + · · ·+ a1f1 + a0f0.
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More generally, given functions g1, . . . , gn, we may consider the system of differential

equations:

g′1 = a11g1 + · · ·+ a1ngn

...

g′n = an1g1 + · · ·+ anngn.

It turns out that the matrix a11 . . . a1n
...

...
am1 . . . amn


determines the solutions uniquely, and effectively.
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2. Vector spaces: key notions

2.1. Definition of vector space and subspace. Let F be a field.

Definition 2.1.1. A vector space V over F is a non-empty set together with two operations

V × V → V, (v1, v2) 7→ v1 + v2,

and

F× V → V, (α, v) 7→ αv,

such that V is an abelian group and in addition:

(1) 1v = v,∀v ∈ V ;

(2) (αβ)v = α(βv),∀α, β ∈ F, ∀v ∈ V ;

(3) (α+ β)v = αv + βv,∀α, β ∈ F, ∀v ∈ V ;

(4) α(v1 + v2) = αv1 + αv2, ∀α ∈ F, v1, v2 ∈ V .

The elements of V are called vectors and the elements of F are called scalars.

Here are some formal consequences:

(1) 0F · v = 0V

This holds true because 0F · v = (0F + 0F)v = 0F · v + 0F · v and so 0V = 0F · v.

(2) −1 · v = −v
This holds true because 0V = 0F · v = (1 + (−1))v = 1 · v + (−1) · v = v + (−1) · v and

that shows that −1 · v is −v.

(3) α · 0V = 0V

Indeed, α · 0V = α(0V + 0V ) = α · 0V + α · 0V .

Definition 2.1.2. A subspace W of a vector space V is a non-empty subset such that:

(1) ∀w1, w2 ∈W we have w1 + w2 ∈W ;

(2) ∀α ∈ F, w ∈W we have αw ∈W .

It follows from the definition that W is a vector space in its own right. Indeed, the consequences

noted above show that W is a subgroup and the rest of the axioms follow immediately since they

hold for V . We also note that we always have the trivial subspaces {0} and V .

Example 2.1.3. The vector space Fn.
We define

Fn = {(x1, . . . , xn) : xi ∈ F},
with coordinate-wise addition. Multiplication by a scalar is defined by

α(x1, . . . , xn) = (αx1, . . . , αxn).

The axioms are easy to verify.

For example, for n = 5 we have that

W = {(x1, x2, x3, 0, 0) : xi ∈ F}
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is a subspace. This can be generalized considerably.

Let aij ∈ F and let W be the set of vectors (x1, . . . , xn) such that

a11x1 + · · ·+ a1nxn = 0,

...

am1x1 + · · ·+ amnxn = 0.

Then W is a subspace of Fn.

Example 2.1.4. Polynomials of degree less than n.

Again, F is a field. We define F[t]n to be

F[t]n = {a0 + a1t+ · · ·+ ant
n : ai ∈ F}.

We also put F[t]0 = {0}. It is easy to check that this is a vector space under the usual operations

on polynomials. Let a ∈ F and consider

W = {f ∈ F[t]n : f(a) = 0}.

Then W is a subspace. Another example of a subspace is given by

U = {f ∈ F[t]n : f ′′(t) + 3f ′(t) = 0},

where if f(t) = a0 + a1t+ · · ·+ ant
n we let f ′(t) = a1 + 2a2t+ · · ·+ nant

n−1 and similarly for f ′′

and so on.

Example 2.1.5. Continuous real functions.

Let V be the set of real continuous functions f : [0, 1]→ R. We have the usual definitions:

(f + g)(x) = f(x) + g(x), (αf)(x) = αf(x).

Here are some examples of subspaces:

(1) The functions whose value at 5 is zero.

(2) The functions f satisfying f(1) + 9f(π) = 0.

(3) The functions that are differentiable.

(4) The functions f such that
∫ 1
0 f(x)dx = 0.

Proposition 2.1.6. Let W1,W2 ⊂ V be subspaces then

W1 +W2 := {w1 + w2 : wi ∈Wi}

and

W1 ∩W2

are subspaces of V .

Proof. Let x = w1 + w2, y = w′1 + w′2 with wi, w
′
i ∈Wi. Then

x+ y = (w1 + w′1) + (w2 + w′2).
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We have wi + w′i ∈Wi, because Wi is a subspace, so x+ y ∈W1 +W2. Also,

αx = αw1 + αw2,

and αwi ∈ Wi, again because Wi is a subspace. It follows that αx ∈ W1 + W2. Thus, W1 + W2

is a subspace.

As for W1∩W2, we already know it is a subgroup, hence closed under addition. If x ∈W1∩W2

then x ∈Wi and so αx ∈Wi, i = 1, 2, because Wi is a subspace. Thus, αx ∈W1 ∩W2. �

2.2. Direct sum. Let U and W be vector spaces over the same field F. Let

U ⊕W := {(u,w) : u ∈ U,w ∈W}.

We define addition and multiplication by scalar as

(u1, w1) + (u2, w2) = (u1 + u2, w1 + w2), α(u,w) = (αu, αw).

It is easy to check that U ⊕W is a vector space over F. It is called the direct sum of U and W ,

or, if we need to be more precise, the external direct sum of U and W .

We consider the following situation: U,W are subspaces of a vector space V . Then, in general,

U +W (in the sense of Proposition 2.1.6) is different from the external direct sum U ⊕V , though

there is a connection between the two constructions as we shall see in Theorem 4.4.1.

2.3. Linear combinations, linear dependence and span. Let V be a vector space over F
and S = {vi : i ∈ I, vi ∈ V } be a collection of elements of V , indexed by some index set I. Note

that we may have i 6= j, but vi = vj .

Definition 2.3.1. A linear combination of the elements of S is an expression of the form

α1vi1 + · · ·+ αnvin ,

where the αj ∈ F and vij ∈ S. If S is empty then the only linear combination is the empty sum,

defined to be 0V . We let the span of S be

Span(S) =


m∑
j=1

αjvij : αj ∈ F, ij ∈ I

 .

Note that Span(S) is all the linear combinations one can form using the elements of S.

Example 2.3.2. Let S be the collection of vectors {(0, 1, 0), (1, 1, 0), (0, 1, 0)}, say in R3. The

vector 0 is always a linear combination; in our case, (0, 0, 0) = 0 · (0, 1, 0)+0 · (1, 1, 0)+0 · (0, 1, 0),

but also (0, 0, 0) = 1 · (0, 1, 0) + 0 · (1, 1, 0)− 1 · (0, 1, 0), which is a non-trivial linear combination.

It is important to distinguish between the collection S and the collection T = {(0, 1, 0), (1, 1, 0)}.
There is only one way to write (0, 0, 0) using the elements of T , namely, 0 · (0, 1, 0) + 0 · (1, 1, 0).

Proposition 2.3.3. The set Span(S) is a subspace of V .
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Proof. Let
∑m

j=1 αjvij and
∑n

j=1 βjvkj be two elements of Span(S). Since the αj and βj are

allowed to be zero, we may assume that the same elements of S appear in both sums, by adding

more vectors with zero coefficients if necessary. That is, we may assume we deal with two elements∑m
j=1 αjvij and

∑m
j=1 βjvij . It is then clear that

m∑
j=1

αjvij +

m∑
j=1

βjvij =

m∑
j=1

(αj + βj)vij ,

is also an element of Span(S).

Let α ∈ F then α
(∑m

j=1 αj · vij
)

=
∑m

j=1 ααj ·vij shows that α
(∑m

j=1 αjvij

)
is also an element

of Span(S). �

Definition 2.3.4. If Span(S) = V , we call S a spanning set. If Span(S) = V and for every

T $ S we have Span(T ) $ V we call S a minimal spanning set.

Example 2.3.5. Consider the set S = {(1, 0, 1), (0, 1, 1), (1, 1, 2)}. The span of S is W =

{(x, y, z) : x + y − z = 0}. Indeed, W is a subspace containing S and so Span(S) ⊂ W . On the

other hand, if (x, y, z) ∈W then (x, y, z) = x(1, 0, 1) + y(0, 1, 1) and so W ⊆ Span(S). Note that

we have actually proven that W = Span({(1, 0, 1), (0, 1, 1)}) and so S is not a minimal spanning

set for W . It is easy to check that {(1, 0, 1), (0, 1, 1)} is a minimal spanning set for W .

Example 2.3.6. Let

S = {(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}.

Namely,

S = {e1, e2, . . . , en},
where ei is the vector all whose coordinates are 0, except for the i-th coordinate which is equal

to 1. We claim that S is a minimal spanning set for Fn. Indeed, since we have

α1e1 + · · ·+ αnen = (α1, . . . , αn),

we deduce that: (i) every vector is in the span of S, that is, S is a spanning set; (ii) if T ⊆ S

and ej 6∈ T then every vector in Span(T ) has j-th coordinate equal to zero. So in particular

ej 6∈ Span(T ) and so S is a minimal spanning set for Fn.

Definition 2.3.7. Let S = {vi : i ∈ I} be a non-empty collection of vectors of a vector space V .

We say that S is linearly dependent if there are αj ∈ F, j = 1, . . . ,m, not all zero and vij ∈ S,

j = 1, . . . ,m, such that

α1vi1 + · · ·+ αmvim = 0.

Thus, S is linearly independent if

α1vi1 + · · ·+ αmvim = 0

for some αj ∈ F, vij ∈ S, implies α1 = · · · = αm = 0.
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Example 2.3.8. If S = {v} then S is linearly dependent if and only if v = 0. If S = {v, w} then

S is linearly dependent if and only if one of the vectors is a multiple of the other.

Example 2.3.9. The set S = {e1, e2, . . . , en} in Fn is linearly independent. Indeed, if
∑n

i=1 αiei =

0 then (α1, . . . , αn) = 0 and so each αi = 0.

Example 2.3.10. The set {(1, 0, 1), (0, 1, 1), (1, 1, 2)} is linearly dependent. Indeed, (1, 0, 1) +

(0, 1, 1)− (1, 1, 2) = (0, 0, 0).

Definition 2.3.11. A collection of vectors S of a vector space V is called a maximal linearly

independent set if S is independent and for every v ∈ V the collection S ∪ {v} is linearly

dependent.

Example 2.3.12. The set S = {e1, e2, . . . , en} in Fn is a maximal linearly independent. Indeed,

given any vector v = (α1, . . . , αn), the collection {e1, . . . , en, v} is linearly dependent as we have

α1e1 + α2e2 + · · ·+ αnen − v = 0.

2.3.1. Geometric interpretation. Suppose that S = {v1, . . . , vk} is a linearly independent col-

lection of vectors in Fn. Then v1 6= 0 (else 1 · v1 = 0 shows S is linearly dependent). Next,

v2 6∈ Span({v1}), else v2 = α1v1 for some α1 and we get a linear dependence α1v1−v2 = 0. Then,

v3 6∈ Span({v1, v2}), else v3 = α1v1 + α2v2, etc.. We conclude the following:

Proposition 2.3.13. S = {v1, . . . , vk} is linearly independent if and only if v1 6= 0 and for any

i we have vi 6∈ Span({v1, . . . , vi−1}).

2.4. Spanning and independence. We keep the notation of the previous section 2.3. Thus,

V is a vector space over F and S = {vi : i ∈ I, vi ∈ V } is a collection of elements of V , indexed

by some index set I.

Lemma 2.4.1. We have v ∈ Span(S) if and only if Span(S) = Span(S ∪ {v}).

The proof of the lemma is left as an exercise.

Theorem 2.4.2. Let V be a vector space over a field F and S = {vi : i ∈ I} a collection of

vectors in V . The following are equivalent:

(1) S is a minimal spanning set.

(2) S is a maximal linearly independent set.

(3) Every vector v in V can be written as a unique linear combination of elements of S:

v = α1vi1 + · · ·+ αmvim ,

αj ∈ F, non-zero, vij ∈ S (i1, . . . , im distinct).
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Proof. We shall show (1)⇒ (2)⇒ (3)⇒ (1).

(1) ⇒ (2)

We first prove S is independent. Suppose that α1vi1 + · · ·+αmvim = 0, with αi ∈ F and i1, . . . , im

distinct indices, is a linear dependence. Then some αi 6= 0 and we may assume w.l.o.g. that

α1 6= 0. Then,

vi1 = −α−11 α2vi2 − α−11 α3vi3 − · · · − α−11 αmvim ,

and so vi1 ∈ Span(S \ {vi1}) and thus Span(S \ {vi1}) = Span(S) by Lemma 2.4.1. This proves

S is not a minimal spanning set, which is a contradiction.

Next, we show that S is a maximal independent set. Let v ∈ V . Then we have v ∈ Span(S)

so v = α1vi1 + · · · + αmvim for some αj ∈ F, vij ∈ S (i1, . . . , im distinct). We conclude that

α1vi1 + · · ·+ αmvim − v = 0 and so that S ∪ {v} is linearly dependent.

(2) ⇒ (3)

Let v ∈ V . Since S ∪ {v} is linearly dependent, we have

α1vi1 + · · ·+ αmvim + βv = 0,

for some αj ∈ F, β ∈ F not all zero, vij ∈ S (i1, . . . , im distinct). Note that we cannot have β = 0

because that would show that S is linearly dependent. Thus, we get

v = −β−1α1vi1 − β−1α2vi2 − · · · − β−1αmvim .

We next show such an expression is unique. Suppose that we have two such expressions, then,

by adding zero coefficients, we may assume that the same elements of S are involved, that is

v =

m∑
j=1

βjvij =

m∑
j=1

γjvij ,

where for some j we have βj 6= γj . We then get that

0 =

m∑
i=j

(βj − γj)vij .

Since S is linearly dependent all the coefficients must be zero, that is, βj = γj , ∀j.

(3) ⇒ (1)

Firstly, the fact that every vector v has such an expression is precisely saying that Span(S) = V

and so that S is a spanning set. We next show that S is a minimal spanning set. Suppose not.

Then for some index i ∈ I we have Span(S) = Span(S − {vi}). That means, that

vi = α1vi1 + · · ·+ αmvim ,
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for some αj ∈ F, vij ∈ S − {vi} (i1, . . . , im distinct). But also

vi = vi.

That is, we get two ways to express vi as a linear combination of the elements of S. This is a

contradiction. �
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3. Basis and dimension

Definition 3.0.3. Let S = {vi : i ∈ I} be a collection of vectors of a vector space V over a

field F. We say that S is a basis if it satisfies one of the equivalent conditions of Theorem 2.4.2.

Namely, S is a minimal spanning set, or a maximal independent set, or every vector can be

written uniquely as a linear combination of the elements of S.

Example 3.0.4. Let S = {e1, e2, . . . , en} be the set appearing in Examples 2.3.6, 2.3.9 and 2.3.12.

Then S is a basis of Fn called the standard basis.

The main theorem is the following:

Theorem 3.0.5. Every vector space has a basis. Any two bases of V have the same cardinality.

Based on the theorem, we can make the following definition.

Definition 3.0.6. The cardinality of (any) basis of V is called its dimension.

We do not have the tools to prove Theorem 3.0.5. We are lacking knowledge of how to deal

with infinite cardinalities effectively. We shall therefore only prove the following weaker theorem.

Theorem 3.0.7. Assume that V has a basis S = {s1, s2, . . . , sn} of finite cardinality n. Then

every other basis of V has n elements as well.

Remark 3.0.8. There are definitely vector spaces of infinite dimension. For example, the vec-

tor space V of continuous real functions [0, 1]→ R (see Example 2.1.5) has infinite dimension

(exercise). Also, the set of infinite vectors

F∞ = {(α1, α2, α3, . . . ) : αi ∈ F},

with the coordinate wise addition and α(α1, α2, α3, . . . ) = (αα1, αα2, αα3, . . . ) is a vector space

of infinite dimension (exercise).

3.1. Steinitz’s substitution lemma.

Lemma 3.1.1. Let A = {v1, v2, v3, . . . } be a list of vectors of V . Then A is linearly dependent

if and only if one of the vectors of A is a linear combination of the preceding ones.

This lemma is essentially the same as Proposition 2.3.13. Still, we supply a proof.

Proof. Clearly, if vk+1 = α1v1 + · · · + αkvk then A is linearly dependent since we then have the

non-trivial linear dependence α1v1 + · · ·+ αkvk − vk+1 = 0.

Conversely, if we have a linear dependence

α1vi1 + · · ·+ αkvik = 0

with some αi 6= 0, we may assume that each αi 6= 0 and also that i1 < i2 < · · · < ik. We then

find that

vik = −α−1k α1vi1 − · · · − α−1k αk−1vik−1

is a linear combination of the preceding vectors. �
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Lemma 3.1.2. (Steinitz) Let A = {v1, . . . , vn} be a linearly independent set and let B =

{w1, . . . , wm} be another linearly independent set. Suppose that m ≥ n. Then, for every j,

0 ≤ j ≤ n, we may re-number the elements of B such that the set

{v1, v2, . . . , vj , wj+1, wj+2, . . . , wm}

is linearly independent.

Proof. We prove the Lemma by induction on j. For j = 0 the claim is just that B is linearly

independent, which is given.

Assume the result for j. Thus, we have re-numbered the elements of B so that

{v1, . . . , vj , wj+1, . . . , wm}

is linearly independent. Suppose that j < n (else,we are done). Consider the list

{v1, . . . , vj , vj+1, wj+1, . . . , wm}

If this list is linearly independent, omit wj+1 and then

{v1, . . . , vj , vj+1, wj+2, . . . , wm}

is linearly independent and we are done. Else,

{v1, . . . , vj , vj+1, wj+1, . . . , wm}

is linearly dependent and so by Lemma 3.1.1 one of the vectors is a linear combination of the

preceding ones. Since {v1, . . . , vj+1} is linearly independent that vector must be one of the w’s.

Thus, there is some minimal r ≥ 1 such that wj+r is a linear combination of the previous vectors.

So,

(3.1) wj+r = α1v1 + · · ·+ αj+1vj+1 + βj+1wj+1 + · · ·+ βj+r−1wj+r−1.

We claim that

{v1, . . . , vj , vj+1, wj+1, . . . , ŵj+r, . . . , wm}

is linearly independent.

If not, then we have a non-trivial linear relation:

(3.2) γ1v1 + · · ·+ γj+1vj+1 + δj+1wj+1 + · · ·+ ̂δj+rwj+r + · · ·+ δmwm = 0.

Note that γj+1 6= 0, because we know that {v1, v2, . . . , vj , wj+1, wj+2, . . . , wm} is linearly inde-

pendent. Thus, using Equation (3.2), we get for some εi, ηi that

vj+1 = ε1v1 + · · ·+ εjvj + ηj+1wj+1 + · · ·+ ̂ηj+rwj+r + · · ·+ ηmwm.

Substitute this in Equation (3.1) and obtain that wj+r is a linear combination of the vectors

{v1, . . . , vj , wj+1, . . . , ŵj+r, . . . , wm} which is a contradiction to the induction hypothesis. Thus,

{v1, . . . , vj , vj+1, wj+1, . . . , ŵj+r, . . . , wm}

is linearly independent. Now, rename the elements of B so that wj+r becomes wj+1. �
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Remark 3.1.3. The use of Lemma 3.1.1 in the proof of Steinitz’s substitution lemma is not

essential. It is convenient in that it tells us exactly which vector needs to be taken out in order

the continue the construction. For a concrete application of Steinitz’s lemma see Example 3.2.3

below.

3.2. Proof of Theorem 3.0.7.

Proof. Let S = {s1, . . . , sn} be a basis of finite cardinality of V . Let T be another basis and

suppose that there are more than n elements in T . Then we may choose t1, . . . , tn+1, elements

of T , such that t1, . . . , tn+1 are linearly independent. By Steinitz’s Lemma, we can re-number

the ti such that {s1, . . . , sn, tn+1} is linearly independent, which implies that S is not a maximal

independent set. Contradiction. Thus, any basis of V has at most n elements. However, suppose

that T has less than n elements. Reverse the role of S and T in the argument above. We get

again a contradiction. Thus, all bases have the same cardinality. �

The proof of the theorem also shows the following

Lemma 3.2.1. Let V be a vector space of finite dimension n. Let T = {t1, . . . , ta} be a linearly

independent set. Then a ≤ n.

(Take S to be a basis of V and run through the argument above.) We conclude:

Corollary 3.2.2. Any independent set of vectors of V (a vector space of finite dimension n) can

be completed to a basis.

Proof. Let S = {s1, . . . , sa} be an independent set. Then a ≤ n. If a < n then S cannot be

a maximal independent set and so there’s a vector sa+1 such that {s1, . . . , sa, sa+1} is linearly

independent. And so on. The process stops when we get an independent set {s1, . . . , sa, . . . , sn}
of n vectors. Such a set must be maximal independent set (else we would get that there is a set

of n+ 1 independent vectors) and so a basis. �

Example 3.2.3. Consider the vector space Fn and a set B = {b1, . . . , ba} of linearly independent

vectors. We know that B can be completed to a basis of Fn, but is there a more explicit method

of doing that? Steinitz’s Lemma does just that. Take the standard basis S = {e1, . . . , en} (or

any other basis if you like). Then, Steinitz’s Lemma implies the following. There is a choice of

n− a indices i1, . . . , in−a such that

b1, . . . , ba, ei1 , . . . , ein−a ,

is a basis for Fn. More than that, the Lemma tells us how to choose the basis elements to be

added. Namely,

(1) Let B = {s1, . . . , sa, e1} and S = {e1, . . . , en}.
(2) If {b1, . . . , ba, e1} is linearly independent (this happens if and only if e1 6∈ Span({s1, . . . , sa})

then let B = {b1, . . . , ba, e1} and S = {e2, . . . , en} and repeat this step with the new B,S

and the first vector in S.
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(3) If {b1, . . . , ba, e1} is linearly dependent let S = {e2, . . . , en} and, keeping the same B go

to the previous step and perform it with these B,S and the first vector in S.

Corollary 3.2.4. Let W ⊂ V be a subspace of a finite dimensional vector space V . Then

dim(W ) ≤ dim(V ) and

W = V ⇔ dim(W ) = dim(V ).

Proof. Any independent set T of vectors of W is an independent set of vectors of V and so can

be completed to a basis of V . In particular, a basis of W can be completed to a basis of V and

so dim(W ) ≤ dim(V ).

Now, clearly W = V implies dim(W ) = dim(V ). Suppose that W 6= V and choose a basis

for W , say {t1, . . . , tm}. Then, there’s a vector v ∈ V which is not a linear combination of the

{ti} and we see that {t1, . . . , tm, v} is a linearly independent set in V . It follows that dim(V ) ≥
m+ 1 > m = dim(W ). �

Example 3.2.5. Let Vi, i = 1, 2 be two finite dimensional vector spaces over F. Then (exercise)

dim(V1 ⊕ V2) = dim(V1) + dim(V2).

3.3. Coordinates and change of basis.

Definition 3.3.1. Let V be a finite dimensional vector space over F. Let

B = {b1, . . . , bn}

be a basis of V . Then any vector v can be written uniquely in the form

v = α1b1 + · · ·+ αnbn,

where αi ∈ F for all i. The αi are called the coordinates of v with respect to the basis B and

we use the notation

[v]B =

α1
...
αn

 .

Note that the coordinates depend on the order of the elements of the basis. Thus, whenever

we talk about a basis {b1, . . . , bn} we think about that as a list of vectors.

Example 3.3.2. We may think about the vector space Fn as

Fn =


α1

...
αn

 : αi ∈ F

 .
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Addition is done coordinate wise and in this notation we have

α

α1
...
αn

 =

αα1
...

ααn

 .

Let St be the standard basis {e1, . . . , en}, where

ei =


0
...
1
...
0

← i.

If v =

α1
...
αn

 is an element of Fn then of course v = α1e1 + · · ·+ αnen and so

[v]S =

α1
...
αn

 .

Example 3.3.3. Let V = R2 and B = {(1, 1), (1,−1)}. Let v = (5, 1). Then v = 3(1, 1) +

2(1,−1). Thus,

[v]B =

(
3
2

)
.

Conversely, if

[v]B =

(
2
12

)
then v = 2(1, 1) + 12(1,−1) = (14,−10).

3.3.1. Change of basis. Suppose that B and C are two bases, say

B = {b1, . . . , bn}, C = {c1, . . . , cn}.

We would like to determine the relation between [v]B and [v]C . Let,

b1 = m11c1 + · · ·+mn1cn

...

bj = m1jc1 + · · ·+mnjcn

...

bn = m1nc1 + · · ·+mnncn,

(3.3)
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and let

CMB =

m11 . . . m1n
...

...
mn1 . . . mnn

 .

Theorem 3.3.4. We have
[v]C = CMB[v]B.

We first prove a lemma.

Lemma 3.3.5. We have the following identities:

[v]B + [w]B = [v + w]B, [αv]B = α[v]B.

Proof. This follows immediately from the fact that if

v =
∑

αibi, w =
∑

βibi,

then

v + w =
∑

(αi + βi)bi, αv =
∑

ααi · bi.

�

Proof. (Of theorem). It follows from the Lemma that it is enough to prove

[v]C = CMB[v]B

for v running over a basis of V . We take the basis B itself. Then,

CMB[bj ]B = CMBej

= j-th column of CMB

=

m1j
...

mnj


= [bj ]C

(cf. Equation 3.3). �

Lemma 3.3.6. Let M be a matrix such that

[v]C = M [v]B,

for every v ∈ V . Then,

M = CMB.

Proof. Since

[bj ]C = M [bj ]B = Mej = j-th column of M,

the columns of M are uniquely determined. �

Corollary 3.3.7. Let B,C,D be bases. Then:
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(1) BMB = In (the identity n× n matrix).

(2) DMB =D MC CMB.

(3) The matrix CMB is invertible and CMB = BM
−1
C .

Proof. For (1) we note that

[v]B = In[v]B,

and so, by Lemma 3.3.6, In =B MB.

We use the same idea for (2). We have

[v]D = DMC [v]C = DMC( CMB[v]B) = ( DMC CMB)[v]B,

and so DMB =D MC CMB.

For (3) we note that by (1) and (2) we have

CMB BMC =C MC = In, BMC CMB = BMB = In,

and so CMB and BMC are invertible and are each other’s inverse. �

Example 3.3.8. Here is a general principle: if B = {b1, . . . , bn} is a basis of Fn then each bi is

already given by coordinates relative to the standard basis. Say,

bj =

m1j
...

mnj

 .

Then the matrix M = (mij) obtained by writing the basis elements of B as column vectors one

next to the other is the matrix SMB. Since,

BMS = StM
−1
B ,

this gives a useful method to pass from coordinates relative to the standard basis to coordinates

relative to the basis B.

For example, consider the basis B = {(5, 1), (3, 2)} of R2. Then

BMSt = (StMB)−1 =

(
5 3
1 2

)−1
=

1

7

(
2 −3
−1 5

)
.

Thus, the vector (2, 3) has coordinates 1
7

(
2 −3
−1 5

)(
2
3

)
=

(
−5/7
13/7

)
. Indeed, −57 (5, 1)+13

7 (3, 2) =

(2, 3).

Let C = {(2, 2), (1, 0)} be another basis. To pass from coordinates relative to the basis C to

coordinates relative to the basis B we use the matrix

BMC = BMS SMC =
1

7

(
2 −3
−1 5

)(
2 1
2 0

)
=

1

7

(
−2 2
8 −1

)
.
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4. Linear transformations

Definition 4.0.9. Let V and W be two vector spaces over a field F. A linear transformation

T : V −→W,

is a function T : V →W such that

(1) T (v1 + v2) = T (v1) + T (v2) for all v1, v2 ∈ V ;

(2) T (αv) = αT (v) for all v ∈ V, α ∈ F.

(A linear transformation is also called a linear map, or mapping, or application.)

Here are some formal consequences of the definition:

(1) T (0V ) = 0W Indeed, since T is a homomorphism of (abelian groups) we already know

that. For the same reason we know that:

(2) T (−v) = −T (v)

(3) T (α1v1 + α2v2) = α1T (v1) + α2T (v2)

Lemma 4.0.10. Ker(T ) = {v ∈ V : T (v) = 0W } is a subspace of V and Im(T ) is a subspace of

W .

Proof. We already know Ker(T ), Im(T ) are subgroups and so closed under addition. Next, if

α ∈ F, v ∈ Ker(T ) then T (αv) = αT (v) = α0W = 0W and so αv ∈ Ker(T ) as well. If w ∈ Im(T )

then w = T (v) for some v ∈ V . It follows that αw = αT (v) = T (αv) is also in Im(T ). �

Remark 4.0.11. From the theory of groups we know that T is injective if and only if Ker(T ) =

{0V }.

Example 4.0.12. The zero map T : V →W , T (v) = 0W for every v ∈ V , is a linear map with

kernel V and image {0W }.

Example 4.0.13. The identity map Id : V → V , Id(v) = v for all v ∈ V , is a linear map with

kernel {0} and image V . More generally, if V ⊂W is a subspace and i : V →W is the inclusion

map, i(v) = v, then i is a linear map with kernel {0} and image V .

Example 4.0.14. Let B = {b1, . . . , bn} be a basis for V and let fix some 1 ≤ j ≤ n. Let

T : V → V, T (α1b1 + · · ·+ αnbn) = αj+1bj+1 + αj+2bj+2 + · · ·+ αnbn.

(To understand the definition for j = n, recall that the empty sum is by definition equal to 0.)

The kernel of T is Span({b1, . . . , bj}) and Im(T ) = Span({bj+1, bj+2, . . . , bn}).

Example 4.0.15. Let V = Fn,W = Fm, written as column vectors. Let A = (aij) be an m× n
matrix with entries in F. Define

T : Fn → Fm,
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be the following formula

T

α1
...
αn

 = A

α1
...
αn

 .

Then T is a linear map. This follows from identities for matrix multiplication:

A

α1 + β1
...

αn + βn

 = A

α1
...
αn

+A

β1...
βn

 , A

αα1
...

ααn

 = αA

α1
...
αn

 .

Those identities are left as an exercise. We note that Ker(T ) are the solutions for the following

homogenous system of linear equations:

a11x1 + · · ·+ a1nxn = 0

...

am1x1 + · · ·+ amnxn = 0.

The image of T is precisely the vectors

β1
...
βm

 for which the following inhomogenous system of

linear equations has a solution:

a11x1 + · · ·+ a1nxn = β1

...

am1x1 + · · ·+ amnxn = βm.

Example 4.0.16. Let V = F[t]n, the space of polynomials of degree less or equal to n. Define

T : V → V, T (f) = f ′,

the formal derivative of f . Then T is a linear map. We leave the description of the kernel and

image of T as an exercise.

The following Proposition is very useful. Its proof is left as an exercise.

Proposition 4.0.17. Let V and W be vector spaces over F. Let B = {b1, . . . , bn} be a basis for

V and let t1, . . . , tn be any elements of W . There is a unique linear map

T : V →W,

such that

T (bi) = ti, i = 1, . . . , n.

The following lemma is left as an exercise.
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Lemma 4.0.18. Let V,W be vector spaces over F. Let

Hom(V,W ) = {T : V →W : f is a linear map}.

Then Hom(V,W ) is a vector space in its own right where we define for two linear transformations

S, T and scalar α the linear transformations S + T, αS as follows:

(S + T )(v) = S(v) + T (v), (αS)(v) = αS(v).

In addition, if T : V →W and R : W → U are linear maps, where U is a third vector space

over F, then

R ◦ T : V → U

is a linear map.

4.1. Isomorphisms. Let T : V →W be an injective linear map. One also says that T is non-

singular. If T is not injective, one says also that it is singular. T is called an isomorphism if it

is bijective. In that case, the inverse map

S = T−1 : W → V

is also an isomorphism. Indeed, from the theory of groups we already know it is a group isomor-

phism. Next, to check that S(αw) = αS(w) it is enough to check that T (S(αw)) = T (αS(w)).

But, T (S(αw)) = αw and T (αS(w)) = αT (S(w)) = αw too.

As in the case of groups it follows readily from the properties above that being isomorphic is an

equivalence relation on vector spaces. We use the notation

V ∼= W

to denote that V is isomorphic to W .

Theorem 4.1.1. Let V be a vector space of dimension n over a field F then

V ∼= Fn.

Proof. Let B = {b1, . . . , bn} be any basis of V . Define a function

T : V −→ Fn, T (v) = [v]B.

The formulas we have established in Lemma 3.3.5, [v + w]B = [v]B + [w]B, [αv]B = α[v]B, are

precisely the fact that T is a linear map. The linear map T is injective since [v]B =

( 0
...
0

)
implies

that v = 0 · b1 + · · ·+ 0 · bn = 0V and T is clearly surjective as [α1b1 + . . . αnbn]B =

( α1

...
αn

)
. �

Proposition 4.1.2. If T : V →W is an isomorphism and B = {b1, . . . , bn} is a basis of V then

{T (b1), . . . , T (bn)} is a basis of W . In particular, dim(V ) = dim(W ).
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Proof. We prove first that {T (b1), . . . , T (bn)} is linearly independent. Indeed, if
∑
αiT (bi) = 0

then T (
∑
αibi) = 0 and so

∑
αibi = 0, since T is injective. Since B is a basis, each αi = 0 and

so {T (b1), . . . , T (bn)} is a linearly independent set.

Now, if {T (b1), . . . , T (bn)} is not maximal linearly independent then for some w ∈W we have

that {T (b1), . . . , T (bn), w} is linearly independent. Applying what we have already proven to

the map T−1, we find that {b1, . . . , bn, T−1(w)} is a linearly independent set in V , which is a

contradiction because B is a maximal independent set. �

Corollary 4.1.3. Every finite dimensional vector space V over F is isomorphic to Fn for a

unique n; this n is dim(V ). Two vector spaces are isomorphic if and only if they have the same

dimension.

4.2. The theorem about the kernel and the image.

Theorem 4.2.1. Let T : V →W be a linear map where V is a finite dimensional vector space.

Then Im(T ) is finite dimensional and

dim(V ) = dim(Ker(T )) + dim(Im(T )).

Proof. Let {v1, . . . , vn} be a basis for Ker(T ) and extend it to a basis for V ,

B = {v1, . . . , vn, w1, . . . , wr}.

So dim(V ) = n + r and dim(Ker(T )) = n. Thus, the only thing we need to prove is that

{T (w1), . . . , T (wr)} is a basis for Im(T ). We shall show it is a minimal spanning set. First, let

v ∈ V and write v as

v =
n∑
i=1

αnvn +
r∑
i=1

βiwi.

Then

T (v) = T (

n∑
i=1

αnvn +
r∑
i=1

βiwi)

=
n∑
i=1

αnT (vn) +
r∑
i=1

βiT (wi)

=

r∑
i=1

βiT (wi),

since T (vi) = 0 for all i. Hence, {T (w1), . . . , T (wr)} is a spanning set.

To show it’s minimal, suppose to the contrary that for some i we have that {T (w1), . . . , T̂ (wi), . . . , T (wr)}
is a spanning set. W.l.o.g., i = r. Then, for some βi,

T (wr) =

r−1∑
i=1

βiT (wi),



25

whence,

T (
r−1∑
i=1

βiwi − wr) = 0.

Thus,
∑r−1

i=1 βiwi − wr is in Ker(T ) and so there are αi such that

r−1∑
i=1

βiwi − wr −
n∑
i=1

αivi = 0.

This is a linear dependence between elements of the basis B and hence gives a contradiction. �

Remark 4.2.2. Suppose that T : V →W is surjective. Then we get that dim(V ) = dim(W ) +

dim(Ker(T )). Note that for every w ∈ W we have that the fibre T−1(w) is a coset of Ker(T ), a

set of the form v + Ker(T ) where T (v) = w, and so it is natural to think about the dimension of

T−1(w) as dim(Ker(T )).

Thus, we get that the dimension of the source is the dimension of the image plus the dimension

of a general (in fact, any) fibre. This is an example of a general principle that holds true in many

other circumstances in mathematics where there is a notion of dimension.

4.3. Quotient spaces. Let V be a vector space and U a subspace. Then V/U has a structure

of abelian groups. We also claim that it has a structure of a vector space where we define

α(v + U) = αv + U,

or, in simpler notation,

α · v̄ = αv.

It is easy to check this is well defined and makes V/U into a vector space, called a quotient

space. The natural map

π : V → V/U

is a surjective linear map with kernel U . The following Corollary holds by applying Theorem 4.2.1

to the map π : V → V/U .

Corollary 4.3.1. dim(V/U) = dim(V )− dim(U).

Theorem 4.3.2. (First isomorphism theorem) Let T : V →W be a surjective linear map then

V/Ker(T ) ∼= W.

Proof. We already know that T induces an isomorphism T̄ of abelian groups

T̄ : V/Ker(T )→W, T̄ (v̄) := T (v).

We only need to check that T̄ is a linear map, that is, that also T̄ (αv̄) = αT̄ (v̄). Indeed,

T̄ (αv̄) = T̄ (αv) = T (αv) = αT (v) = αT̄ (v̄). �
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4.4. Applications of Theorem 4.2.1.

Theorem 4.4.1. Let W1,W2 be subspaces of a vector space V . Then,

dim(W1 +W2) = dim(W1) + dim(W2)− dim(W1 ∩W2).

Proof. Consider the function

T : W1 ⊕W2 →W1 +W2,

given by T (w1, w2) = w1 + w2. Clearly T is a linear map and surjective. We thus have

dim(W1 +W2) = dim(W1 ⊕W2)− dim(Ker(T )).

However, dim(W1 ⊕W2) = dim(W1) + dim(W2) by Example 3.2.5. Our proof is thus complete if

we show that

Ker(T ) ∼= W1 ∩W2.

Let u ∈W1 ∩W2 then (u,−u) ∈W1 ⊕W2 and T (u,−u) = 0. We may thus define a map

L : W1 ∩W2 → Ker(T ), L(u) = (u,−u),

which is clearly an injective linear map. Let (w1, w2) ∈ Ker(T ) then w1 + w2 = 0 and so

w1 = −w2. This shows that w1 ∈W2 and so that w1 ∈W1 ∩W2. Thus, (w1, w2) = L(w1) and so

L is surjective. �

Corollary 4.4.2. If dim(W1) + dim(W2) > dim(V ) then W1 ∩W2 contains a non-zero vector.

The proof is left as an exercise. Here is a concrete example:

Example 4.4.3. Any two planes W1,W2 through the origin in R3 are either equal or intersect

in a line.
Indeed, W1 ∩W2 is a non-zero vector space by the Corollary. If dim(W1 ∩W2) = 2 then, since

W1 ∩W2 ⊆ Wi, i = 1, 2 we have that W1 ∩W2 = Wi and so W1 = W2. The only other option is

that dim(W1 ∩W2) = 1, that is, W1 ∩W2 is a line.

Another application of Theorem 4.2.1 is the following.

Corollary 4.4.4. Let T : V →W be a linear map and assume dim(V ) = dim(W ).

(1) If T is injective it is an isomorphism.

(2) If T is surjective it is an isomorphism.

Proof. We prove that first part, leaving the second part as an exercise. We have that dim(Im(T )) =

dim(V )−dim(Ker(T )) = dim(V ) = dim(W ), which implies by Corollary 3.2.4, that Im(T ) = W .

Thus, T is surjective and the proof is complete. �
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4.5. Inner direct sum. Let U1, . . . , Un be subspaces of V such that:

(1) V = U1 + U2 + · · ·+ Un;

(2) For each i we have Ui ∩ (U1 + · · ·+ Ûi + · · ·+ Un) = {0}.
Then V is called an inner direct sum of the subspaces U1, . . . , Un.

Proposition 4.5.1. V is the inner direct sum of the subspaces U1, . . . , Un if and only if the map

T : U1 ⊕ · · · ⊕ Un → V, (u1, . . . , un) 7→ u1 + · · ·+ un,

is an isomorphism.

Proof. The image of T is precisely the subspace U1 + U2 + · · · + Un. Thus, T is surjective iff

condition (1) holds. We now show that T is injective iff condition (2) holds.

Suppose that T is injective. If u ∈ Ui∩(U1+· · ·+Ûi+· · ·+Un) for some i, say u = u1+· · ·+ûi+
· · ·+un then 0 = T (0, . . . , 0) = T (u1, . . . , ui−1,−u, ui+1, . . . , un) and so (u1, . . . , ui−1,−u, ui+1, . . . , un) =

0 and in particular u = 0. So condition (2) holds.

Suppose now that condition (2) holds and T (u1, . . . , un) = 0. Then −ui = u1+· · ·+ûi+· · ·+un
and so ui ∈ Ui ∩ (U1 + · · · + Ûi + · · · + Un) = {0}. Thus, ui = 0 and that holds for every i. We

conclude that Ker(T ) = {(0, . . . , 0)} and so T is injective. �

When V is the inner direct sum of the subspaces U1, . . . , Un we shall use the notation

V = U1 ⊕ · · · ⊕ Un.

This abuse of notation is justified by the Proposition.

Proposition 4.5.2. The following are equivalent:

(1) V is the inner direct sum of the subspaces U1, . . . , Un;

(2) V = U1 + · · ·+ Un and dim(V ) = dim(U1) + · · ·+ dim(Un);

(3) Every vector v ∈ V can be written as v = u1 + · · ·+ un, with ui ∈ Ui, in a unique way.

The proof of the Proposition is left as an exercise.

4.6. Nilpotent operators. A linear map T : V → V from a vector space to itself is often called

a linear operator.

Definition 4.6.1. Let V be a finite dimensional vector space and T : V → V a linear operator.

T is called nilpotent if for some N ≥ 1 we have TN ≡ 0. (Here TN = T ◦ T ◦ · · · ◦ T , N -times.)

The following Lemma is left as an exercise:

Lemma 4.6.2. Let T be a nilpotent operator on an n-dimensional vector space then Tn ≡ 0.

Example 4.6.3. Here are some examples of nilpotent operators. Of course, the trivial example

is T ≡ 0, the zero map. For another example, let V be a vector space of dimension n and let
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B = {b1, . . . , bn} be a basis. Let T be the unique linear transformation (cf. Proposition 4.0.17)

satisfying

T (b1) = 0

T (b2) = b1

T (b3) = b2

...

T (bn) = bn−1.

We see that Tn ≡ 0.

Example 4.6.4. Let T : F[t]n → F[t]n be defined by T (f) = f ′. Then T is nilpotent and

Tn+1 = 0.

The following theorem, called Fitting’s Lemma, is important in mathematics because the state-

ment and the method of proof generalize to many other situations. We remark that later on

we shall prove much stronger “structure theorems” (for example, the Jordan canonical form, cf.

§ 10.2) from which Fitting’s Lemma follows immediately, but this is very special to vector spaces.

Theorem 4.6.5. (Fitting’s Lemma) Let V be a finite dimensional vector space and let T : V → V

be a linear operator. Then there is a decomposition

V = U ⊕W

such that

(1) U,W are T -invariant subspaces of V , that is T (U) ⊆ U, T (W ) ⊆W ;

(2) T |U is nilpotent;

(3) T |W is an isomorphism.

Remark 4.6.6. About notation. T |U , read “T restricted to U”, is the linear map

U → U, u 7→ T (u).

Namely, it is just the map T considered on the subspace U .

Proof. Let us define

Ui = Ker(T i), Wi = Im(T i).

We note the following facts:

(1) Ui,Wi are subspaces of V ;

(2) dim(Ui) + dim(Wi) = dim(V );

(3) {0} ⊆ U1 ⊆ U2 ⊆ . . . ;
(4) V ⊇W1 ⊇W2 ⊇ . . . .

It follows from Fact (4) that dim(V ) ≥ dim(W1) ≥ dim(W2) ≥ . . . and so, for some N we have

dim(WN ) = dim(WN+1) = dim(WN+2) = . . .
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It then follows from Fact (2) that also

dim(UN ) = dim(UN+1) = dim(UN+2) = . . .

Hence, using Corollary 3.2.4, we obtain

WN = WN+1 = WN+2 = . . . , UN = UN+1 = UN+2 = . . .

We let

W = WN , U = UN .

We note that T (WN ) = WN+1 and so T |W : W →W is an isomorphism since the dimension of

the image is the dimension of the source (Corollary 4.4.4). Also T (Ker(TN )) ⊆ Ker(TN−1) ⊆
Ker(TN ) and so T |U : U → U and (T |U )N = (TN )|U = 0. That is, T is nilpotent on U .

It remains to show that V = U⊕W . First, dim(U)+dim(W ) = dim(V ). Second, if v ∈ U ∩W
is a non-zero vector, then T (v) 6= 0 because T |W is an isomorphism and so TN (v) 6= 0, but on

the other hand TN (v) = 0 because v ∈ U . Thus, U ∩W = {0}. It follows that the map

U ⊕W → V, (u,w) 7→ u+ w,

which has kernel U ∩W (cf. the proof of Theorem 4.4.1) is injective. The information on the

dimension gives that it is an isomorphism (Corollary 4.4.4) and so V = U ⊕ W by Proposi-

tion 4.5.1. �

4.7. Projections.

Definition 4.7.1. Let V be a vector space. A linear operator, T : V → V , is called a projection

if T 2 = T .

Theorem 4.7.2. Let V be a vector space over F.

(1) Let U,W be subspaces of V such that V = U ⊕W . Define a map

T : V → V, T (v) = u if v = u+ w, u ∈ U,w ∈W.

Then T is a projection, Im(T ) = U,Ker(T ) = W .

(2) Let T : V → V be a projection and U = Im(T ),W = Ker(T ). Then V = U ⊕W and

T (u+ w) = u, that is, T is the operator constructed in (1).

Definition 4.7.3. The operator constructed in (1) of the Theorem is called the projection on

U along W .

Proof. Consider the first claim. If u ∈ U then u is written as u + 0 and so T (u) = u and so

T 2(v) = T (u) = u = T (v) and so T 2 = T . Now, v ∈ Ker(T ) if and only if v = 0 + w for some

w ∈W and so Ker(T ) = W . Also, since for u ∈ U , T (u) = u, we also get that Im(T ) = U .

We now consider the second claim. Note that

v = T (v) + (v − T (v)).
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T (v) ∈ Im(T ) and T (v − T (v)) = T (v) − T 2(v) = T (v) − T (v) = 0 and so v − T (v) ∈ Ker(T ).

It follows that U + W = V . Theorem 4.2.1 gives that dim(V ) = dim(U) + dim(W ) and so

Proposition 4.5.2 gives that

V = U ⊕W.

Now, writing v = u + w = T (v) + (v − T (v)) and comparing these expressions, we see that

u = T (v). �

4.8. Linear maps and matrices. Let F be a field and V,W vector spaces over F of dimension

n and m respectively.

Theorem 4.8.1. Let T : V →W be a linear map.

(1) Let B be a basis for V and C a basis for W . There is a unique m × n matrix, denoted

C [T ]B and called the matrix representing T , with entries in F such that

[Tv]C = C [T ]B[v]B, ∀v ∈ V.

(2) If S : V →W is another linear transformation then

C [S + T ]B =C [S]B + C [T ]B, C [αT ]B = α · C [T ]B.

(3) For every matrix M ∈Mm×n(F) there is a linear map T : V →W such that C [T ]B = M .

We conclude that the map

T 7→C [T ]B

is an isomorphism of vector spaces

Hom(V,W ) ∼= Mm×n(F).

(4) If R : W → U is another linear map, where U is a vector space over F, and D is a basis

for U then

D[R ◦ T ]B = D[R]CC [T ]B.

Proof. We begin by proving the first claim. Let B = {s1, . . . , sn}, C = {t1, . . . , tm}. Write

[T (s1)]C =

d11
...

dm1

 , . . . , [T (sn)]C =

d1n
...

dmn

 .

Let M = (dij)1≤i≤m,1≤j≤n. We prove that

M [v]B = [T (v)]C .
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Indeed, write v = α1s1 + · · ·+ αnsn and calculate

M [v]B = M [α1s1 + · · ·+ αnsn]B

= M

( α1

...
αn

)

= M

(
α1

( 1
0
...
0

)
+ α2

( 0
1
...
0

)
+ · · ·+ αn

( 0
0
...
1

))

= α1M

( 1
0
...
0

)
+ α2M

( 0
1
...
0

)
+ · · ·+ αnM

( 0
0
...
1

)
= α1[T (s1)]C + · · ·+ αn[T (sn)]C

= [α1T (s1) + · · ·+ αnT (sn)]C

= [T (α1s1 + · · ·+ αnsn)]C

= [T (v)]C .

Now suppose that N = (δij)1≤i≤m,1≤j≤n is another matrix such that

[T (v)]C = N [v]B, ∀v ∈ V.

Then,

[T (vi)]C =

d1i
...
dmi

 , [T (vi)]C = Nei =

 δ1i
...
δmi

 .

That shows that N = M .

We now show the second claim is true. We have for every v ∈ V the following equalities:

(C [S]B + C [T ]B) [v]B = C [S]B[v]B + C [T ]B[v]B

= [S(v)]C + [T (v)]C

= [S(v) + T (v)]C

= [(S + T )(v)]C .

Namely, if we call M the matrix C [S]B + C [T ]B then M [v]B = [(S + T )(v)]C , which proves that

M = C [S + T ]B.

Similarly, α ·C [T ]B[v]B = α[T (v)]C = [α ·T (v)]C = [(αT )(v)]C and that shows that α ·C [T ]B =

C [αT ]B.

The third claim follows easily from the previous results. We already know that the maps

H1 : V → Fn, v 7→ [v]B, H3 : W 7→ Fm, w 7→ [w]C ,
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and

H2 : Fn → Fm, x 7→Mx

are linear maps. It follows that the composition T = H−13 ◦H2 ◦H1 is a linear map. Furthermore,

[T (v)]C = H3(T (v)) = M(H1(v)) = M [v]B,

and so

M = C [T ]B.

This shows that the map

Hom(V,W )→Mm×n(F)

is surjective. The fact that it’s a linear map is the second claim. The map is also injective,

because if C [T ]B is the zero matrix then for every v ∈ V we have [T (v)]C = C [T ]B[v]B = 0 and

so T (v) = 0 which shows that T is the zero transformation.

It remains to prove that last claim. For every v ∈ V we have

(D[R]CC [T ]B)[v]B = D[R]C(C [T ]B[v]B)

= D[R]C [T (v)]C

= [R(T (v))]D

= [(R ◦ T )(v)]D.

It follows then that D[R]CC [T ]B = D[R ◦ T ]B. �

Corollary 4.8.2. We have dim(Hom(V,W )) = dim(V ) · dim(W ).

Example 4.8.3. Consider the identity Id : V → V , but with two different basis B and C. Then

C [Id]B[v]B = [v]C ,

Namely, C [Id]B is just the change of basis matrix,

C [Id]B = CMB.

Example 4.8.4. Let V = F[t]n and take the basis B = {1, t, . . . , tn}. Let T : V → V be the

formal differentiation map T (f) = f ′. Then

B[T ]B =



0 1 0 . . . 0
0 0 2 . . .
0 0 0 3 · · ·
...

...
n

0 0 0 · · · 0


.

Example 4.8.5. Let V = F[t]n, W = F2, B = {1, t, . . . , tn}, St the standard basis of W , and

T : V →W, T (f) = (f(1), f(2)).
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Then

St[T ]B =

(
1 1 1 . . . 1
1 2 4 . . . 2n

)
.

4.9. Change of basis. It is often useful to pass from a representation of a linear map in one basis

to a representation in another basis. In fact, the applications of this are hard to overestimate!

We shall later see many examples. For now, we just give the formulas.

Proposition 4.9.1. Let T : V → V be a linear transformation and B and C two bases of V .

Then

B[T ]B = BMCC [T ]CCMB.

Proof. Indeed, for every v ∈ V we have

BMCC [T ]CCMB[v]B = BMCC [T ]C [v]C

= BMC [Tv]C

= [Tv]B.

Thus, by uniqueness, we have B[T ]B = BMCC [T ]CCMB. �

Remark 4.9.2. More generally, the same idea of proof, gives the following. Let T : V →W be a

linear map and B, B̃ bases for V , CC̃ bases for W . Then

C̃
[T ]

B̃
=

C̃
MCC [T ]BBMB̃

.

Example 4.9.3. We want to find the matrix representing in the standard basis the linear trans-

formation T : R3 → R3 which is the projection on the plane {(x1, x2, x3) : x1 +x3 = 0} along the

line {t(1, 0, 1) : t ∈ R}.
We first check that {(1, 0,−1), (1, 1,−1)} is a minimal spanning set for the plane. We complete

it to a basis by adding the vector (1, 0, 1) (since that vector is not in the plane it is independent of

the two preceding vectors and so we get an independent set of 3 elements, hence a basis). Thus,

B = {(1, 0,−1), (1, 1,−1), (1, 0, 1)}

is a basis of R3. It is clear that

B[T ]B =

1 0 0
0 1 0
0 0 0

 .

Now, StMB =

 1 1 1
0 1 0
−1 −1 1

. One can calculate that

BMSt =

1/2 −1 −1/2
0 1 0

1/2 0 1/2

 .
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Thus, we conclude that

St[T ]St = StMBB[T ]BBMSt

=

 1 1 1
0 1 0
−1 −1 1

1 0 0
0 1 0
0 0 0

1/2 −1 −1/2
0 1 0

1/2 0 1/2


=

 1/2 0 −1/2
0 1 0
−1/2 0 1/2

 .
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5. The determinant and its applications

5.1. Quick recall: permutations. We refer to the notes of the previous course MATH 251

for basic properties of the symmetric group Sn, the group of permutations of n elements. In

particular, recall the following:

• Every permutation can be written as a product of cycles.

• Disjoint cycles commute.

• In fact, every permutation can be written as a product of disjoint cycles, unique up to

their ordering.

• Every permutation is a product of transpositions.

5.2. The sign of a permutation.

Lemma 5.2.1. Let n ≥ 2. Let Sn be the group of permutations of {1, 2, . . . , n}. There exists a

surjective homomorphism of groups

sgn : Sn → {±1}

(called the sign). It has the property that for every i 6= j,

sgn( (ij) ) = −1.

Proof. Consider the polynomial in n-variables1

p(x1, . . . , xn) =
∏
i<j

(xi − xj).

Given a permutation σ we may define a new polynomial∏
i<j

(xσ(i) − xσ(j)).

Note that σ(i) 6= σ(j) and for any pair k < ` we obtain in the new product either (xk − x`) or

(x` − xk). Thus, for a suitable choice of sign sgn(σ) ∈ {±1}, we have2∏
i<j

(xσ(i) − xσ(j)) = sgn(σ)
∏
i<j

(xi − xj).

We obtain a function

sgn : Sn → {±1}.

1For n = 2 we get x1 − x2. For n = 3 we get (x1 − x2)(x1 − x3)(x2 − x3).
2For example, if n = 3 and σ is the cycle (123) we have

(xσ(1) − xσ(2))(xσ(1) − xσ(3))(xσ(2) − xσ(3)) = (x2 − x3)(x2 − x1)(x3 − x1) = (x1 − x2)(x1 − x3)(x2 − x3).

Hence, sgn( (1 2 3) ) = 1.
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This function satisfies sgn( (k`) ) = −1 (for k < `): Let σ = (k`) and consider the product∏
i<j

(xσ(i) − xσ(j)) = (x` − xk)
∏
i<j

i 6=k,j 6=`

(xσ(i) − xσ(j))
∏
k<j
j 6=`

(x` − xj)
∏
i<`
i 6=k

(xi − xk)

Counting the number of signs that change we find that∏
i<j

(xσ(i) − xσ(j)) = (−1)(−1)]{j:k<j<`}(−1)]{i:k<i<`}
∏
i<j

(xi − xj) = −
∏
i<j

(xi − xj).

It remains to show that sgn is a group homomorphism. We first make the innocuous observation

that for any variables y1, . . . , yn and for any permuation σ we have∏
i<j

(yσ(i) − yσ(j)) = sgn(σ)
∏
i<j

(yi − yj).

Let τ be a permutation. We apply this observation for the variables yi := xτ(i). We get

sgn(τσ)p(x1, . . . , xn) = p(xτσ(1), . . . , xτσ(n))

= p(yσ(1), . . . , yσ(n))

= sgn(σ)p(y1, . . . , yn)

= sgn(σ)p(xτ(1), . . . , xτ(n))

= sgn(σ)sgn(τ)p(x1, . . . , xn).

This gives

sgn(τσ) = sgn(τ)sgn(σ).

�

5.2.1. Calculating sgn in practice. Recall that every permutation σ can be written as a product

of disjoint cycles

σ = (a1 . . . a`)(b1 . . . bm) . . . (f1 . . . fn).

Lemma 5.2.2. sgn(a1 . . . a`) = (−1)`−1.

Corollary 5.2.3. sgn(σ) = (−1)] even length cycles.

Proof. We write

(a1 . . . a`) = (a1a`) . . . (a1a3)(a1a2)︸ ︷︷ ︸
`−1 transpositions

.

Since a transposition has sign −1 and sgn is a homomorphism, the claim follows. �
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Example 5.2.4. Let n = 11 and

σ =

(
1 2 3 4 5 6 7 8 9 10
2 5 4 3 1 7 8 10 6 9

)
.

Then

σ = (1 2 5)(3 4)(6 7 8 10 9).

Now,

sgn( (1 2 5) ) = 1, sgn( (3 4) ) = −1, sgn( (6 7 8 10 9) ) = 1.

We conclude that sgn(σ) = −1.

5.3. Determinants. Let F let a field. We will consider n×n matrices with entries in F, namely

elements of Mn(F). We shall use the notation (v1v2 . . . vn) to denote such a matrix whose columns

are the vectors v1, v2, . . . , vn of Fn.

Theorem 5.3.1. Let F be a field. There is a function, called the determinant,

det : Mn(F)→ F

having the following properties:

(1) det(v1v2 . . . αvi . . . vn) = α · det(v1v2 . . . vn).

(2) det(v1v2 . . . vi + v′i . . . vn) = det(v1v2 . . . vi . . . vn) + det(v1v2 . . . v
′
i . . . vn).

(3) det(v1v2 . . . vi . . . vj . . . vn) = 0 if vi = vj for i < j.

(4) det(e1e2 . . . en) = 1.

Corollary 5.3.2. For every permutation τ ∈ Sn we have

det(v1v2 . . . vn) = sgn(τ) · det(vτ(1)vτ(2) . . . vτ(n)).

Proof. Suppose the formula holds for σ, τ ∈ Sn and any choice of vectors. Then

det(w1w2 . . . wn) = sgn(τ) · det(wτ(1)wτ(2) . . . wτ(n)).

Let wi = vσ(i), then

det(vσ(1)vσ(2) . . . vσ(n)) = sgn(τ) · det(vστ(1)vστ(2) . . . vστ(n)).

Therefore,

sgn(σ) · det(v1v2 . . . vn) = sgn(τ) · det(vστ(1)vστ(2) . . . vστ(n)).

Rearranging, we get

det(v1v2 . . . vn) = sgn(στ) · det(vστ(1)vστ(2) . . . vστ(n)).

Since transpositions generate Sn, it is therefore enough to prove the corollary for transpositions.

We need to prove then that for i < j we have

det(v1v2 . . . vi . . . vj . . . vn) + det(v1v2 . . . vj . . . vi . . . vn) = 0.
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However,

0 = det(v1v2 . . . (vi + vj) . . . (vi + vj) . . . vn)

= det(v1v2 . . . vi . . . vi . . . vn) + det(v1v2 . . . vj . . . vj . . . vn)

+ det(v1v2 . . . vi . . . vj . . . vn) + det(v1v2 . . . vj . . . vi . . . vn)

= det(v1v2 . . . vi . . . vj . . . vn) + det(v1v2 . . . vj . . . vi . . . vn).

�

Proof. (Of Theorem) We define the function

det : Mn(F)→ F, A = (aij) 7→ detA,

by the formula

det(aij) =
∑

σ∈Sn sgn(σ)aσ(1) 1 · · · aσ(n) n

We verify that it satisfies properties (1) - (4).

(1) Let us write (v1v2 . . . vi . . . vn) = (a`j) and let

b`j =

{
a`j j 6= i

αa`i j = i.

Namely,

(v1v2 . . . αvi . . . vn) = (b`j).

By definition,

det(v1v2 . . . αvi . . . vn) = det((b`j)) =
∑
σ∈Sn

sgn(σ)bσ(1) 1 · · · bσ(n) n.

Since in every summand there is precisely one element of the form b`i, namely, the element

bσ(i) i = αaσ(i) i, we have

det(v1v2 . . . αvi . . . vn) = α
∑
σ∈Sn

sgn(σ)aσ(1) 1 · · · aσ(n) n

= α det((aij))

= α det(v1v2 . . . vi . . . vn).

(2) We let

(v1v2 . . . vi . . . vn) = (a`j), (v1v2 . . . v
′
i . . . vn) = (a′`j).

We note that if j 6= i then a`j = a′`j . Define now

b`j =

{
a`j j 6= i

a`j + a′`j j = i.
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Then we have

(v1v2 . . . vi + v′i . . . vn) = (b`j).

Now,

det(v1v2 . . . vi + v′i . . . vn) = det(b`j)

=
∑
σ∈Sn

sgn(σ)bσ(1)1 · · · bσ(n)n

=
∑
σ∈Sn

sgn(σ)aσ(1)1 · · · (aσ(i)i + a′σ(i)i) · · · aσ(n)n

=
∑
σ∈Sn

sgn(σ)aσ(1)1 · · · aσ(i)i · · · aσ(n)n +
∑
σ∈Sn

sgn(σ)aσ(1)1 · · · a′σ(i)i · · · aσ(n)n

= det(v1v2 . . . vi . . . vn) + det(v1v2 . . . v
′
i . . . vn).

(3) Let S ⊂ Sn be a set of representatives for the subgroup {1, (ij)}. Then Sn = S
∐
S(ij).

For σ ∈ S let σ′ = σ(ij). We have

det(v1v2 . . . vi . . . vj . . . vn) =
∑
σ∈Sn

sgn(σ)aσ(1) 1 · · · aσ(n) n

=
∑
σ∈S

sgn(σ)aσ(1) 1 · · · aσ(n) n +
∑
σ∈S

sgn(σ′)aσ′(1) 1 · · · aσ′(n) n

=
∑
σ∈S

sgn(σ)aσ(1) 1 · · · aσ(n) n −
∑
σ∈S

sgn(σ)aσ′(1) 1 · · · aσ′(n) n.

It is enough to show that for every σ we have

aσ(1) 1 · · · aσ(n) n = aσ′(1) 1 · · · aσ′(n) n.

If ` 6∈ {i, j} then aσ′(`) ` = aσ◦(ij)(`) ` = aσ(`) `. If ` = i then aσ′(i) i = aσ(j) i = aσ(j) j and

if ` = j then aσ′(j) j = aσ(i) j = aσ(i) i. We get aσ(1) 1 · · · aσ(n) n = aσ′(1) 1 · · · aσ′(n) n.

(4) Recall the definition of Kronecker’s delta δij . By definition δij = 1 if i = j and zero

otherwise.
For the identity matrix In = (δij) we have

det In =
∑
σ∈Sn

sgn(σ)δσ(1) 1 . . . δσ(n) n.

If there’s a single i such that σ(i) 6= i then δσ(i) i = 0 and so δσ(1) 1 . . . δσ(n) n = 0. Thus,

det In = sgn(1)δ11 · · · δnn = 1.

�

Remark 5.3.3. In the assignments you are proving that

det(A) = det(At).
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From the it follows immediately that the determinant has properties analogous to (1) - (4) of

Theorem 5.3.1 relative to rows.

5.4. Examples and geometric interpretation of the determinant.

5.4.1. Examples in low dimension. Here we calculate the determinants of matrices of size 1, 2, 3

from the definition.

(1) n = 1.

We have

det(a) = a.

(2) n = 2.

S2 = {1, (12)} = {1, σ} and so

det

(
a11 a12
a21 a22

)
= sgn(1)a11a22 + sgn(σ)aσ(1) 1aσ(2) 2

= a11a22 − a21a12.

(3) n = 3.

S3 = {1, (12), (13), (23), (123), (132)}. The sign of a transposition is −1 and of a 3-cycle

is 1. We find the formula,

det

a11 a12 a13
a21 a22 a23
a31 a32 a33

 = a11a22a33 + a21a32a13 + a31a12a23 − a11a23a32 − a31a22a13 − a21a12a33.

One way to remember this is to write the matrix twice and draw the diagonals.

a11

EE
EE

EE
EE

a12 a13

yy
yy
yy
yy

yy
yy
yy
yy

a21

EE
EE

EE
EE

a22

EE
EE

EE
EE

yy
yy
yy
yy

yy
yy
yy
yy

a23

yy
yy
yy
yy

yy
yy
yy
yy

a31

EE
EE

EE
EE

a32

EE
EE

EE
EE

yy
yy
yy
yy

yy
yy
yy
yy

a33

yy
yy
yy
yy

yy
yy
yy
yy

a11 a12

EE
EE

EE
EE

yy
yy
yy
yy

yy
yy
yy
yy

a13

a21 a22 a23

a31 a32 a33

You multiply elements on the diagonal with the signs depending on the direction of the

diagonal.
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5.4.2. Geometric interpretation. We notice in the one dimensional case that | det(a)| = |a| is the

length of the segment from 0 to a. Thus, the determinant is a signed length function.

In the two dimensional case, it is easy to see that

det

(
a11 a12
0 a22

)
is the area, up to a sign, of the parallelogram with sides (0, 0) − (a1, 0) and (0, 0) − (a12, a21).

The sign depends on the orientation of the vectors. Similarly, for the matrix(
0 a12
a21 a22

)
.

Using the decomposition,

det

(
a11 a12
a21 a22

)
= det

(
a11 a12
0 a22

)
+ det

(
0 a12
a21 a22

)
,

one sees that the signed area (the sign depending on the orientation of the vectors) of the par-

allelogram with sides (0, 0) − (a11, a21) and (0, 0) − (a12, a22) is the determinant of the matrix(
a11 a12
a21 a22

)
.

More generally, for every n we may interpret the determinant as a signed volume function.

It associates to an n-tuple of vectors v1, . . . , vn the volume of the parallelepiped whose edges are

v1, v2, . . . , vn by the formula det(v1v2 . . . vn). It is scaled by the requirement (4) that det In = 1,

that is the volume of the unit cube is 1. The other properties of the determinant can be viewed

as change of volume under stretching one of the vectors (property (1)) and writing the volume

of a parallelepiped when we decompose it in two parallelepiped (property (2)). Property (3)

can be viewed as saying that if two vectors lie on the same line then the volume is zero; this

makes perfect sense as in this case the parallelepiped actually lives in a lower dimensional vector

space spanned by the n− 1 vectors v1, . . . , vi, . . . v̂j , . . . , vn. We shall soon see that, in the same

spirit, if the vectors v1, . . . , vn are linearly dependent (so again the parallelepiped lives in a lower

dimension space) then the determinant is zero.

5.4.3. Realizing Sn as linear transformations. Let F be any field. Let σ ∈ Sn. There is a unique

linear transformation

Tσ : Fn → Fn,

such that

T (ei) = eσ(i), i = 1, . . . n,
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where, as usual, e1, . . . , en are the standard basis of Fn. Note that

Tσ


x1
x2
...
xn

 =


xσ−1(1)

xσ−1(2)
...

xσ−1(n)

 .

(For example, because Tσx1e1 = x1eσ(1), the σ(1) coordinate is x1, namely, in the σ(1) place we

have the entry xσ−1(σ(1)).) Since for every i we have TσTτ (ei) = Tσeτ(i) = eστ(i) = Tστei, we have

the relation
TσTτ = Tστ .

The matrix representing Tσ is the matrix (aij) with aij = 0 unless i = σ(j). For example, for

n = 4 the matrices representing the permutations (12)(34) and (1 2 3 4) are, respectively
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 .

Otherwise said,3

Tσ =
(
eσ(1) | eσ(2) | . . . | eσ(n)

)
=



eσ−1(1)

——–
eσ−1(2)

——–
...

——–
eσ−1(n)


.

It follows that

sgn(σ) det(Tσ) = sgn(σ) det
(
eσ(1) | eσ(2) | . . . | eσ(n)

)
= det

(
e1 | e2 | . . . | en

)
= det(In)

= 1.

Recall that sgn(σ) ∈ {±1}. We get

det(Tσ) = sgn(σ).

Corollary 5.4.1. Let F be a field. Any finite group G is isomorphic to a subgroup of GLn(F)

for some n.

Proof. By Cayley’s theorem G ↪→ Sn for some n, and we have shown Sn ↪→ GLn(F). �

3This gives the interesting relation Tσ−1 = T tσ. Because σ 7→ Tσ is a group homomorphism we may
conclude that T−1σ = T tσ. Of course for a general matrix this doesn’t hold.
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5.5. Multiplicativity of the determinant.

Theorem 5.5.1. We have for any two matrices A,B in Mn(F),

det(AB) = det(A) det(B).

Proof. We first introduce some notation: For vectors r = (r1, . . . , rn), s = (s1, . . . , sn) we let

〈r, s〉 =
n∑
i=1

risi.

We allow s to be a column vector in this definition. We note the following properties:

〈r, s〉 = 〈s, r〉, 〈r, s+ s′〉 = 〈r, s〉+ 〈r, s′〉, 〈r, αs〉 = α〈r, s〉, for r, s, s′ ∈ Fn, α ∈ F.

Let A be a n× n matrix with rows

A =


u1

...
un

 ,

and let B be a n× n matrix with columns

B =
(
v1| · · · |vn

)
.

In this notation,

AB =
(
〈ui, vj〉

)n
i,j=1

=

〈u1, v1〉 . . . 〈u1, vn〉
...

...
〈un, v1〉 . . . 〈un, vn〉

 .

Having set this notation, we begin the proof. Consider the function

h : Mn(F)→ F, h(B) = det(AB).

We prove that h has properties (1) - (3) of Theorem 5.3.1.

(1) We have

h((v1 . . . αvi . . . vn)) = det

( 〈u1,v1〉 ... α〈u1,vi〉 ... 〈u1,vn〉
...

...
〈un,v1〉 ... α〈un,vi〉 ... 〈un,vn〉

)
.

This is equal to

α det

( 〈u1,v1〉 ... 〈u1,vn〉
...

...
〈un,v1〉 ... 〈un,vn〉

)
= α det(AB) = α · h(B).

(2) We have

h((v1 . . . αvi + v′i . . . vn)) = det

( 〈u1,v1〉 ... 〈u1,vi〉+〈u1,v′i〉 ... 〈u1,vn〉
...

...
〈un,v1〉 ... 〈un,vi〉+〈un,v′i〉 ... 〈un,vn〉

)
,
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which is equal to

det

( 〈u1,v1〉 ... 〈u1,vi〉 ... 〈u1,vn〉
...

...
〈un,v1〉 ... 〈un,vi〉 ... 〈un,vn〉

)
+ det

( 〈u1,v1〉 ... 〈u1,v′i〉 ... 〈u1,vn〉
...

...
〈un,v1〉 ... 〈un,v′i〉 ... 〈un,vn〉

)

= h((v1 . . . vi . . . vn)) + h((v1 . . . v
′
i . . . vn)).

(3) Suppose that vi = vj for i < j. Then

h((v1 . . . vi . . . vj . . . vn)) = det

( 〈u1,v1〉 ... 〈u1,vi〉 ... 〈u1,vj〉 ... 〈u1,vn〉
...

...
〈un,v1〉 ... 〈un,vi〉 ... 〈un,vj〉 ... 〈un,vn〉

)
.

This last matrix has its i-th column equal to its j-th column so the determinant vanishes

and we get h((v1 . . . vi . . . vj . . . vn)) = 0.

Lemma 5.5.2. Let H : Mn(F)→ F be a function satisfying properties (1) - (3) of Theorem 5.3.1

then H = γ · det, where γ = H(In).

We note that with the lemma the proof of the theorem is complete: since h satisfies the assump-

tions of the lemma, we have

h(B) = h(In) · det(B).

Since h(B) = det(AB), h(In) = det(A), we have

det(AB) = det(A) · det(B).

It remains to prove the lemma.

Proof of Lemma. Let us write vj =
∑n

i=1 aijei, where ei is the i-th element of the standard basis,

written as a column vector (all the entries of ei are zero except for the i-th entry which is 1).

Then we have

(v1v2 . . . vn) = (aij).

Now, by the linearity properties of H, we have

H(v1 . . . vn) = H(

n∑
i=1

ai1ei, . . . ,
n∑
i=1

ainei)

=
∑

(i1,...,in)

ai11 · · · ainn ·H(ei1 , . . . , ein),

where in the summation each 1 ≤ ij ≤ n. If in this sum i` = ik for some ` 6= k then

H(ei1 , . . . , ein) = 0. We therefore have,

H(v1 . . . vn) =
∑

(i1,...,in),ij distinct

ai11 · · · ainn ·H(ei1 , . . . , ein)

=
∑
σ∈Sn

aσ(1) 1 · · · aσ(n) nH(eσ(1), . . . , eσ(n)).
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Now, inspection of the proof of Corollary 5.3.2 shows that it holds for H as well. We therefore

get,

H(v1 . . . vn) =
∑
σ∈Sn

sgn(σ)aσ(1) 1 · · · aσ(n) nH(e1, . . . , en)

= γ
∑
σ∈Sn

sgn(σ)aσ(1) 1 · · · aσ(n) n

= γ · det(v1 . . . vn).

�

5.6. Laplace’s theorem and the adjoint matrix. Consider again the formula for the deter-

minant of an n× n matrix A = (aij):

det(aij) =
∑
σ∈Sn

sgn(σ)aσ(1) 1 · · · aσ(n) n.

Choose an index j. We have then

(5.1) det(A) =

n∑
i=1

aij
∑

{σ:σ(j)=i}

sgn(σ)
∏
`6=j

aσ(`)`.

Let Ai,j be the ij-minor of A. This is the matrix obtained from A by deleting the i-th row and

j-th column. Let Aij be the ij-cofactor of A, which is defined as

Aij = (−1)i+j det(Aij).

Note that Aij is an (n− 1)× (n− 1) matrix, while Aij is a scalar.

Lemma 5.6.1.
∑
{σ:σ(j)=i} sgn(σ)

∏
6̀=j aσ(`)` = Aij.

Proof. Let f = (j j + 1 . . . n), g = (i i + 1 . . . n) be the cyclic permutations, considered as an

elements of Sn. Define

bαβ = ag(α) f(β).

Note that
Aij = (bαβ)1≤α,β≤n−1

Then, ∑
{σ:σ(j)=i}

sgn(σ)
∏
6̀=j
aσ(`) ` =

∑
{σ:σ(j)=i}

sgn(σ)
∏
`6=j

bg−1(σ(`)) f−1(`)

=
∑

{σ:σ(j)=i}

sgn(σ)

n−1∏
t=1

bg−1(σ(f(t))) t,

because {f−1(`) : ` 6= j} = {1, 2, . . . , n− 1}. Now, the permutations σ′ = g−1σf , where σ(j) = i

are precisely the permutations in Sn fixing n and thus may be identified with Sn−1. Moreover,
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sgn(σ) = sgn(f)sgn(g)sgn(g−1σf) = (−1)(n−i)+(n−j)sgn(g−1σf) = (−1)i+jsgn(g−1σf). Thus,

we have, ∑
{σ:σ(j)=i}

sgn(σ)
∏
` 6=j

aσ(`) ` = (−1)i+j
∑

σ′∈Sn−1

sgn(σ′)
n−1∏
t=1

bσ′(t) t = Aij .

�

Theorem 5.6.2 (Laplace). For any i or j we have

det(A) = ai1A
i1 + ai2A

i2 + · · ·+ ainA
in, (developing by row)

and

det(A) = a1jA
1j + a2jA

2j + · · ·+ anjA
nj , (developing by column).

Also, if ` 6= j then (for any j)
n∑
i=1

aijA
i` = 0,

and if ` 6= i then
n∑
j=1

aijA
`j = 0.

Example 5.6.3. We introduce also the notation

|aij | = det(aij).

We have then: ∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣ = 1 ·
∣∣∣∣5 6
8 9

∣∣∣∣− 2 ·
∣∣∣∣4 6
7 9

∣∣∣∣+ 3 ·
∣∣∣∣4 5
7 8

∣∣∣∣
= 1 ·

∣∣∣∣5 6
8 9

∣∣∣∣− 4 ·
∣∣∣∣2 3
8 9

∣∣∣∣+ 7 ·
∣∣∣∣2 3
5 6

∣∣∣∣
= −4 ·

∣∣∣∣2 3
8 9

∣∣∣∣+ 5 ·
∣∣∣∣1 3
7 9

∣∣∣∣− 6 ·
∣∣∣∣1 2
7 8

∣∣∣∣ .
Here we developed the determinant according to the first row, the first column and the second

row, respectively. When we develop according to a certain row we sum the elements of the

row, each multiplied by the determinant of the matrix obtained by erasing the row and column

containing the element we are at, only that we also need to introduce signs. The signs are easy

to remember by the following checkerboard picture:
+ − + − . . .
− + − + . . .
+ − + − . . .
− + − + . . .
...

 .
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Proof. The formulas for the developing according to columns are immediate consequence of Equa-

tion (5.1) and Lemma 5.6.1. The formula for rows follows formally from the formula for columns

using detA = detAt.

The identity
∑n

i=1 aijA
i` = 0 can be obtained by replacing the `-th column of A by its j-th

column (keeping the j-column as it is). This doesn’t affect the cofactors Ai` and changes the

elements ai ` to aij . Thus, the expression
∑n

i=1 aijA
i` is the determinant of the new matrix. But

this matrix has two equal columns so its determinant is zero! A similar argument applies to the

last equality. �

Definition 5.6.4. Let A = (aij) be an n× n matrix. Define the adjoint of A to be the matrix

Adj(A) = (cij), cij = Aji.

That is, the ij entry of Adj(A) is the ji-cofactor of A.

Theorem 5.6.5.

Adj(A) ·A = A ·Adj(A) = det(A) · In.

Proof. We prove one equality; the second is completely analogous. The proof is just by noting

that the ij entry of the product Adj(A) ·A is

n∑
`=1

Adj(A)i` · a`j =
n∑
`=1

a`j ·A`i.

According to Theorem 5.6.2 this is equal to det(A) if i = j and equal to zero if i 6= j. �

Corollary 5.6.6. The matrix A is invertible if and only if det(A) 6= 0. If det(A) 6= 0 then

A−1 =
1

det(A)
·Adj(A).

Proof. Suppose that A is invertible. There is then a matrix B such that AB = In. Then

det(A) det(B) = det(AB) = det(In) = 1 and so det(A) is invertible (and, in fact, det(A−1) =

det(B) = det(A)−1).

Conversely, if det(A) is invertible then the formulas,

Adj(A) ·A = A ·Adj(A) = det(A) · In,

show that

A−1 = det(A)−1Adj(A).

�

Corollary 5.6.7. Let B = {v1, . . . , vn} be a set of n vectors in Fn. Then B is a basis if and only

if det(v1v2 . . . vn) 6= 0.



48

Proof. If B is a basis then (v1v2 . . . vn) = StMB. Since StMBBMSt = BMStStMB = In then

(v1v2 . . . vn) is invertible and so det(v1v2 . . . vn) 6= 0.

If B is not a basis then one of its vectors is a linear combination of the preceding vectors. By

renumbering the vectors we may assume this vector is vn. Then vn =
∑n−1

i=1 αivi. We get

det(v1v2 . . . vn) = det(v1v2 . . . vn−1(

n−1∑
i=1

αivi))

=

n−1∑
i=1

αi det(v1v2 . . . vn−1vi)

= 0,

because in each determinant there are two columns that are the same. �



49

6. Systems of linear equations

Let F be a field. We have the following dictionary:

system of m linear equations in n variables

↔ matrix A in Mm×n(F)

↔ linear map T : Fn → Fm

a11x1 + · · ·+ a1nxn
...

am1x1 + · · ·+ amnxn

↔ A =

a11 . . . a1n
...

...
am1 . . . amn

 ↔
T : Fn −→ Fm

T

( x1
...
xn

)
= A

( x1
...
xn

)

In particular:

( x1
...
xn

)
solves the system

a11x1 + · · ·+ a1nxn = b1
...

am1x1 + · · ·+ amnxn = bm,

if and only if

A

( x1
...
xn

)
=

(
b1
...
bm

)
,

if and only if

T

( x1
...
xn

)
=

(
b1
...
bm

)
.

A special case is

(
b1
...
bm

)
=

( 0
...
0

)
. We see that

( x1
...
xn

)
solves the homogenous system of

equations

a11x1 + · · ·+ a1nxn = 0
...

am1x1 + · · ·+ amnxn = 0,

if and only if ( x1
...
xn

)
∈ Ker(T ).

We therefore draw the following corollary:
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Corollary 6.0.8. The solution set to a non homogenous system of equations

a11x1 + · · ·+ a1nxn = b1
...

am1x1 + · · ·+ amnxn = bm,

is either empty or has the form Ker(T ) +

(
t1
...
tn

)
, where

(
t1
...
tn

)
is (any) solution to the non

homogenous system. In particular, if Ker(T ) = {0}, that is if the homogenous system has only

the zero solution, then any non homogenous system

a11x1 + · · ·+ a1nxn = b1
...

am1x1 + · · ·+ amnxn = bm,

has at most one solution.

We note also the following:

Corollary 6.0.9. The non homogenous system

a11x1 + · · ·+ a1nxn = b1
...

am1x1 + · · ·+ amnxn = bm,

has a solution if and only if

(
b1
...
bm

)
is in the image of T , if and only if

(
b1
...
bm

)
∈ Span

{( a11
...

am1

)
, . . . ,

( a1n
...

amn

)}
.

Corollary 6.0.10. If n > m there is a non-zero solution to the homogenous system of equations.

That is, if the number of variables is greater than the number of equations there’s always a non-

trivial solution.

Proof. We have dim(Ker(T )) = dim(Fn) − dim(Im(T )) ≥ n − m > 0, therefore Ker(T ) has a

non-zero vector. �

Definition 6.0.11. The dimension of Span

{( a11
...

am1

)
, . . . ,

( a1n
...

amn

)}
, i.e., the dimension of Im(T ),

is called the column rank of A and is denoted rankc(A). We also call Im(T ) the column space

of A.
Similarly, the row space of A is the subspace of Fn spanned by the rows of A. Its dimension

is called the row rank of A and is denoted rankr(A).
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Example 6.0.12. Consider the matrix

A =

1 2 3 −1
3 4 7 −3
0 1 1 0

 .

Its column rank is 2 since the third column is the sum of the first two and the fourth column
is the second minus the third. The first two columns are independent (over any field). Its row

rank is also two as the first and third rows are independent and the second row is 3×(the first

row) - 2×(the third row). As we shall see later, this is no accident. It is always true that

rankc(A) = rankr(A), though the row space is a subspace of Fn and the column space is a

subspace of Fm!

We note the following identities:

rankr(A) = rankc(A
t), rankc(A) = rankr(A

t).

6.1. Row reduction. Let A be an m × n matrix with rows R1, . . . , Rm. They span the row

space of A. The row space can be understood as the space of linear conditions a solution to the

homogenous system satisfies. Let x =

( x1
...
xn

)
be a solution to the homogenous system

a11x1 + · · ·+ a1nxn = 0
...

am1x1 + · · ·+ amnxn = 0

.

We can also express it by saying

〈R1, x〉 = · · · = 〈Rm, x〉 = 0.

Then

〈
∑

αiRi, x〉 =
∑

αi〈Ri, x〉 = 0.

This shows that

( x1
...
xn

)
satisfies any linear condition in the row space.

Corollary 6.1.1. Any homogenous system on m equations in n unknowns can be reduced to a

system of m′ equations in n unknowns where m′ ≤ n.

Proof. Indeed, x solves the system

〈R1, x〉 = · · · = 〈Rm, x〉 = 0

if and only if

〈S1, x〉 = · · · = 〈Sm′ , x〉 = 0,

where S1, . . . , Sm′ are a basis of the row space. The row space is a subspace of Fn and so

m′ ≤ n. �
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Let again A be the matrix giving a system of linear equations and R1, . . . , Rm its rows. Row

reduction is (the art of) repeatedly performing any of the following operations on the rows of

A in succession:

Ri 7→ λRi, λ ∈ F× (multiplying a row by a non-zero scalar)

Ri ↔ Rj (exchanging two rows)

Ri 7→ Ri + λRj , i 6= j (adding any multiple of a row to another row)

Proposition 6.1.2. Two linear systems of equations obtained from each other by row reduction

have the same space of solutions to the homogenous systems of equations they define.

Proof. This is clear since the row space stays the same (easy to verify!). �

Remark 6.1.3. Since row reduction operations are invertible, it is easy to check that row reduction

defines an equivalence relation on m× n matrices.

6.2. Matrices in reduced echelon form.

Definition 6.2.1. A matrix is called in reduced echelon form if it has the shape



0 . . . 0 a1i1

0 . . . 0 a2i2

0 . . . 0 a3i3
...

...

0 . . . . . . 0 arir . . .

0 0
...

...

0 0


,

where each akik = 1 and for every ` 6= k we have a`ik = 0. The columns i1, . . . , ir are distinguished.

Notice that they are just part of the standard basis – they are equal to e1, . . . , er.

Example 6.2.2. The real matrix 0 2 1 1

0 0 1 2

0 0 0 0


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is in echelon form but not in reduced echelon form. By performing row operations (do R1 7→
R1 −R2, then R1 7→ 1

2R1) we can bring it to reduced echelon form:0 1 0 −1/2

0 0 1 2

0 0 0 0

 .

Theorem 6.2.3. Every matrix is equivalent by row reduction to a matrix in reduced echelon

form.

We shall not prove this theorem (it is not hard to prove, say by induction on the number of

columns), but we shall make use of it. We illustrate the theorem by an example.

Example 6.2.4.

3 2 0

1 1 1

2 1 −1

 → R1↔R2

1 1 1

3 2 0

2 1 −1

 → R2 7→R2−3R1,R3 7→R3−2R1

1 1 1

0 −1 −3

0 −1 −3



→ R3 7→R3−R2,R2 7→−R2

1 1 1

0 1 3

0 0 0

 → R1 7→R1−R2

1 0 −2

0 1 3

0 0 0

 .

Theorem 6.2.5. Two m × n matrices in reduced echelon form having the same row space are

equal.

Before proving this theorem, let us draw some corollaries:

Corollary 6.2.6. Every matrix is row equivalent to a unique matrix in reduced echelon form.

Proof. Suppose A is row-equivalent to two matrices B,B′ in reduced echelon form. Then A and

B and A and B′ have the same row space. Thus, B and B′ have the same row space, hence are

equal. �

Corollary 6.2.7. Two matrices with the same row space are row equivalent.

Proof. Let A, B be two matrices with the same row space. Then A is row equivalent to A′ in

reduced echelon form and B is row equivalent to B′ in reduced echelon form. Since A′, B′ have

the same row space they are equal and it follows that A is row equivalent to B. �

Proof. (Of Theorem 6.2.5) Write

A =


R1
R2

...
Rα
0
...
0

 , B =


S1
S2

...
Sβ
0
...
0

 ,
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where the Ri, Sj are the non-zero rows of the matrices in reduced echelon form. We have

Ri = (0, . . . 0, aiji = 1, . . . )

and a`ji = 0 for ` 6= 0. We claim that R1, . . . , Rα is a basis for the row space. Indeed, if

0 =
∑
ciRi then since

∑
ciRi = (. . . c1 . . . c2 . . . cα . . . ), where the places the ci’s appear are

j1, j2, . . . , jα, we must have ci = 0 for all i. An independent spanning set is a basis. It therefore

follows also that α = β, there is the same number of rows in A and B.

Let us also write

Si = (0, . . . 0, biki = 1, . . . ).

Suppose we know already that Ri+1 = Si+1, . . . , Rα = Sα for some i ≤ α and let us prove that

for i. Suppose that ki > ji. We have

Ri = (0 . . . 0 aiji . . . . . . ain)

and

Si = (0 . . . 0 . . . 0 biki . . . bin)

with aiji = biki = 1. Now, for some scalars ta we have

Si = t1R1 + · · ·+ tαRα = (. . . t1 . . . t2 . . . ti . . . tα . . . ),

where ta appears in the ja place. Now, at those place j1, . . . , ji the entry of Si is zero (because

also ji < ki). We conclude that t1 = · · · = ti = 0 and so

Si = ti+1Ri+1 + · · ·+ tαRα = ti+1Si+1 + · · ·+ tαSα,

which contradicts the independence of the vectors {S1, . . . , Sα}. By symmetry, ki < ji is also not

possible and so ki = ji.

Again, we write

Si = t1R1 + · · ·+ tαRα = (. . . t1 . . . t2 . . . ti . . . tα . . . ),

where ta appears in the ja place. The same reasoning tells us that t1 = · · · = ti−1 = 0 and so

Si = tiRi + ti+1Si+1 + · · ·+ tαSα = (0 . . . 0 ti . . . ti+1 . . . tα . . . ),

where ta appears in the ka place. However, at each ka place where a > i the coordinate of Si
is zero and at the ki coordinate it is one. It follows that ti = 1, ti+1 = · · · = tα = 0 and so

Si = Ri. �

6.3. Row rank and column rank.

Theorem 6.3.1. Let A ∈Mm×n(F). Then

rankr(A) = rankc(A).
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Proof. Let T : Fn → Fm be the associated linear map. Then

rankc(A) = dim(Im(T )) = n− dim(Ker(T )).

Let Ã be the matrix in reduced echelon form which is row equivalent to A. Since Ker(T ) are

the solutions to the homogenous system of equations defined by A, it is also the solutions to the

homogenous system of equations defined by Ã. If we let T̃ be the linear transformation associated

to Ã then

Ker(T ) = Ker(T̃ ).

We therefore obtain

rankc(A) = n− dim(Ker(T̃ )) = dim(Im(T̃ )).

(We should remark at this point that this is not a priori obvious as the column space of A and

Ã are completely different!)

Now dim(Im(T̃ )) = rankc(Ã) is equal to the number of non-zero rows in Ã. Indeed, if Ã has k

non-zero rows than clearly we can get at most k non-zero entries in every vector in the column

space of Ã. On the other hand, the distinguished columns of Ã (where the steps occur) give us

the vectors e1, . . . , ek and so we see that the dimension is precisely k. However, the number of

non-zero rows is precisely the basis for the row space that is provided by those non zero rows.

That is,

dim(Im(T̃ )) = rankr(Ã) = rankr(A),

because A and Ã have the same row space. �

Corollary 6.3.2. The dimension of the space of solutions to the homogenous system of equations

is n− rankr(A), namely, the codimension of the space of linear conditions row-space(A).

Proof. Indeed, this is dim(Ker(T )) = n− dim(Im(T )) = n− rankc(A) = n− rankr(A). �

6.4. Cramer’s rule. Consider a non homogenous system of n equations in n unknowns:

(6.1)

a11x1 + · · ·+ a1nxn = b1
...

an1x1 + · · ·+ annxn = bn.

Introduce the notation A for the coefficients and write A as n-columns vectors in Fn:

A =
(
v1|v2| · · · |vn

)
.

Let

b =

 b1
b2
...
bn

 .
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Theorem 6.4.1. Assume that det(A) 6= 0. Then there is a unique solution (x1, x2, . . . , xn) to

the non homogenous system (6.1). Let Ai be the matrix obtained by replacing the i-th column of

A by b:

Ai =
(
v1| . . . |vi−1| b |vi+1| · · · |vn

)
.

Then,

xi =
det(Ai)

det(A)
.

Proof. Let T be the associated linear map. First, since Ker(T ) = {0} and the solutions are a coset

of Ker(T ), there is at most one solution. Secondly, since dim(Im(T )) = dim(Fn)−dim(Ker(T )) =

n, we have Im(T ) = Fn and thus for any vector b there is a solution to the system (6.1).

Now,

det(Ai) = det
(
v1| . . . |vi−1|x1v1 + · · ·+ xnvn|vi+1| · · · |vn

)
=

n∑
j=1

xj det
(
v1| . . . |vi−1|vj |vi+1| · · · |vn

)
= xi det

(
v1| . . . |vi−1|vi|vi+1| · · · |vn

)
= xi det(A).

(In any determinant in the sum there are two vectors that are equal, except when we deal with

the i-th summand.) �

6.5. About solving equations in practice and calculating the inverse matrix.

Definition 6.5.1. An elementary matrix is a square matrix having one of the following shapes:

(1) A diagonal matrix diag[1, . . . , 1, λ, 1, . . . , 1] for some λ ∈ F×.

(2) The image of a transposition. That is, a matrix D such that for some i < j has entries

dkk = 1 for k 6∈ {i, j}, dij = dji = 1 and all its other entries are zero.

(3) A matrix D whose diagonal elements are all 1, has an entry dij = λ for some i 6= j and

the rest of its entries are zero. Here λ can be any element of F.

Let E be an elementary m ×m matrix and A a matrix with m rows, R1, . . . , Rm. Consider

the product EA.

(1) If E if of type (1) then the rows of EA are

R1, . . . , Ri−1, λRi, Ri+1, . . . , Rm.

(2) If E if of type (2) then the rows of EA are

R1, . . . , Ri−1, Rj , Ri+1, . . . , Rj−1, Ri, Rj+1, . . . , Rm.
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(3) If E is of type (3) then EA has rows

R1, . . . , Ri−1, Ri + λRj , Ri+1, . . . , Rm

.

It is easy to check that any elementary matrix E is invertible. Any iteration of row reduction

operations (such as reducing to the reduced echelon form) can be viewed as

A EA,

where E is product of elementary matrices and in particular invertible. Therefore:

A

( x1
...
xn

)
=

(
b1
...
bm

)
⇔ (EA)

( x1
...
xn

)
= E

(
b1
...
bm

)
.

This, of course, just means that the following. If we perform on the vector of conditions

(
b1
...
bm

)
exactly the same operations we perform when row reducing A then a solution to the reduced

system

(EA)

( x1
...
xn

)
= E

(
b1
...
bm

)
is a solution to the original system and vice-versa.

This reduction can be done simultaneously for several conditions, namely, we can attempt to

solve

A

(
x1 y1
...

...
xn yn

)
=

(
b1 c1
...

...
bm cm

)
.

Again,

A

(
x1 y1
...

...
xn yn

)
=

(
b1 c1
...

...
bm cm

)
⇔ (EA)

(
x1 y1
...

...
xn yn

)
= E

(
b1 c1
...

...
bm cm

)
.

We can of course do this process for any number of condition vectors

(
x1 y1 z1 ...

...
...

...
xn yn zn ...

)
. We note

that if A is a square matrix, to find A−1 is to solve the particular system:

A

( x11 ··· x1n
...

...
xn1 ··· xnn

)
= In.

If A is invertible then the matrix in reduced echelon form corresponding to A must be the identity

matrix, because this is the only matrix in reduced echelon form having rank n. Therefore, there

is a product E of elementary matrices such that EA = In. We conclude the following:
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Corollary 6.5.2. Let A be an n × n matrix. Perform row operations on A, say A  EA so

that EA is in reduced echelon form and at the same time perform the same operations on In,

In  EIn. A is invertible if and only if EA = In; in that case E is the inverse of A and we get

A−1 by applying to the identity matrix the same row operations we apply to A.

Example 6.5.3. Let us find out if A =

7 11 0

0 0 1

5 8 0

 is invertible and what is its inverse. First,

the determinant of A is 7 · 0 · 0 + 0 · 8 · 0 + 5 · 11 · 1− 0 · 0 · 5− 1 · 8 · 7− 0 · 11 · 0 = −1. Thus, A is

invertible. To find the inverse we do7 11 0 1 0 0

0 0 1 0 1 0

5 8 0 0 0 1

→ R1 7→5R1,R3 7→5R3

35 55 0 5 0 0

0 0 1 0 1 0

35 56 0 0 0 7

→ R3 7→R3−R1

35 55 0 5 0 0

0 0 1 0 1 0

0 1 0 −5 0 7

→ R1 7→R1−55R3

35 0 0 280 0 −385

0 0 1 0 1 0

0 1 0 −5 0 7

→ R1 7→ 1
35
R1,R2↔R3

1 0 0 8 0 −11

0 1 0 −5 0 7

0 0 1 0 1 0


Thus, the inverse of A is  8 0 −11

−5 0 7

0 1 0

 .
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7. The dual space

The dual vector space is a the space of linear functions on a vector space. As such it is a

natural object to consider and arises in many situations. It is also perhaps the first example of

duality you will be learning. The concept of duality is a key concept in mathematics.

7.1. Definition and first properties and examples.

Definition 7.1.1. Let F be a field and V a finite dimensional vector space over F. We let

V ∗ = Hom(V,F).

Since F is a vector space over F, we know by a general result, proven in the assignments, that V ∗

is a vector space, called the dual space, under the operations

(S + T )(v) = S(v) + T (v), (αS)(v) = αS(v).

The elements of V ∗ are often called linear functionals.

Recall the general formula

dim Hom(V,W ) = dim(V ) · dim(W ),

proved in Corollary 4.8.2. This implies that dimV ∗ = dimV . This also follows from the following

proposition.

Proposition 7.1.2. Let V be a finite dimensional vector space. Let B = {b1, . . . , bn} be a basis

for V . There is then a unique basis B∗ = {f1, . . . , fn} of V ∗ such that

fi(bj) = δij .

The basis B∗ is called the dual basis.

Proof. Given an index i, there is a unique linear map,

fi : V → F,

such that,

fi(bj) = δij .

This is a special case of a general result proven in the assignments. We therefore get functions

f1, . . . , fn : V → F.

We claim that they form a basis for V ∗. Firstly, {f1, . . . , fn} are linearly independent. Suppose

that
∑
αifi = 0, where 0 stands for the constant map with value 0F. Then, for every j, we

have 0 = (
∑
αifi)(bj) =

∑
i αiδij = αj . Furthermore, {f1, . . . , fn} are a maximal independent

set. Indeed, let f be any linear functional and let αi = f(bi). Consider the linear functional

f ′ =
∑

i αifi. We have for every j, f ′(bj) = (
∑
αifi)(bj) =

∑
i αiδij = αj = f(bj). Since

the two linear functions, f and f ′, agree on a basis, they are equal (by the same result in the

assignments). �
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Example 7.1.3. Consider the space Fn together with its standard basis St = {e1, . . . , en}. Let

fi be the function

(x1, . . . , xn)
fi7→ xi.

Then,

St∗ = {f1, . . . , fn}.
To see that we simply need to verify that fi is a linear function, which is clear, and that fi(ej) =

δij , which is also clear.

Therefore, the form of the general element of Fn∗ is a function
∑
aifi given by

(x1, . . . , xn) 7→ a1x1 + · · ·+ anxn,

for some fixed ai ∈ F. We see that we can identify Fn∗ with Fn, where the vector (a1, . . . , an) is

identified with the linear functional (x1, . . . , xn) 7→ a1x1 + · · ·+ anxn.

Example 7.1.4. Let V = F[t]n be the space of polynomials of degree at most n. Consider the

basis

B = {1, t, t2, . . . , tn}.
The dual basis is

B∗ = {f0, . . . , fn},
where,

fj(
n∑
i=0

αit
i) = αj .

In general that’s it, but if the field F contains the field of rational numbers we can say more. One

checks that

fj(f) =
1

j!

djf

dtj
(0).

(For j = 0, djf
dtj

is interpreted as f .) Thus, elements of the dual space, which are just linear

combinations of {f0, . . . , fn}, can be viewed as linear differential operators.

Now, quite generally, if B = {v1, . . . , vn} is a basis for a vector space V and B∗ = {f1, . . . , fn}
is the dual basis, then any vector in V satisfies:

v =

n∑
i=1

fi(v)vi.

(This holds because v =
∑n

i=1 aivi for some ai and now apply fi to both sides to get fi(v) = ai.)

Applying these general considerations to our example above for real polynomials (say) we find

that

f =
n∑
i=0

1

i!

dif

dti
(0) · ti,

which is none else than the Taylor expansion of f around 0!
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7.2. Duality.

Proposition 7.2.1. There is a natural isomorphism

V ∼= V ∗∗.

Proof. We first define a map V → V ∗∗. Let v ∈ V . Define,

φv : V ∗ → F

by

φv(f) = f(v).

We claim that φv is a linear map V ∗ → F. Indeed,

φv(f + g) = (f + g)(v) = f(v) + g(v) = φv(f) + φv(g),

and
φv(αg) = (αg)(v) = αg(v) = αφv(g).

We therefore get a map

V → V ∗∗, v 7→ φv.

This map is linear:

φv+w(f) = f(v + w) = f(v) + f(w) = (φv + φw)(f),

and
φαv(f) = f(αv) = αφv(f) = (αφv)(f).

Next, we claim that v 7→ φv is injective. Since this is a linear map, we only need to show that its

kernel is zero. Suppose that φv = 0. Then, for every f ∈ V ∗ we have φv(f) = f(v) = 0. If v 6= 0

then let v = v1 and complete it to a basis for V , say B = {v1, . . . , vn}. Let B∗ = {f1, . . . , fn} be

the dual basis. Then f1(v1) = 0, which is a contradiction. Thus, v = 0.

We have found an injective linear map

V → V ∗∗, v 7→ φv.

Since dim(V ) = dim(V ∗) = dim(V ∗∗) the map V → V ∗∗ is an isomorphism. �

Remark 7.2.2. It is easy to verify that if B is a basis for V and B∗ its dual basis, then B is the

dual basis for B∗ when we interpret V as V ∗∗.

Definition 7.2.3. Let V be a finite dimensional vector space. Let U ⊆ V be a subspace. Let

U⊥ := {f ∈ V ∗ : f(u) = 0 ∀u ∈ U}.

U⊥ (read: U perp) is called the annihilator of U .

Lemma 7.2.4. The following hold:

(1) U⊥ is a subspace.

(2) If U ⊆ U1 then U⊥ ⊇ U⊥1 .



62

(3) U⊥ is a subspace of dimension dim(V )− dim(U).

(4) We have U⊥⊥ = U .

Proof. It is easy to check that U⊥ is a subspace. The second claim is obvious from the definitions.

Let v1, . . . , va be a basis for U and complete to a basis B of V , B = {v1, . . . , vn}. Let

B∗ = {f1, . . . , fn} be the dual basis. Suppose that
∑n

i=1 αifi ∈ U⊥ then for every j = 1, . . . , a

we have

0 = (

n∑
i=1

αifi)(vj) = αj .

Thus, U⊥ ⊆ Span(fa+1, . . . , fn). Conversely, it is easy to check that each fi, i = a + 1, . . . , n, is

in U⊥ and so U⊥ ⊇ Span(fa+1, . . . , fn). The third claim follows.

Note that this proof, applied now to U⊥ gives that U⊥⊥ = U . �

Proposition 7.2.5. Let U1, U2 be subspaces of V . Then

(U1 + U2)
⊥ = U⊥1 ∩ U⊥2 , (U1 ∩ U2)

⊥ = U⊥1 + U⊥2 .

Proof. Let f ∈ (U1 +U2)
⊥. Since Ui ⊂ U1 +U2 we have f ∈ U⊥i and so f ∈ U⊥1 ∩U⊥2 . Conversely,

if f ∈ U⊥1 ∩ U⊥2 then for v ∈ U1 + U2, say v = u1 + u2, we have

f(v) = f(u1 + u2) = f(u1) + f(u2) = 0 + 0 = 0,

and we get the opposite inclusion.

The second claim follows formally. Note that U1 ∩ U2 = U⊥⊥1 ∩ U⊥⊥2 = (U⊥1 + U⊥2 )⊥. Taking

⊥ on both sides we get (U1 ∩ U2)
⊥ = U⊥1 + U⊥2 . �

Proposition 7.2.6. Let U be a subspace of V then there is a natural isomorphism

U∗ ∼= V ∗/U⊥.

Proof. Consider the map

S : V ∗ → U∗, f 7→ f |U .

It is clearly a linear map. The kernel of S is by definition U⊥. We therefore get a well defined

injective linear map

S′ : V ∗/U⊥ → U∗.

Now, dim(V ∗/U⊥) = dim(V )− dim(U⊥) = dim(U) = dim(U∗). Thus, S′ is an isomorphism. �

Corollary 7.2.7. We have (V/U)∗ ∼= U⊥.

Proof. This follows formally from the above: think of V as (V ∗)∗ and U = (U⊥)⊥. We already

know that (V ∗)∗/(U⊥)⊥ ∼= (U⊥)∗. That is, V/U ∼= (U⊥)∗. Then, (V/U)∗ ∼= (U⊥)∗∗ ∼= U⊥.

Of course, one can also argue directly. Any element of U⊥ is a linear functional V → F that

vanishes on U and so, by the first isomorphism theorem, induces a linear functional V/U → F.
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One shows that this provides a linear map U⊥ → (V/U)∗. One can next show it’s surjective and

calculate the dimensions of both sides. �

Given a linear map

T : V →W,

we get a function

T ∗ : W ∗ → V ∗, (T ∗(f))(v) := f(Tv).

We leave the following lemma as an exercise:

Lemma 7.2.8. (1) T ∗ is a linear map. It is called the dual map to T .

(2) Let B,C be bases to V,W , respectively. Let A = C [T ]B be the m× n matrix representing

T , where n = dim(V ),m = dim(W ). Then the matrix representing T ∗ with respect to the

bases B∗, C∗ is the transpose of A:

B∗ [T
∗]C∗ = C [T ]B

t.

(3) If T is injective then T ∗ is surjective.

(4) If T is surjective then T ∗ is injective.

Proposition 7.2.9. Let T : V →W be a linear map with kernel U . Then Im(T ∗) is U⊥.

Proof. Let u1, . . . , ua be a basis for U and B = {u1, . . . , ua, ua+1, . . . , un} an extension to a basis

of V . Let B∗ = {f1, . . . , fn} be the dual basis. We know that U⊥ = Span({fa+1, . . . , fn}). We

also know that {w1, . . . , wn−a}, wi = T (ua+i), is a linearly independent set in W (cf. the proof

of Theorem 4.2.1). Complete it to a basis C = {w1, . . . , wm} of W and let C∗ = {g1, . . . , gm} be

the dual basis. Let us calculate T ∗(gi).

We have T ∗(gi)(uj) = gi(T (uj)) = 0 if j = 1, . . . , a because T (uj) is then 0. We also have

T ∗(gi)(ua+j) = gi(T (ua+j)) = gi(wj) = δij , for j = 1, . . . , n − a. It follows that if i > n − a
then T ∗(gi) is zero on every basis element of V and so must be the zero linear functional; it also

follows that for i ≤ n − a, T ∗(gi) agrees with fa+i on the basis B and so T ∗(gi) = fa+i, i =

1, . . . , n − a. We conclude that Im(T ∗), being equal to Span({T ∗(g1), . . . , T ∗(gm)}) is precisely

Span({fa+1, . . . , fn}) = U⊥. �

7.3. An application. We provide another proof of Theorem 6.3.1.

Theorem 7.3.1. Let A be an m× n matrix. Then rankr(A) = rankc(A).

Proof. Let T be the linear map associated to A, then At is the linear map associated to T ∗.

Let U = Ker(T ). We have rankc(A) = dim(Im(T )) = n − dim(U). We also have rankr(A) =

rankc(A
t) = rankc(T

∗) = dim(Im(T ∗)) = dim(U⊥) = n− dim(U). �



64

8. Inner product spaces

In contrast to the previous sections, the field F over which the vector spaces in this section are

defined is very special: we always assume F = R or C. We shall denote complex conjugation by

r 7→ r. We shall use this notation even if F = R, where complex conjugation is trivial, simply to

have uniform notation.

8.1. Definition and first examples of inner products.

Definition 8.1.1. An inner product on a vector space V over F is a function:

〈·, ·〉 : V × V −→ F,

satisfying the following:

(1) 〈v1 + v2, w〉 = 〈v1, w〉+ 〈v2, w〉 for v1, v2, w ∈ V ;

(2) 〈αv,w〉 = α · 〈v, w〉 for α ∈ F, v, w ∈ V .

(3) 〈v, w〉 = 〈w, v〉 for v, w ∈ V .

(4) 〈v, v〉 ≥ 0 with equality if and only if v = 0.

Remark 8.1.2. First note that 〈v, v〉 = 〈v, v〉 by axiom (3), so 〈v, v〉 ∈ R and axiom (4) makes

sense! We also remark that it follows easily from the axioms that:

• 〈w, v1 + v2〉 = 〈w, v1〉+ 〈w, v2〉;
• 〈v, αw〉 = α · 〈v, w〉.
• 〈v, 0〉 = 〈0, v〉 = 0.

Definition 8.1.3. We define the norm of v ∈ V by

‖v‖ = 〈v, v〉1/2,

and the distance between v and w by

d(v, w) := ‖v − w‖.

Example 8.1.4. The most basic example is Fn with the inner product:

〈(x1, . . . , xn), (y1, . . . , yn)〉 =
n∑
i=1

xiyi.

Theorem 8.1.5 (Cauchy-Schwartz inequality). Let V be an inner product space. For every

u, v ∈ V we have

|〈u, v〉| ≤ ‖u‖ · ‖v‖.
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Proof. If ‖v‖ = 0 then v = 0 and the inequality holds trivially. Else, let α = 〈u,v〉
‖v‖2 . We have:

0 ≤ ‖u− αv‖2

= 〈u− αv, u− αv〉

= ‖u‖2 + αα‖v‖2 − α〈u, v〉 − α〈u, v〉

= ‖u‖2 − |〈u, v〉|
2

‖v‖2
.

The theorem follows by rearranging and taking square roots. �

Proposition 8.1.6. The norm function is indeed a norm. That is, the function v 7→ ‖v‖
satisfies:

(1) ‖v‖ ≥ 0 with equality if and only if v = 0;

(2) ‖αv‖ = |α| · ‖v‖;
(3) (Triangle inequality) ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

The distance function is indeed a distance function. Namely, it satisfies:

(1) d(v, w) ≥ 0 with equality if and only if v = w;

(2) d(v, w) = d(w, v);

(3) (Triangle inequality) d(v, w) ≤ d(v, u) + d(u,w).

Proof. The first axiom of a norm holds because 〈v, v〉 ≥ 0 with equality if and only if v = 0. The

second is just

‖αv‖ =
√
〈αv, αv〉 =

√
αα · 〈v, v〉 = |α| · ‖v‖.

The third axiom is less trivial. We have:

‖u+ v‖2 = 〈u+ v, u+ v〉

= ‖u‖2 + ‖v‖2 + 〈u, v〉+ 〈v, u〉

= ‖u‖2 + ‖v‖2 + 2<〈u, v〉

≤ ‖u‖2 + ‖v‖2 + 2|〈u, v〉|

≤ ‖u‖2 + ‖v‖2 + 2‖u‖ · ‖v‖

= (‖u‖+ ‖v‖)2.

(In these inequalities we first used that for a complex number z the real part of z, <z, is less or

equal to |z|, and then we used the Cauchy-Schwartz inequality.)

The axioms for the distance function follow immediately from those for the norm function and

we leave the verification to you. �

Example 8.1.7. (Parallelogram law). We have

‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2.
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This is easy to check from the definitions.

Suppose now, for simplicity, that V is a vector space over R. Note that we also have

〈u, v〉 =
1

2

(
‖u+ v‖2 − ‖u‖2 − ‖v‖2

)
.

Suppose that we are given any continuous norm function ‖ · ‖ : V → R. Namely, a continuous

function satisfying the axioms of a norm function but not necessarily arising from an inner

product. One can prove that

〈u, v〉 =
1

2

(
‖u+ v‖2 − ‖u‖2 − ‖v‖2

)
defines an inner product if and only if the parallelogram law holds.

Example 8.1.8. Let M ∈Mn(F). Define

M∗ = M
t
.

That is, if M = (mij) then M∗ = (mji). A matrix M ∈Mn(F) is called Hermitian if

M = M∗.

Note that if F = R then M∗ = M t and a Hermitian matrix is simply a symmetric matrix.

Now let M ∈ Mn(F) be a Hermitian matrix such that for every vector (x1, . . . , xn) 6= 0 we

have

(x1, . . . , xn)M


x1
...

xn

 > 0,

(one calls M positive definite in that case) and define

〈(x1, . . . , xn), (y1, . . . , yn)〉 = (x1, . . . , xn) M


y1
...

yn

 =
∑
i,j

mijxiyj .

This is an inner product. The case ofM = In gives back our first example 〈(x1, . . . , xn), (y1, . . . , yn)〉 =∑n
i=1 xiyi. It is not hard to prove that any inner product on Fn arises this way from a positive

definite Hermitian matrix (Exercise).

Deciding whether M = M∗ is trivial. Deciding whether M is positive definite is much harder,

though there are good criterions for that. For 2× 2 matrices M , we have that M is Hermitian if

and only if

M =

(
a b

b̄ d

)
.

Such M is positive definite if and only if a and d are positive real numbers and ad − bb̄ > 0

(Exercise).
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For such an inner product on Fn, the Cauchy-Schwartz inequality says the following:∣∣∣∣∣∣
∑
i,j

mijxiyj

∣∣∣∣∣∣ ≤
√∑

i,j

mijxixj ·
√∑

i,j

mijyiyj .

In the simplest case, of Rn and M = In, we get a well known inequality:∣∣∣∣∣∣
∑
i,j

xiyj

∣∣∣∣∣∣ ≤
√∑

i

x2i ·
√∑

i

y2i .

Example 8.1.9. Let V be the space of continuous real functions f : [a, b]→ R. Define an inner

product by

〈f, g〉 =

∫ b

a
f(x)g(x)dx.

The fact that this is an inner product uses some standard results in analysis (including the

fact that the integral of a non-zero non-negative continuous function is positive). The Cauchy-

Schwartz inequality now says:∣∣∣∣∫ b

a
f(x)g(x)dx

∣∣∣∣ ≤ (∫ b

a
f(x)2dx

)1/2

·
(∫ b

a
g(x)2dx

)1/2

.

8.2. Orthogonality and the Gram-Schmidt process. Let V/F be an inner product space.

Definition 8.2.1. We say that u, v ∈ V are orthogonal if

〈u, v〉 = 0.

We use the notation u ⊥ v. We also say u is perpendicular to v.

Example 8.2.2. Let V = Fn with the standard inner product. Then ei ⊥ ej . However, if we

take n = 2, say, and the inner product defined by the matrix

(
1 1 + i

1− i 5

)
then e1 is not

perpendicular to v. Indeed,

(1, 0)

(
1 1 + i

1− i 5

)(
0

1̄

)
= 1 + i 6= 0.

So, as you may have suspected, orthogonality is not an absolute notion, it depends on the inner

product.

Definition 8.2.3. Let V be a finite dimensional inner product space. A basis {v1, . . . , vn} for V

is called orthonormal if:

(1) For i 6= j we have vi ⊥ vj ;
(2) ‖vi‖ = 1 for all i.
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Theorem 8.2.4 (The Gram-Schmidt process). Let {s1, . . . , sn} be any basis for V . There

is an orthonormal basis {v1, . . . , vn} for V , such that for every i,

Span({v1, . . . , vi}) = Span({s1, . . . , si}).

Proof. We construct v1, . . . , vn inductively on i, such that Span({v1, . . . , vi}) = Span({s1, . . . , si}).
Note that this implies that dim Span({v1, . . . , vi}) = i and so that {v1, . . . , vi} are linearly inde-

pendent. In particular, {v1, . . . , vn} is a basis.

We let

v1 =
s1
‖s1‖

.

Then ‖v1‖ = 1 and Span({v1}) = Span({s1}).
Assume we have defined already v1, . . . , vk such that for all i ≤ k we have Span({v1, . . . , vi}) =

Span({s1, . . . , si}). Let

s′k+1 = sk+1 −
k∑
i=1

〈sk+1, vi〉 · vi, vk+1 =
s′k+1

‖s′k+1‖
.

First, note that s′k+1 cannot be zero since {s1, . . . , sk+1} are independent and Span({v1, . . . , vk}) =

Span({s1, . . . , sk}). Thus, vk+1 is well defined and ‖vk+1‖ = 1. It is also clear from the definitions

and induction that Span({v1, . . . , vk+1}) = Span({s1, . . . , sk, vk+1}) = Span({s1, . . . , sk, s′k+1}) =

Span({s1, . . . , sk, sk+1, s
′
k+1}) = Span({s1, . . . , sk, sk+1}). Finally, for j ≤ k,

〈vk+1, vj〉 =
〈s′k+1, vj〉
‖s′k+1‖

=
1

‖s′k+1‖
· 〈sk+1 −

k∑
i=1

〈sk+1, vi〉 · vi, vj〉

=
1

‖s′k+1‖
·

(
〈sk+1, vj〉 −

k∑
i=1

〈sk+1, vi〉 · 〈vi, vj〉

)

=
1

‖s′k+1‖
·

(
〈sk+1, vj〉 −

k∑
i=1

〈sk+1, vi〉 · δij

)
= 0.

Thus, {v1, . . . , vk+1} is an orthonormal set. �

Here are some reasons an orthonormal basis is useful. Let V be an inner product space and

B = {v1, . . . , vn} an orthonormal basis for V . Let v, w ∈ V and say [v]B = (α1, . . . , αn), [w]B =
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(β1, . . . , βn). Then

〈u, v〉 = 〈
∑

αivi,
∑

βivi〉

=

n∑
i,j=1

αiβj〈vi, vj〉

=

n∑
i,j=1

αiβjδij

=

n∑
i=1

αiβi.

That is, switching to the coordinate system supplied by the orthonormal basis, the inner product

looks like the standard one and, in particular, the formulas are much easier to write down and

work with.
A further property is the following: Let v ∈ V and write v =

∑n
i=1 αivi. Then 〈v, vj〉 =∑n

i=1 αi〈vi, vj〉 = αj . That is, in any orthonormal basis {v1, . . . , vn} we have

(8.1) v =

n∑
i=1

〈v, vi〉 · vi.

Example 8.2.5. Let W ⊆ R3 be the plane given by

W = Span({(1, 0, 1), (0, 1, 1)}).

Let us find an orthonormal basis for W and a line perpendicular to it.

One way to do it is the following. Complete {(1, 0, 1), (0, 1, 1)} to a basis of R3. For example,

{s1, s2, s3} = {(1, 0, 1), (0, 1, 1), (0, 0, 1)}. Note that

det

1 0 1

0 1 1

0 0 1

 = 1,

and so this is indeed a basis. We now perform the Gram-Schmidt process on this basis.

We have v1 = 1√
2
· (1, 0, 1). Then

s′2 = s2 − 〈s2, v1〉 · v1

= (0, 1, 1)− 1

2
(1, 0, 1)

= (−1/2, 1, 1/2),

and

v2 =
1√
6

(−1, 2, 1).
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Therefore,

{v1, v2} =

{
1√
2
· (1, 0, 1),

1√
6

(−1, 2, 1)

}
is an orthonormal basis for W . Next,

s′3 = s3 − 〈s3, v1〉v1 − 〈s3, v2〉v2

= (0, 0, 1)− 〈(0, 0, 1),
1√
2
· (1, 0, 1)〉 · 1√

2
(1, 0, 1)− 〈(0, 0, 1),

1√
6

(−1, 2, 1)〉 · 1√
6

(−1, 2, 1)

= (0, 0, 1)− 1

2
(1, 0, 1)− 1

6
(−1, 2, 1)

= (−1/3,−1/3, 1/3).

If we want an orthonormal basis for R3 we can take v3 = 1√
3
(−1/3,−1/3, 1/3) but, to find a line

orthogonal to W , we can just take the line through s′3 which is Span((−1,−1, 1)).

Definition 8.2.6. Let S ⊂ V be a subset and let

S⊥ = {v ∈ V : 〈s, v〉 = 0,∀s ∈ S}.

It is easy to see that S⊥ is a subspace and in fact, if we let U = Span(S) then

S⊥ = U⊥.

Proposition 8.2.7. Let U be a subspace of V then

V = U ⊕ U⊥,

and

U⊥⊥ = U.

The subspace U⊥ is called the orthogonal complement of U in V .

Proof. Find a basis {s1, . . . , sa} to U and complete it to any basis of V , say {s1, . . . , sn}. Apply

the Gram-Schmidt process and obtain an orthonormal basis {v1, . . . , vn} then

U := Span({v1, . . . , va}).

We claim that U⊥ = Span({va+1, . . . , vn}). Indeed, let v =
∑n

i=1 αivi. Then v ∈ U⊥ if and only

if 〈v, vi〉 = 0 for 1 ≤ i ≤ a. But, 〈v, vi〉 = αi so v ∈ U⊥ if and only if v =
∑n

i=a+1 αivi, which is

equivalent to v ∈ Span({va+1, . . . , vn}).
It is clear then that V = U ⊕ U⊥, and U⊥⊥ = U . �

Let us consider linear equations again: Suppose that we have m linear equations over R in n

variables:
a11x1 + · · ·+ a1nxn = 0

...

am1x1 + · · ·+ amnxn = 0
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If we let S = {(a11, . . . , a1n), . . . , (am1, . . . , amn)} then the space of solutions is precisely U⊥.

Conversely, given a subspace W ⊆ Rn to find a set of equations defining W is to find W⊥. The

Gram-Schmidt process gives a way to do that: Find a basis {s1, . . . , sa} to W and complete it to

any basis of V , say {s1, . . . , sn}. Apply the Gram-Schmidt process and obtain an orthonormal

basis {v1, . . . , vn} then, as we have seen,

W⊥ := Span({va+1, . . . , vn}).

8.3. Applications.

8.3.1. Orthogonal projections. Let V be an inner product space of finite dimension and U ⊆ V a

subspace. Then V = U ⊕ U⊥ and we let

T : V → U,

be the projection on U along U⊥. We also call T the orthogonal projection on U .

Theorem 8.3.1. Let {v1, . . . , vr} be an orthonormal basis for U . Then:

(1) T (v) =
∑r

i=1〈v, vi〉 · vi;
(2) (v − T (v)) ⊥ T (v);

(3) T (v) is the vector in U that is closest to v.

Proof. Clearly the function

v 7→ T ′(v) :=
r∑
i=1

〈v, vi〉 · vi

is a linear map from V into U . If v ∈ U⊥ then T ′(v) = 0, while if v ∈ U we have v =
∑r

i=1 αivi

and as we have noted before (see 8.1) αi = 〈v, vi〉. That is, if v ∈ U then T ′(v) = v. It follows,

see Theorem 4.7.2, that T ′ is the projection on U along U⊥ and so T ′ = T .

We have seen that if T is the projection on a subspace U along W then v−T (v) ∈W,T (v) ∈ U ;

apply that to W = U⊥ to get v − T (v) ∈ U⊥ and, in particular, (v − T (v)) ⊥ T (v).

We now come to the last part. We wish to show that

‖v −
r∑
i=1

αivi‖

is minimal (equivalently, ‖v −
∑r

i=1 αivi‖2 is minimal) when αi = 〈v, vi〉 for all i = 1, . . . , r.

Complete {v1, . . . , vr} to an orthonormal basis of V , say {v1, . . . , vn} (this is possible because

we first complete to any basis and then apply Gram-Schmidt, which will not change {v1, . . . , vr}
as is easy to check). Then

v =
n∑
i=1

βivi, βi = 〈v, vi〉.
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Then,

‖v −
r∑
i=1

αivi‖2 = ‖(β1 − α1)v1 + · · ·+ (βr − αr)vr + βr+1vr+1 + · · ·+ βnvn‖2

=
r∑
i=1

|βi − αi|2 +
n∑

i=r+1

|βi|2.

Clearly this is minimized when αi = βi for i = 1, . . . , r. That is, when αi = 〈v, vi〉. �

Remark 8.3.2 (Gram-Schmidt revisited). Recall the process. We have an initial basis {s1, . . . , sn},
which we wish to transform into an orthonormal basis {v1, . . . , vn}. Suppose we have already

constructed {v1, . . . , vk}. They form an orthonormal basis for U = Span({v1, . . . , vk}). The next

step in the process is to construct:

s′k+1 = sk+1 −
k∑
i=1

〈sk+1, vi〉 · vi.

We now recognize
∑k

i=1〈sk+1, vi〉 · vi as the orthogonal projection of sk+1 on U (by part (1) of

the Theorem). sk+1 is then decomposed into its orthogonal projection on U and s′k+1 which lies

in U⊥ (by part (2) of the Theorem). It only remains to normalize it and we indeed have let

vk+1 =
s′k+1

‖s′k+1‖
.

8.3.2. Least squares approximation. (In assignments).
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9. Eigenvalues, eigenvectors and diagonalization

We come now to a subject which has many important applications. The notions we shall

discuss in this section will allow us: (i) to provide a criterion for a matrix to be positive definite

and that is relevant to the study of inner products and extrema of functions of several variables;

(ii) to compute efficiently high powers of a matrix and that is relevant to study of recurrence

sequences and Markov processes, and many other applications; (iii) to give structure theorems

for linear transformations.

9.1. Eigenvalues, eigenspaces and the characteristic polynomial. Let V be a vector space

over a field F.

Definition 9.1.1. Let T : V → V be a linear map. A scalar λ ∈ F is called an eigenvalue of T

if there is a non-zero vector v ∈ V such that

T (v) = λv.

Any vector v like that is called an eigenvector of T . The definition applies for n× n matrices,

viewed as linear maps Fn → Fn.

Remark 9.1.2. λ is an eigenvalue of T if and only if λ is an eigenvalue of the matrix B[T ]B, with

respect to one (any) basis B. Indeed, we have

Tv = λv ⇔ B[T ]B[v]B = λ[v]B.

Note that if we think about a matrix A as a linear transformation then this remark show that λ

is an eigenvalue of A if and only if λ is an eigenvalue of M−1AM for one (any) invertible matrix

M . This is no mystery... you can check that M−1v is the corresponding eigenvector.

Example 9.1.3. λ = 1, 2 are eigenvalues of the matrix A =

(
−1 6

−1 4

)
. Indeed,

(
−1 6

−1 4

)(
3

1

)
=

(
3

1

)
,

(
−1 6

−1 4

)(
2

1

)
= 2 ·

(
2

1

)
.

Definition 9.1.4. Let V be a finite dimensional vector space over F and T : V → V a linear

map. The characteristic polynomial ∆T of T is defined as follows: Let B be a basis for V

and A = B[T ]B the matrix representing T in the basis B. Let

∆T = det(t · In −A),

where t is a free variable and n = dim(A).

Example 9.1.5. Consider T = A =

(
−1 6

−1 4

)
. Then

∆T = ∆A = det

((
t 0

0 t

)
−

(
−1 6

−1 4

))
= det

(
t+ 1 −6

1 t− 4

)
= t2 − 3t+ 2.
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With respect to the basis B =

{(
3

1

)
,

(
2

1

)}
, T is diagonal.

B[T ]B =

(
1 0

0 2

)
,

and

∆T = det

(
t− 1 0

0 t− 2

)
= (t− 1)(t− 2) = t2 − 3t+ 2.

Proposition 9.1.6. The polynomial ∆T has the following properties:

(1) ∆T is independent of the choice of basis used to compute it. In particular, if A is a matrix

and M an invertible matrix then ∆A = ∆M−1AM .

(2) Suppose that dim(V ) = n and A = B[T ]B = (aij). Let

Tr(A) =
n∑
i=1

aii.

Then,

∆T = tn − Tr(A)tn−1 + · · ·+ (−1)n det(A).

In particular, Tr(A) and det(A) do not depend on the basis B and we let Tr(T ) =

Tr(A),det(T ) = det(A).

Proof. Let B,C be two bases for V . Let A = B[T ]B, D = C [T ]C ,M = CMB. Then,

det(t · In −A) = det(t · In −M−1DM)

= det(M−1(t · In −D)M)

= det(M−1) det(t · In −D) det(M)

= det(t · In −D).

This proves the first assertion.

Put A = (aij) and let us calculate ∆T . We have

∆T = det(t · In −A) =
∑
σ∈Sn

sgn(σ)b1σ(1)b2σ(2) · · · bnσ(n),

where (bij) = t · In − A. Each bij contains at most a single power of t and so clearly ∆T is a

polynomial of degree at most n. The monomial tn arises only from the summand b11b22 · · · bnn =

(t − a11)(t − a22) · · · (t − ann) and so appears with coefficient 1 in ∆T . Also the monomial tn−1

comes only from this summand, because if there is an i such that σ(i) 6= i then there is another

index j such that σ(j) 6= j and then in b1σ(1)b2σ(2) · · · bnσ(n) the power of t is at most n− 2. We

see therefore that the coefficient of tn−1 comes from expanding (t− a11)(t− a22) · · · (t− ann) and

is −a11 − a22 − · · · − ann = −Tr(A).
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Finally, the constant coefficient is ∆T (0) = (det(t · In −A)) (0) = det(−A) = (−1)n det(A).

�

Example 9.1.7. We have

∆( a b
c d

) = t2 − (a+ d)t+ (ad− bc).

Example 9.1.8. For the matrix 
λ1 0 · · · 0

0 λ2
...

. . .

0 λn


we have characteristic polynomial

n∏
i=1

(t− λi).

Theorem 9.1.9. The following are equivalent:

(1) λ is an eigenvalue of A;

(2) The linear map λI −A is singular (i.e., has a kernel, not invertible);

(3) ∆A(λ) = 0, where ∆A is the characteristic polynomial of A.

Proof. Indeed, λ is an eigenvalues of A if and only if there’s a vector v 6= 0 such that Av = λv.

That is, if and only if there’s a vector v 6= 0 such that (λI − A)v = 0, which is equivalent to

λI −A being singular. Thus, (1) and (2) are equivalent.

Now, a square matrix B is singular if and only if B is not invertible, if and only if det(B) = 0.

Therefore, λI − A is singular if and only if det(λI − A) = 0, if and only if [det(tI − A)](λ) = 0.

Thus, (2) is equivalent to (3).

�

Corollary 9.1.10. Let A be an n×n matrix then A has at most n distinct eigenvalues, i.e., the

roots of its characteristic polynomial.

Definition 9.1.11. Let T : V → V be a linear map, V a vector space of dimension n. Let

Eλ = {v ∈ V : Tv = λv}.

We call Eλ the eigenspace of λ. The definition applies to matrices (thought of as linear trans-

formations). Namely, let A be an n× n matrix then

Eλ = {v ∈ Fn : Av = λv}.

If A is the matrix representing T with respect to some basis the definitions agree.
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Example 9.1.12. A =

(
−1 6

−1 4

)
, ∆A(t) = (t − 1)(t − 2). The eigenvalues are 1, 2. The

eigenspaces are

E1 = Ker

((
1 0

0 1

)
−

(
−1 6

−1 4

))
= Ker

((
2 −6

1 −3

))
= Span

{(
3

1

)}
,

and

E2 = Ker

((
2 0

0 2

)
−

(
−1 6

−1 4

))
= Ker

((
3 −6

1 −2

))
= Span

{(
2

1

)}
.

Example 9.1.13. A =

(
0 1

1 1

)
, ∆A(t) = t2 − t− 1. The eigenvalues are

λ1 =
1 +
√

5

2
, λ2 =

1−
√

5

2
.

The eigenspaces are

Eλ1 = Ker

((
1+
√
5

2 0

0 1+
√
5

2

)
−

(
−1 6

−1 4

))
= Ker

((
1+
√
5

2 −1

−1 −1−
√
5

2

))
= Span

{(
1

1+
√
5

2

)}
,

and

Eλ2 = Ker

((
1−
√
5

2 0

0 1−
√
5

2

)
−

(
−1 6

−1 4

))
= Ker

((
1−
√
5

2 −1

−1 −1+
√
5

2

))
= Span

{(
1

1−
√
5

2

)}
.

Definition 9.1.14. Let λ be an eigenvalue of a linear map T . Let

mg(λ) = dim(Eλ);

mg(λ) is called the geometric multiplicity of λ. Let us also write, using unique factorization,

∆T (t) = (t− λ)ma(λ)g(t), g(λ) 6= 0;

ma(λ) is called the algebraic multiplicity of λ.

Proposition 9.1.15. Let λ be an eigenvalue of T : V → V , dim(V ) = n. The following inequal-

ities hold:

1 ≤ mg(λ) ≤ ma(λ) ≤ n.

Proof. Since λ is an eigenvalue we have dim(Eλ) > 0 and so we get the first inequality. The

inequality ma(λ) ≤ n is clear since deg(∆T (t)) = dim(V ) = n. Thus, it only remains to prove

that mg(λ) ≤ ma(λ).
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Choose a basis {v1, . . . , vm} (m = mg(λ)) to Eλ and complete it to a basis {v1, . . . , vn} of V .

With respect to this basis T is represented by a matrix of the form

[T ] =

(
λIm B

0 C

)
,

where B is an m × (n −m) matrix, C = (n −m) × (n −m) matrix and 0 here stands for the

(n−m)×m matrix of zeros. Therefore,

∆T (t) = det

(
(t− λ)Im −B

0 tIn−m − C

)
= det((t− λ)Im) · det(tIn−m − C)

= (t− λ)m · det(tIn−m − C).

(9.1)

This shows, m = mg(λ) ≤ ma(λ). �

Example 9.1.16. Let A be the matrix ( 1 1
0 1 ). We have ∆A(t) = (t− 1)2. Thus, ma(1) = 2. On

the other hand mg(1) = 1. To see that, by pure thought, note that 1 ≤ mg(1) ≤ 2. However, if

mg(1) = 2 then E1 = F2 and so Av = v for every v ∈ F2. This implies that A = ( 1 0
0 1 ) and that’s

a contradiction.

9.2. Diagonalization. Let V be a finite dimensional vector space over a field F, dim(V ) = n.

We denote a diagonal matrix with entries λ1, . . . , λn by

diag(λ1, . . . , λn).

Definition 9.2.1. A linear map T (resp., a matrix A) is called diagonalizable if there is a basis

B (resp., an invertible matrix M) such that

B[T ]B = diag(λ1, . . . , λn),

with λi ∈ F, not necessarily distinct (resp.

M−1AM = diag(λ1, . . . , λn).)

Remark 9.2.2. Note that in this case the characteristic polynomial is
∏n
i=1(t− λi) and so the λi

are the eigenvalues.

Lemma 9.2.3. T is diagonalizable if and only if there is a basis of V consisting of eigenvectors

of V .

Proof. If T is diagonalizable and in the basis B = {v1, . . . , vn} is given by a diagonal matrix

diag(λ1, . . . , λn) then [Tvi]B = [T ]B[vi]B = λiei = λi[vi]B so Tvi = λivi. It follows that each vi is

an eigenvector of V .
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Conversely, suppose that B = {v1, . . . , vn} is a basis of V consisting of eigenvectors of V . Say,

Tvi = λivi. Then, by definition of [T ]B, we have [T ]B = diag(λ1, . . . , λn). �

Theorem 9.2.4. Let V be a finite dimensional vector space over a field F, T : V → V a linear

map. T is diagonalizable if and only if mg(λ) = ma(λ) for any eigenvalue λ and the characteristic

polynomial of T factors into linear factors over F.

Proof. Suppose first that T is diagonalizable and with respect to some basis B = {v1, . . . , vn} we

have

[T ]B = diag(λ1, . . . , λn).

By renumbering the vectors in B we may assume that in fact

[T ]B = diag(λ1, . . . , λ1, λ2, . . . , λ2, . . . , λk, . . . , λk),

where the λi are distinct and λi appears ni times. We have then

∆T (t) =

k∏
i=1

(t− λi)ni .

We see that the characteristic polynomial factors into linear factors and that the algebraic mul-

tiplicity of λi is ni. Since we know that mg(λi) ≤ ma(λi) = ni, it is enough to prove that there

are at least ni independent eigenvectors for the eigenvalue λi. Without loss of generality, i = 1.

Then {v1, . . . , vn1} are independent and Tvj = λ1vj , j = 1, . . . , n1.

Conversely, suppose that the characteristic polynomial factors as

∆T (t) =
k∏
i=1

(t− λi)ni ,

and that for every i we have mg(λi) = ma(λi). Then, (for each i = 1, . . . , k) we may find vectors

{vi1, . . . , vini}, which form a basis for Eλi .

Lemma 9.2.5. Let µ1, . . . , µr be distinct eigenvalues of a linear map S and let wi ∈ Eµi be

non-zero vectors. If
∑r

i=1 αiwi = 0 then each αi = 0.

Proof of lemma. Suppose not. Then {w1, . . . , wr} are linearly dependent and so there is a first

vector which is a linear combination of the preceding vectors, say wa+1. Say,

wa+1 =
a∑
i=1

βi · wi.

Apply S to get

µa+1wa+1 =
a∑
i=1

µiβi · wi,
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and also,

µa+1wa+1 =
a∑
i=1

µa+1βi · wi.

Subtract to get

0 =

a∑
i=1

(µa+1 − µi)βi · wi.

Note that if βi 6= 0 the coefficient (µa+1−µi)βi 6= 0. Let 1 ≤ j ≤ a be the maximal index so that

βj 6= 0 then we get by rearranging

wj =

j−1∑
i=1

−((µa+1 − µj)βj)−1)(µa+1 − µi)βi · wi.

This shows that a is not minimal and we got a contradiction. �

Coming back now to the proof of the Theorem, we shall prove that

{vij : i = 1, . . . , k, j = 1, . . . , ni}

is a linearly independent set. Since its cardinality is
∑k

i=1 ni = n, it is a basis. Thus T has a

basis consisting of eigenvectors, hence diagonalizable.

Suppose that we have a linear relation
∑k

i=1

∑ni
j=1 α

i
jv
i
j = 0. Let wi =

∑ni
j=1 α

i
jv
i
j then wi ∈ Eλi

and we have w1 + · · · + wk = 0. Using the lemma, it follows that each wi must be zero. Fixing

an i, we find that
∑ni

j=1 α
i
jv
i
j = 0. But {vij : j = 1, . . . , ni} is a basis for Eλi so each αij = 0. �

The problem of diagonalization will occupy us for quite for a while. We shall study when we can

diagonalize a matrix and how to do that, but for now, we just notice an important application

of diagonalization using “primitive methods”.

Lemma 9.2.6. Let A be an n × n matrix and M an invertible n × n matrix such that A =

Mdiag(λ1, . . . , λn)M−1 then for N ≥ 1,

(9.2) AN = Mdiag(λN1 , . . . , λ
N
n )M−1

Proof. This is easily proved by induction. The case N = 1 is clear. Suppose that AN =

Mdiag(λN1 , . . . , λ
N
n )M−1 then

AN+1 = ANA = (Mdiag(λN1 , . . . , λ
N
n )M−1)(MAM−1)

= Mdiag(λN1 , . . . , λ
N
n )diag(λ1, . . . , λn)M−1

= Mdiag(λN+1
1 , . . . , λN+1

n )M−1.

�
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If we think about A as a linear transformation T : Fn → Fn then A = [T ]St and B is the basis

of eigenvectors so that [T ]B = diag(λN1 , . . . , λ
N
n ), then

M = StMB

and, as we have seen, is simply the matrix whose columns are the elements of the basis B.

9.2.1. Here is a classical application. Consider the Fibonacci sequence :

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

It is defined recursively by

a0 = 0, a1 = 1, an+2 = an+1 + an, n ≥ 0.

Let A =

(
0 1

1 1

)
. Then

A

(
an

an+1

)
=

(
an+1

an+2

)
.

Therefore,

AN

(
a0

a1

)
=

(
aN

aN+1

)
.

If we find a formula for AN we then get a formula for aN . We shall make use of Equation (9.2).

We saw in Example 9.1.13 that A has a basis of eigenvectors B = {v1, v2} where v1 =

(
1

λ1

)

corresponds to the eigenvalue λ1 = 1+
√
5

2 and v2 =

(
1

λ2

)
corresponds to the eigenvalue λ2 =

1−
√
5

2 . Let

M =

(
1 1

λ1 λ2

)
= StMB, M−1 =

1

λ2 − λ1

(
λ2 −1

−λ1 1

)
= BMSt.

Then

A =
1

λ2 − λ1

(
1 1

λ1 λ2

)(
λ1 0

0 λ2

)(
λ2 −1

−λ1 1

)
,
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and so

AN =
1

λ2 − λ1

(
1 1

λ1 λ2

)(
λN1 0

0 λN2

)(
λ2 −1

−λ1 1

)

=
1

λ2 − λ1

(
λN1 λN2

λN+1
1 λN+1

2

)(
λ2 −1

−λ1 1

)

=
1

λ2 − λ1

(
λN1 λ2 − λN2 λ1 λN2 − λN1

λN+1
1 λ2 − λN+1

2 λ1 λN+1
2 − λN+1

1

)
.

Therefore, (
aN

aN+1

)
= AN

(
0

1

)
=

(
λN2 −λN1
λ2−λ1
∗

)
.

We conclude that

aN =
1√
5

(1 +
√

5

2

)N
−

(
1−
√

5

2

)N .

9.2.2. Diagonalization Algorithm I. We can summarize our discussion of diagonalization thus far

as follows.

Given: T : V → V over a field F.
(1) Calculate ∆T (t).

(2) If ∆T (t) does not factor into linear terms, stop. (Non-diagonalizable). Else:

(3) Calculate for each eigenvalue λ, Eλ and mg(λ). If for some λ, mg(λ) 6=
ma(λ), stop. (Non-diagonalizable). Else:

(4) For every λ find a basis Bλ = {vλ1 , . . . , vλn(λ)} for Eλ. Then B = ∪λBλ =

{v1, . . . , vn} is a basis for V . If Tvi = λivi then [T ]B = diag(λ1, . . . , λn).

We note that this is not really an algorithm, since there is no method to determine if a polynomial

p factors into linear terms over an arbitrary field. This is possible, though, for a finite field F with

q elements (the first step is calculating d(t) = gcd(p(t), tq−t) and repeating that for p(t)/d(t), and

so on) and for the field of rational numbers since the numerators and denominators of rational

roots are bounded. It is also possible to do over R (and trivial over C). Thus, the issue of

factorization into linear terms is not so crucial in the most important cases. The real problem is

that there is no algorithm for calculating the roots in general. Again, for finite fields one may

proceed by brute force, and over the rationals this is possible as we have mentioned but, for

example, there is no algorithm for finding the real or complex roots in a closed forms (i.e., in

radicals).
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Now, to actually diagonalize a linear map T , there is no choice but finding the roots. However,

it will turn out that it is algorithmically possible to decide whether T is diagonalizable or not

without finding the roots. This is very useful because, once we know T is diagonalizable, then

for many applications it is enough to approximate the roots and this is certainly possible over R
and C.

9.3. The minimal polynomial and the theorem of Cayley-Hamilton.

Let g(t) = amt
m + · · ·+ a1t+ a0 be a polynomial in F[t] and let A ∈ Mn(F). Then, by g(A) we

mean amA
m + · · · + a1A + a0 · In. It is again a matrix in Mn(F). We note that (f + g)(A) =

f(A) + g(A), (fg)(A) = f(A)g(A).

We begin with a lemma:

Lemma 9.3.1. Let A ∈Mn(F), f(t) ∈ F[t] a monic polynomial. One can solve the equation

(tI −A)(Bat
a +Ba−1t

a−1 + · · ·+B0) = f(t) · In,

with matrices Bi ∈Mn(F) if and only if f(A) = 0. (If B = (bij) is a matrix then by Bta, or taB,

we mean the matrix (bijt
a).)

Proof. Suppose we can solve the equation and w.l.o.g. Ba 6= 0. It then follows that f(t) has

degree a+ 1. Write

f(t) = ta+1 + bat
a + · · ·+ b0.

Equating coefficients we get

Ba = I

Ba−1 −ABa = baI

Ba−2 −ABa−1 = ba−1I

...

B1 −AB2 = b2I

B0 −AB1 = b1I

−AB0 = b0I.

Multiply from the left the first equation by Aa+1, the second by Aa, etc. and sum (the last

equation is multiplied by the identity). We get

0 = Aa+1 + baA
a + · · ·+ b1A+ b0I = f(A).
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Conversely, suppose that f(A) = 0. Define, using the equations above,

Ba = I

Ba−1 = baI +ABa

Ba−2 = ba−1I +ABa−1

...

B1 = b2I +AB2

B0 = b1I +AB1.

We then have equality

(tI −A)(Bat
a +Ba−1t

a−1 + · · ·+B0) = f(t) · In,

if and only if −AB0 = b0I. But,

AB0 = AB0 −A2B1 +A2B1 −A3B2 + · · ·+AaBa−1 −Aa+1Ba +Aa+1Ba

= A(B0 −AB1) +A2(B1 −AB2) + · · ·+Aa(Ba−1 −ABa) +Aa+1Ba

= Ab1 +A2b2 + · · ·+Aaba +Aa+1

= f(A)− b0I

= −b0I.

�

Theorem 9.3.2 (Cayley-Hamilton). Let A be a matrix in Mn(F). Then

∆A(A) = 0.

Namely, A solves its own characteristic polynomial.

Proof. We have

(tI −A)Adj(tI −A) = det(tI −A) · In = ∆A(t) · In.

Note that Adj(tI−A) is a matrix in Mn(F[t]) and so can be written as Bat
a+Ba−1t

a−1+ · · ·+B0

with Bi ∈Mn(F) (and in fact a = n− 1). It follows from Lemma 9.3.1 that ∆A(A) = 0. �

Proposition 9.3.3. Let A ∈Mn(F). Let mA(t) be a monic polynomial of minimal degree among

all monic polynomials f in F[t] such that f(A) = 0. Then, if f(A) = 0 then mA(t)|f(t) and in

particular, deg(mA(t)) ≤ deg(f(t)). The polynomial mA(t) is called the minimal polynomial

of A.

Proof. First note that since ∆A(t) = 0, it makes sense to take a monic polynomial of minimal

degree vanishing on A. Suppose that f(A) = 0. Let h(t) = gcd(mA(t), f(t)) = a(t)mA(t) +

b(t)f(t). Then, by definition, h is monic and h(A) = a(A)mA(A) + b(A)f(A) = 0. Since

h(t)|mA(t) we have deg(h(t)) ≤ deg(mA(t)) and so, by definition of the minimal polynomial, we
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have deg(h(t)) = deg(mA(t)). Since h is monic, divides mA(t), and of the same degree, we must

have h(t) = mA(t) and thus mA(t)|f(t).

In particular, if there are two monic polynomials mA(t),mA(t)′ of that minimal degree that

vanish on A they must be equal. Thus, the definition of mA(t) really depends on A alone. �

Theorem 9.3.4. The polynomials mA and ∆A have the same irreducible factors. More precisely,

mA(t)|∆A(t)|mA(t)n.

Proof. By Cayley-Hamilton ∆A(A) = 0 and so mA|∆A. On the other hand, because mA(A) = 0

we can solve the equation in matrices:

(tI −A)(Bat
a +Ba−1t

a−1 + · · ·+B0) = mA(t) · In,

which we write more compactly as

(tI −A)G(t) = mA(t) · In,

where G(t) ∈Mn(F[t]). Taking determinants, we get

∆A(t) · det(G(t)) = mA(t)n,

and so ∆A|mn
A. �

Corollary 9.3.5. If ∆A(t) is a product of distinct irreducible factors then mA = ∆A.

Example 9.3.6. The matrix A =
(−1 6
−1 4

)
has ∆A(t) = (t− 1)(t− 2) and so mA(t) = ∆A(t).

The matrix A = ( 1 0
0 1 ) has ∆A(t) = (t− 1)2 so we know mA(t) is either t− 1 or (t− 1)2. Since

A− I = 0, we conclude that mA(t) = t− 1.

On the other hand, the matrix A = ( 1 1
0 1 ) also has ∆A(t) = (t − 1)2 so again we know that

mA(t) is either t− 1 or (t− 1)2. Since A− I = ( 0 1
0 0 ) 6= 0, we conclude that mA(t) = (t− 1)2.

9.4. The Primary Decomposition Theorem. Recall the definition of internal direct sum

from § 4.5. One version is to say that a vector space V is the internal direct sum of subspaces

W1, . . . ,Wr if every vector v ∈ V has a unique expression

v = w1 + · · ·+ wr, wi ∈Wi.

We write then

(9.3) V = W1 ⊕ · · · ⊕Wr.

Definition 9.4.1. Let T : V → V be a linear map. We say that a subspace W ⊆ V is T -

invariant if T (W ) ⊆ W . In this case, we can consider T |W : W →W , the restriction of T to

W ,

T |W (w) = T (w), w ∈W.
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Suppose that in the decomposition (9.3) each Wi is T -invariant. Denote T |Wi by Ti. We then

write
T = T1 ⊕ · · · ⊕ Tr,

meaning

T (v) = T1(w1) + · · ·+ Tr(wr),

which indeed holds true! Conversely, given any linear maps Ti : Wi →Wi we can define a linear

map T : V → V by

T (v) = T1(w1) + · · ·+ Tr(wr).

We have then T |Wi = Ti.

In the setting of (9.3) we have dim(V ) = dim(W1) + · · · + dim(Wr). More precisely, we have

the following lemma.

Lemma 9.4.2. Suppose that

Bi = {wi1, . . . , win(i)}

is a basis for Wi. Then

B = ∪ri=1Bi = {w1
1, . . . , w

1
n(1), . . . , w

r
1, . . . , w

r
n(r)}

is a basis of V .

Proof. Indeed, B is a spanning set, because v = w1 + · · · + wr and we can write wi using the

basis Bi, wi =
∑n(j)

j=1 α
i
jw

i
j , and so

v =
r∑
i=1

n(i)∑
j=1

αijw
i
j .

B is also independent. Suppose that

0 =

r∑
i=1

n(i)∑
j=1

αijw
i
j =

r∑
i=1

(

n(i)∑
j=1

αijw
i
j).

Let wi =
∑n(i)

j=1 α
i
jw

i
j . Then wi ∈Wi and, since the subspaces Wi give a direct sum, each wi = 0.

Since Bi is a basis for Wi, each αij = 0. �

We conclude that if Ti is represented on Wi by the matrix Ai, relative to the basis Bi, that is,

[Ti]Bi = Ai,

then T is given in block diagonal form in the basis B,

[T ]B =


A1

A2

. . .

Ar

 .
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Example 9.4.3. Here is an example of a T -invariant subspace. Take any vector v ∈ V and let

W = Span({v, Tv, T 2v, T 3v . . . , }). This is called a cyclic subspace. In fact, any T -invariant

space is a sum (not necessarily direct) of cyclic subspaces.

Another example is the following. Let g(t) ∈ F[t] and let W = Ker(g(T )). Namely, if g(t) =

amt
m + · · · + a1t + a0, then W is the kernel of the linear map amT

m + · · · + a1T + a0Id. Since

g(T )T = Tg(T ), it is immediate that W is T -invariant.

Theorem 9.4.4 (Primary Decomposition Theorem). Let T : V → V be a linear operator with

mT (t) = f1(t)
n1 · · · fr(t)nr ,

where the fi are the irreducible factors of mT . Let

Wi = Ker(fi(T )ni).

Then,

V = W1 ⊕ · · · ⊕Wr

and fi(t)
ni is the minimal polynomial of Ti := T |Wi.

Lemma 9.4.5. Suppose T : V → V is a linear map, f(t) ∈ F[t] satisfies f(T ) = 0 and f(t) =

g(t)h(t) with gcd(g(t), h(t)) = 1. Then

V = Ker(g(t))⊕Ker(h(t)).

Proof. For suitable polynomials a(t), b(t) ∈ F[t] we have

1 = g(t)a(t) + h(t)b(t),

and so,

Id = g(T ) ◦ a(T ) + h(T ) ◦ b(T ).

For every v we now have

v = g(T ) ◦ a(T )v + h(T ) ◦ b(T )v.

We note that g(T ) ◦ a(T )v ∈ Ker(h(T )), h(T ) ◦ b(T )v ∈ Ker(g(T )). Therefore,

V = Ker(h(T )) + Ker(g(T )).

Suppose that v ∈ Ker(g(T ))∩Ker(h(T )). Then, v = g(T )◦a(T )v+h(T )◦b(T )v = a(T )◦g(T )v+

b(T ) ◦ h(T )v = 0 + 0 = 0. Thus,

V = Ker(g(T ))⊕Ker(h(T )).

�

Corollary 9.4.6. We have

Ker(h(T )) = g(T )V, Ker(g(T )) = h(T )V.
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Proof. We have seen V = g(T ) ◦ a(T )V + h(T ) ◦ b(T )V , which implies that V = g(T )V +

h(T )V . Thus, dim(g(T )V ) + dim(h(T )V ) ≥ dim(V ). On the other hand g(T )V ⊆ Ker(h(T ))

and h(T )V ⊆ Ker(g(T )) and so dim(g(T )V ) + dim(h(T )V ) ≤ dim Ker(h(T )) + dim Ker(g(T )) =

dim(V ). We conclude that dim(g(T )V ) + dim(h(T )V ) = dim(V ) and so that dim(g(T )V ) =

dim Ker(h(T )),dim(h(T )V ) = dim Ker(g(T )). Therefore, Ker(h(T )) = g(T )V and Ker(g(T )) =

h(T )V . �

Lemma 9.4.7. In the situation of the previous Lemma, let W1 = Ker(g(T )),W2 = Ker(h(T )).

Assume that f is the minimal polynomial of T then g(t) is the minimal polynomial of T1 := T |W1

and h(t) is the minimal polynomial of T2 := T |W2.

Proof. Let mi(t) be the minimal polynomial of Ti. Clearly g(T1) = 0 and h(T2) = 0. Thus,

m1|g,m2|h and m1m2|gh = f , which is the minimal polynomial. But it is clear that (m1m2)(T ) =

m1(T )m2(T ) is zero because it is a linear transformation whose restriction toWi ism1(Ti)m2(Ti) =

0. Therefore f |m1m2 and it follows that m1 = g,m2 = h. �

With these preparations we are ready to prove the Primary Decomposition Theorem.

Proof. We argue by induction on r. The case r = 1 is trivial. Assume the theorem holds true for

some r ≥ 1. We prove it for r + 1.

Write

mT (t) = (f1(t)
n1 · · · fr(t)nr) · fr+1(t)

nr+1

= g(t) · h(t).
(9.4)

Applying the two lemmas, we conclude that

V = W ′1 ⊕W ′2,

where the W ′i are the T -invariant subspaces W ′1 = Ker(g(T )),W ′2 = Ker(h(T )) and, furthermore,

g(t) is the minimal polynomial of T1 := T |W ′1 , h(t) of T2 := T |W ′2 .

We let Wr+1 = W ′2. Using induction applied to W ′1, since

g(t) = f1(t)
n1 · · · fr(t)nr ,

we get

W ′1 = W1 ⊕ · · · ⊕Wr,

with Wi = Ker(fi(T )ni : W ′1 →W ′1). It only remains to show that Wi = Ker(fi(T )ni : V → V )

and the inclusion ⊆ is clear. Now, if v ∈ V and fi(T )ni(v) = 0 then g(t)v = 0 and so v ∈ W ′1.
Thus we get the opposite inclusion ⊇. �

We can now deduce one of the most important results in the theory of linear maps.

Corollary 9.4.8. T : V → V is diagonalizable if and only if the minimal polynomial of T factors

into distinct linear terms over F,

mT (t) = (t− λ1) · · · (t− λr), λi ∈ F, λi 6= λj for i 6= j.
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Proof. Suppose that T is diagonalizable. Thus, in some basis B of V we have

A = [T ]B = diag(λ1, . . . , λ1, λ2, . . . , λ2, . . . , λr, . . . , λr).

Then, the minimal polynomial divides
∏r
i=1(t− λi) and equal to it if this polynomial has A as a

root. Note that

r∏
i=1

(A− λiIn) = diag(0, . . . , 0, λ2 − λ1, . . . , λ2 − λ1, . . . , λr − λ1, . . . , λr − λ1)

× diag(λ1 − λ2, . . . , λ1 − λ2, 0, . . . , 0, . . . , λr − λ2, . . . , λr − λ2)

× diag(λ1 − λr, . . . , λ1 − λr, λ2 − λr, . . . , λ2 − λr, . . . , 0, . . . , 0) = 0.

Now suppose that

mT (t) = (t− λ1) · · · (t− λr), λi ∈ F, λi 6= λj for i 6= j.

Consider the Primary Decomposition. We get that

T = T1 ⊕ · · · ⊕ Tr,

where Ti is T |Wi and Wi = Ker(T − λi) = Eλi . And so, Ti|Wi is represented by a diagonal

matrix diag(λi, . . . , λi). Since V = W1 ⊕ · · · ⊕ Wr, we have that if we take as a basis for

V the set B = ∪ri=1Bi, where Bi is a basis for Wi then T is represented in the basis B by

diag(λ1, . . . , λ1, λ2, . . . , λ2, . . . , λr, . . . , λr). �

Corollary 9.4.9. Let T : V → V be a diagonalizable linear map and let W ⊆ V be a T -invariant

subspace. Then T1 := T |W is diagonalizable.

Proof. We know that mT is a product of distinct linear factors over the field F. Clearly mT (T1) =

0 (this just says that mT (T ) is zero on W , which is clear since mT (T ) = 0). It follows that mT1 |mT

and so is also a product of distinct linear terms over the field F. Thus, T1 is diagonalizable. �

Here is another very useful corollary of our results; the proof is left as an exercise.

Corollary 9.4.10. Let S, T : V → V be commuting and diagonalizable linear maps (ST = TS).

Then there is a basis B of V in which both S and T are diagonal. (“commuting matrices can be

simultaneously diagonalized”.)

Example 9.4.11. For some numerical examples see the files ExampleA, ExampleB, ExampleB1

on the course webpage.

9.5. More on finding the minimal polynomial. In the assignments we explain how to find

the minimal polynomial without factoring.
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9.5.1. Diagonalization Algorithm II.

Given: T : V → V over a field F.
(1) Calculate mT (t), for example using the method of cyclic subspaces (see as-

signments).

(2) If gcd(mT (t),mT (t)′) 6= 1, stop. (Non-diagonalizable). Else:

(3) If mT (t) does not factor into linear terms, stop. (Non-diagonalizable). Else:

(4) The map T is diagonalizable. For every λ find a basis Bλ = {vλ1 , . . . , vλn(λ)}
for the eignespace Eλ. Then B = ∪λBλ = {v1, . . . , vn} is a basis for V . If

Tvi = λivi then [T ]B = diag(λ1, . . . , λn).

We make some remarks on the advantage of this algorithm. First, the minimal polynomial can be

calculated without factoring the characteristic polynomial (which we don’t even need to calculate

for this algorithm). If gcd(mT (t),mT (t)′) = 1 then mT (t) has no repeated roots. The calculation

of gcd(mT (t),mT (t)′) doesn’t require factoring. It is done using the Euclidean algorithm and is

very fast. Thus, we can efficiently and quickly decide if T is diagonalizable or not. Of course,

the actual diagonalization requires finding the eigenvalues and hence the roots of mT (t). There

is no algorithm for that. There are other ways to simplify the study of a linear map which do

not require factoring (and in particular do not bring T into diagonal form). This is the rational

canonical form, studied in MATH 371.
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10. The Jordan canonical form

Let T : V → V be a linear map on a finite dimensional vector space V . In this section we assume

that the minimal polynomial of T factors into linear terms:

mT = (t− λ1)m1 · · · (t− λr)mr , λi ∈ F

We therefore get by the Primary Decomposition Theorem (PDT)

V = W1 ⊕ · · · ⊕Wr,

where Wi = Ker((T − λ · Id)mi) and the minimal polynomial of Ti = T |Wi on Wi is (t − λi)mi .
If we use the notation ∆T (t) = (t− λ1)n1 · · · (t− λr)nr then, since the characteristic polynomial

of Ti is a power of (t − λi), we must have that the characteristic polynomial of Ti is precisely

(t− λi)ni and in particular dim(Wi) = ni.

10.1. Preparations. The Jordan canonical form theory picks up where PDT is signing off. Using

PDT, we restrict our attention to linear transformations T : V → V whose minimal polynomial

is of the form (t− λ)m and, say, dim(V ) = n. Thus,

mT (t) = (t− λ)m, ∆T (t) = (t− λ)n.

We write
T = λ · Id + U ⇒ U = T − λ · Id,

then U is nilpotent. In fact,

mU (t) = tm, ∆U (t) = tn.

The integer m is also called the index of nilpotence of U . Let us assume for now the following

fact.

Proposition 10.1.1. A nilpotent operator U is represented in a suitable basis by a block diagonal

matrix 
N1

N2

. . .

Nd

 ,

such that each Ni is a standard nilpotent matrix of size ki, i.e., of the form:

N =



0 1 0 · · · 0

0 1 0 · · · 0
. . .

. . .

0 1

0


.
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Relating this back to the transformation T , it follows that in the same basis T is given by
λ · Ik1 +N1

λ · Ik2 +N2

. . .

λ · Ikd +Nd

 .

The blocks have the shape

λ · I +N =



λ 1 0 · · · 0

λ 1 0 · · · 0
. . .

. . .

λ 1

λ


.

Such blocks are called Jordan canonical blocks.

Suppose that the size of N is k. If the corresponding basis vectors are {b1, . . . , bk} then N has

the effect

bk → bk−1 → . . . → b2 → b1 → 0.

From that, or by actually performing the multiplication, it is easy to see that

Na =



0 0 · · · 0 1

0 1
. . .

0 1

0

0


,

where the first row begins with a zeros. In particular, if N has size k, the minimal polynomial

of N is tk. We conclude that m, the index of nilpotence of U , is the maximum of the index of

nilpotence of the matrices N1, . . . , Nd. That is,

m = max{ki : i = 1, . . . , d}.

We introduce the following notation: Let S be a linear map, the nullity of S is

null(S) = dim(Ker(S)).
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Then null(N) = 1 and, more generally,

null(Na) =

{
a a ≤ k
k a ≥ k.

We illustrate it for matrices of small size:

N N2 N3 N4

(
0
) (

0
) (

0
) (

0
)

(
0 1

0 0

) (
0 0

0 0

) (
0 0

0 0

) (
0 0

0 0

)

0 1 0

0 0 1

0 0 0


0 0 1

0 0 0

0 0 0


0 0 0

0 0 0

0 0 0


0 0 0

0 0 0

0 0 0




0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0




0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0




0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



We have

null(U) = ] 1-blocks + ] 2-blocks + ] 3-blocks + ] 4-blocks + ] 5-blocks + . . .

and so

null(U) = ] -blocks.

Similarly,

null(U2) = ] 1-blocks + 2 · ] 2-blocks + 2 · ] 3-blocks + 2 · ] 4-blocks + 2 · ] 5-blocks + . . . ,

null(U3) = ] 1-blocks + 2 · ] 2-blocks + 3 · ] 3-blocks + 3 · ] 4-blocks + 3 · ] 5-blocks + . . .

null(U4) = ] 1-blocks + 2 · ] 2-blocks + 3 · ] 3-blocks + 4 · ] 4-blocks + 4 · ] 5-blocks + . . .
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To simplify notation, let U0 = Id. Then we conclude that

] 1-blocks = 2 · null(U)− (null(U2) + null(U0)),

] 2-blocks = 2 · null(U2)− (null(U3) + null(U)),

] 3-blocks = 2 · null(U3)− (null(U4) + null(U2)),

and so on. We summarize our discussion as follows.

Proposition 10.1.2. The number of blocks is null(U) and the size of the largest block is m, the

index of nilpotence of U , where mU (t) = tm. The number of blocks of size b, b ≥ 1, is given by

the following formula:

] b-blocks = 2 · null(U b)− (null(U b+1) + null(U b−1))

10.2. The Jordan canonical form. Let λ ∈ F. A Jordan block Ja(λ) is an a×a matrix with

λ on the diagonal and 1’s above the diagonal (the rest of the entries being zero):

Ja(λ) =


λ 1 0

. . .
. . .

λ 1

λ

 .

Thus, Ja(λ)− λIa is a standard nilpotent matrix. Here are how Jordan blocks of size at most 4

look like:

(
λ
)
,

(
λ 1

0 λ

)
,

λ 1 0

0 λ 1

0 0 λ

 ,


λ 1 0 0

0 λ 1 0

0 0 λ 1

0 0 0 λ

 .

We can now state the main theorem of this section.

Theorem 10.2.1 (Jordan Canonical Form). Let T : V → V be a linear map whose characteristic

and minimal polynomials are

∆T (t) = (t− λ1)n1 · · · (t− λr)nr , mT (t) = (t− λ1)m1 · · · (t− λr)mr .

Then, in a suitable basis, T has a block diagonal matrix representation J (called a Jordan

canonical form) where the blocks are Jordan blocks of the form Ja(i,1)(λi), Ja(i,2)(λi), . . . with

a(i, 1) ≥ a(i, 2) ≥ . . . .
The following holds:

(1) For every λi, a(i, 1) = mi. (“The maximal block of λi is of size equal to the power of

(t− λi) in the minimal polynomial.”)
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(2) For every λi,
∑

j≥1 a(i, j) = ni. (“The total size of the blocks of λi is the algebraic

multiplicity of λi.”)

(3) For every λi, the number of blocks of the form Ja(i,k)(λi) is mg(λi). (“The number of

blocks corresponding to λi is the geometric multiplicity of λi.”)

(4) For every λi, the number of blocks Ja(i,k)(λi) of size b is 2 · null(U bi ) − (null(U b+1
i ) +

null(U b−1i )), where Ui = Ti − λiIdWi. One may also take in this formula Ui = T − λiId.

The theorem follows immediately from our discussion in the previous section. Perhaps the only

remark one should still make that is that null(T−λi·Id) = null((T−λi·Id)|Wi) = null(Ti−λiIdWi),

where Wi = Ker((T − λiId)ni), simply because the kernel of (T − λi · Id)a for any a is contained

in Wi.

It remains to explain Proposition 10.1.1 and how one finds such basis in practice. This is our

next subject.

10.3. Standard form for nilpotent operators. Let U : V → V be a nilpotent operator,

mU (t) = tm, ∆U (t) = tn.

We now explain how to find a basis for V with respect to which U is represented by a block

diagonal form, where the blocks are standard nilpotent matrices, as asserted in Proposition 10.1.1.

Write

Ker(Um) = Ker(Um−1)⊕ Cm,

for some subspace Cm (“C” is for Complementary). We note the following:

UCm ⊆ Ker(Um−1), UCm ∩Ker(Um−2) = {0}.

Find Cm−1 ⊇ UCm such that

Ker(Um−1) = Ker(Um−2)⊕ Cm−1.

Suppose we have already found a decomposition of V as

V = Ker(U i−1)⊕ Ci︸ ︷︷ ︸
Ker(U i)

⊕ Ci+1

︸ ︷︷ ︸
Ker(U i+1)

⊕ · · · ⊕ Cm,

such that UCj ⊆ Cj−1. We note that

UCi ⊆ Ker(U i−1), UCi ∩Ker(U i−2) = {0}.



95

We may find therefore a subspace Ci−1 such that Ci−1 ⊇ UCi and Ker(U i−1) = Ker(U i−2)⊕Ci−1,
and so on. We conclude that

V = C1︸︷︷︸
Ker(U)

⊕ C2

︸ ︷︷ ︸
Ker(U2)

⊕ C3

︸ ︷︷ ︸
Ker(U3)

⊕ · · · ⊕ Cm

and

UCi ⊆ Ci−1, 1 < i ≤ m.

We also note that the map U : Ci → Ci−1 (1 < i ≤ m) is injective. We therefore conclude the

following procedure for finding a basis for V :

• Find a basis {vm1 , . . . , vmn(m)} for Cm, where V = ker(Um) = ker(Um−1)⊕ Cm.

• {Uvm1 , . . . , Uvmn(m)} are linearly independent and so can be completed to a basis for Cm−1

by vectors {vm−11 , . . . , vm−1n(m−1)}, where Cm−1 is such that ker(Um−1) = ker(Um−2) ⊕

Cm−1.

• Now the vectors {U2vm1 , . . . , U
2vmn(m), Uv

m−1
1 , . . . , Uvm−1n(m−1)} are linearly independent and

so can be completed to a basis for Cm−2 by vectors {vm−21 , . . . , vm−2n(m−2)}, where Cm−2 is

such that ker(Um−2) = ker(Um−3)⊕ Cm−2.
• etc.

We get a basis of V ,

{Uavji : 1 ≤ j ≤ m, 1 ≤ i ≤ n(j), 0 ≤ a ≤ j − 1}.

The basis now is ordered in the following way (first the first row, then the second row, etc.):
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Um−1vm1 Um−2vm1 . . . . . . Uvm1 vm1
...

Um−1vmn(m) Um−2vmn(m) . . . . . . Uvmn(m) vmn(m)

Um−2vm−11 Um−3vm−11 . . . Uvm−11 vm−11
...

Um−2vm−1n(m−1) Um−3vm−1n(m−1) . . . Uvm−1n(m−1) vm−1n(m−1)
...

...

Uv21 v21
...

Uv2n(2) v2n(2)

v11
...

v1n(1)

A row of length k contributes a standard nilpoten matrix of size k. In particular, the last rows

are the zero matrices, the rows before them that have length 2 give blocks of the form

(
0 1

0 0

)
and so on.

Example 10.3.1. Here is a toy example. More complicated examples appear as ExampleC on

the course webpage. Consider the matrix

U =

0 1 1

0 0 2

0 0 0

 ,

which is nilpotent. The kernel of U is Span(e1). The kernel of U3 is the whole space. The kernel

of U2 =

0 0 3

0 0 0

0 0 0

 is Span(e1, e2). Therefore, we may take C3 = Span(e3) and let v31 = e3.

Then Uv31 = (1, 2, 0). We note that ker(U2) = ker(U)⊕Span((1, 2, 0)). It follows that the basis we

want is just {U2v31, Uv
3
1, v

3
1}, equal to {(2, 0, 0), (1, 2, 0), (0, 0, 1)}. In this basis the transformation

is represented by a standard nilpotent matrix of size 3.
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10.3.1. An application of the Jordan canonical form. One problem that arises often is the calcu-

lation of a high power of a matrix. Solving this problem was one of our motivations for discussing

diagonalization. Even if a matrix is not diagonalizable, the Jordan canonical form can be used

to great effect to calculate high powers of a matrix.

Let A therefore be a square matrix and J its Jordan canonical form. There is an invertible

matrix M such that A = MJM−1 and so AN = MJNM−1. Now, if J = diag(J1, . . . , Jr), where

the Ji are the Jordan blocks then

JN = diag(JN1 , . . . , J
N
r ).

We therefore focus on calculating JN , assuming J is a Jordan block J(λ) of size N . Write

J(λ) = λ · In + U.

Since λ · In and U commute, the binomial formula gives

J(λ)N =
N∑
i=0

(
N

i

)
λN−iU i.

Notice that if i ≥ n then U i = 0. We therefore get a convenient formula. We illustrate the

formula for 2× 2 and 3× 3 matrices:

• For a 2× 2 matrix A =

(
λ 1

0 λ

)
we have

AN =

(
λN nλN−1

0 λN

)
.

• For a 3× 3 matrix A =

λ 1 0

0 λ 1

0 0 λ

 we have for N ≥ 2

AN =

λ
N NλN−1 N(N−1)

2 λN−2

0 λN NλN−1

0 0 λN

 .
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11. Diagonalization of symmetric, self-adjoint and normal operators

In this section, we marry the theory of inner products and the theory of diagonalization, to

consider the diagonalization of special type of operators. Since we are dealing with inner product

spaces, we assume that the field F over which all vector spaces, linear maps and matrices in this

section are defined is either R or C.

11.1. The adjoint operator. Let V be an inner product space, of finite dimension.

Proposition 11.1.1. Let T : V → V be a linear operator. There exists a unique linear operator

T ∗ : V → V such that
〈Tu, v〉 = 〈u, T ∗v〉, ∀u, v ∈ V.

The linear operator T ∗ is called the adjoint of T . 4 Furthermore, if B is an orthonormal basis

then

[T ∗]B = [T ]∗B (:= [T ]tB).

Proof. We first show uniqueness. Suppose that we had two linear maps S1, S2 such that

〈Tu, v〉 = 〈u, Siv〉, ∀u, v ∈ V.
Then, for all u, v ∈ V we have

〈u, (S1 − S2)v〉 = 0.

In particular, this equation holds for all v with the vector u = (S1 − S2)v. This gives us that for

all v, 〈(S1 − S2)v, (S1 − S2)v〉 = 0, which in turn implies that for all v (S1 − S2)v = 0. That is,

S1 = S2.

We now show T ∗ exists. Let B be an orthonormal basis for V . We have,

〈Tu, v〉 = ([T ]B[u]B)t · [v]B

= [u]tB · [T ]tB[v]B

= [u]tB · [T ]tB[v]B.

Let T ∗ be the linear map represented in the basis B by [T ]tB, i.e., by [T ]∗B. �

Lemma 11.1.2. The following identities hold:

(1) (T1 + T2)
∗ = T ∗1 + T ∗2 ;

(2) (T1 ◦ T2)∗ = T ∗2 ◦ T ∗1 ;

(3) (αT )∗ = ᾱT ∗;

(4) (T ∗)∗ = T .

Proof. This all follows easily from the corresponding identities of matrices (using that [T1]B =

C, [T2]B = D implies [T1 + T2]B = C +D etc.):

4Caution: If A is the matrix representing T , the matrix representing T ∗ has nothing to do with the
adjoint Adj(A) of the matrix A that was used in the section about determinants.
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(1) (C +D)∗ = C∗ +D∗;

(2) (CD)∗ = D∗C∗; (Use that (CD)t = DtCt.)

(3) (αC)∗ = ᾱC∗;

(4) (C∗)∗ = C.

�

11.2. Self-adjoint operators. We keep the notation of the previous section.

Definition 11.2.1. T is called a self-adjoint operator if T = T ∗. This equivalent to T being

represented in an orthonormal basis by a matrix A satisfying A = A∗. Such a matrix was also

called Hermitian.

Theorem 11.2.2. Let T be a self-adjoint operator. Then:

(1) Every eigenvalue of T is a real number.

(2) Let λ 6= µ be two eigenvalues of T then

Eλ ⊥ Eµ.

Proof. We begin with the first claim. Suppose that Tv = λv for some vector v 6= 0. Then

〈Tv, v〉 = 〈λv, v〉 = λ‖v‖2. On the other hand, 〈Tv, v〉 = 〈v, T ∗v〉 = 〈v, Tv〉 = 〈v, λv〉 = λ̄‖v‖2. It

follows that λ = λ̄.
Now for the second part. Let v ∈ Eλ, w ∈ Eµ. We need to show v ⊥ w. We have 〈Tv,w〉 =

λ〈v, w〉 and also 〈Tv,w〉 = 〈v, T ∗w〉 = 〈v, Tw〉 = 〈v, µw〉 = µ〈v, w〉 (we have already established

that µ is real). It follows that (λ− µ)〈v, w〉 = 0 and so that 〈v, w〉 = 0. �

Theorem 11.2.3. Let T be a self-adjoint operator. There exists an orthonormal basis B such

that [T ]B is diagonal.

Proof. The proof is by induction on dim(V ). The cases dim(V ) = 0, 1 are obvious. Assume that

dim(V ) > 1.

Let λ1 be an eigenvalue of T . By definition, there is a corresponding non-zero vector v1 such

that Tv1 = λ1v1 and we may assume that ‖v1‖ = 1. Let W = Span(v1).

Lemma 11.2.4. Both W and W⊥ are T -invariant.

Proof of lemma. This is clear for W since v1 is an eigenvector. Suppose that w ∈ W⊥. Then

〈Tw, αv1〉 = 〈w, T ∗αv1〉 = 〈w, Tαv1〉 = λ1〈w,αv1〉 = 0. This shows that Tw is orthogonal to W

and so is in W⊥ �

We can therefore decompose V and T accordingly:

V = W ⊕W⊥, T = T1 ⊕ T2.

Lemma 11.2.5. Both T1 and T2 are self adjoint.
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Proof. T1 is just multiplication by the real scalar λ1, hence is self-adjoint. Let w1, w2 be in

W⊥. Then: 〈Tw1, w2〉 = 〈w1, Tw2〉. Since W⊥ is T -invariant, Twi is just T2wi and we get

〈T2w1, w2〉 = 〈w1, T2w2〉, showing T2 is self-adjoint. �

We may therefore apply the induction hypothesis to T2; there is an orthonormal basis B2 of

W⊥, say B2 = {v2, . . . , vn}, such that [T ]B2 is diagonal, say diag(λ2, . . . , λn). Let

B = {v1} ∪B2.

Then B is an orthonormal basis for V and [T ]B = diag(λ1, λ2, . . . , λn). �

Corollary 11.2.6. Let T : V → V be a self adjoint operator whose distinct eigenvalues are

λ1, . . . , λr. Then

V = Eλ1 ⊕ · · · ⊕ Eλr .

Choose an orthonormal basis Bi for Eλi. Then

B = B1 ∪B2 ∪ · · · ∪Br,

is an orthonormal basis for V and in this basis

[T ]B = diag(λ1, . . . , λ1, . . . , λr, . . . , λr).

Proof. Such a decomposition exists because T is diagonalizable. For any bases Bi we get that [T ]B

is diagonal of the form given above. If the Bi are orthonormal then so is B, because Eλi ⊥ Eλj

for i < j. �

Definition 11.2.7. A complex matrix M is called unitary if M∗ = M−1. If M is real and

unitary we call it orthogonal.

To say M is unitary is the same as saying that its columns form an orthonormal basis. We

therefore rephrase Corollary 11.2.6. (Note that the point is also that we may write M∗ instead

of M−1. The usefulness of that will become clearer when we deal with bilinear forms.)

Corollary 11.2.8. Let A be a self-adjoint matrix, A = A∗. Then, there is a unitary matrix M

such that tMAM is diagonal.

It is worth noting a special case.

Corollary 11.2.9. Let A be a real symmetric matrix. Then there is an orthogonal matrix P

such that tPAP is diagonal.

Example 11.2.10. Consider the symmetric matrix

A =

2 1 1

1 2 1

1 1 2

 ,
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whose characteristic polynomial is (t− 4)(t− 1)2. One finds

E4 = Span((1, 1, 1)),

with orthonormal basis given by

1√
3

(1, 1, 1),

and
E1 = Span({(1,−1, 0), (0, 1,−1)}).

We get an orthonormal basis for E1 by applying Gram-Schmidt: v1 = 1√
2
(1,−1, 0), s′2 =

(0, 1,−1) − 〈(0, 1,−1), 1√
2
(1,−1, 0)〉 · 1√

2
(1,−1, 0) = (0, 1,−1) + 1

2(1,−1, 0) = 1
2(1, 1,−2). An

orthonormal basis for E1 is given by{
1√
2

(1,−1, 0),
1√
6

(1, 1,−2)

}
.

The matrix

P =


1√
3

1√
2

1√
6

1√
3
−1√
2

1√
6

1√
3

0 −2√
6


is orthogonal, that is tP · P = I3, and tPAP = diag(4, 1, 1).

11.3. Application to symmetric bilinear forms. To simplify the exposition, we assume

that V is an n-dimensional vector space over the real numbers R, even though the basic def-

initions and results hold in general.

Definition 11.3.1. A bilinear form on V is a bilinear symmetric function

[·, ·] : V × V → R.

That is, for all v1, v2, v, w ∈ V and scalars a1, a2:

(1) [a1v2 + a2v2, w] = a1[v1, w] + a2[v2, w];

(2) [v, w] = [w, v].

Note that there is no requirement of positivity such as [v, v] > 0 for v 6= 0 (and that would

also make no sense if we wish to extend the definition to a general field). However, the same

arguments as in the case of inner products allow one to conclude that the following example is

really the most general case.

Example 11.3.2. Let C be any basis for V and let A ∈ Mn(R) be a real symmetric matrix.

Then

[v, w] = t[v]CA[w]C ,

is a bilinear form.
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Suppose that we change a basis. Let B be another basis and let M = CMB be the transition

matrix. Then, in the basis B the bilinear form is represented by

tMAM,

because t[v]B
tMAM [w]B = t(M [v]B)AM [w]B = t[v]CA[w]C . Since we can find an orthogonal

matrix M such that tMAM is diagonal, we conclude the following:

Proposition 11.3.3 (Principal Axis Theorem). Let A be a real symmetric matrix representing

a symmetric bilinear form [·, ·] in some basis of V . Then, there is an orthonormal basis B with

respect to which the bilinear form is given by

t[v]B diag(λ1, . . . , λn) [w]B =

n∑
i=1

λiviwi,

where
[v]B = (v1, . . . , vn), [w]B = (w1, . . . , wn).

Moreover, the diagonal elements λ1, . . . , λn are the eigenvalues of A, each appearing with the

same multiplicity as in the characteristic polynomial of A.

Example 11.3.4. Consider the bilinear form given by the matrix

A =

2 1 1

1 2 1

1 1 2

 .

This is the function

[(x1, x2, x3), (y1, y2, y3)] = 2x1y1 + 2x2y2 + 2x3y3 + x1y2 + x2y1 + x1y3 + x3y1 + x2y3 + x3y2.

There is another orthogonal coordinate system (see Example 11.2.10), given by the columns of

P =


1√
3

1√
2

1√
6

1√
3
−1√
2

1√
6

1√
3

0 −2√
6


in which the bilinear form is given by 4 0 0

0 1 0

0 0 1

 .

Namely, in this coordinate system the bilinear form is just the function

[(x1, x2, x3), (y1, y2, y3)] = 4x1y1 + x2y2 + x3y3;

a more palatable formula than the original one!
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11.4. Application to inner products. Recall that a matrix M ∈Mn(F), F = R or C, defines

a function

〈(x1, . . . , xn), (y1, . . . , yn)〉 = (x1, . . . , xn) M (y1, . . . , yn)
t
,

which is an inner product if and only if M is Hermitian, that is M = M∗ (which we also call now

“self-adjoint”) and for every non-zero vector (x1, . . . , xn), 〈(x1, . . . , xn), (x1, . . . , xn)〉 is a positive

real number. We called the last property “positive-definite”.

Theorem 11.4.1. Let M be a Hermitian matrix then M is positive-definite if and only if every

eigenvalue of M is positive.

Proof. We claim that M is positive definite if and only if AMA∗ is positive definite for some

(any) invertible matrix A. Note the formula (A∗)−1 = (A−1)∗ obtained by taking ∗ of both sides

of AA−1 = In. Using it one sees that it is enough to show one direction. Suppose M is positive

definite. Given a vector v we write v = tA−1w then

tvAMA∗v̄ = t(tAv)M tAv = twMw.

If v 6= 0 then w 6= 0 and then twMw > 0. This shows AMA∗ is positive definite.

We now choose A to a unitary matrix such that AMA∗ is diagonal, say diag(λ1, . . . , λn), and

the λi are the eigenvalues of M (because AMA∗ = AMA−1). This is possible by Corollary 11.2.8.

It is enough to prove then that a diagonal real matrix is positive definite if and only if all the

diagonal entries are positive. The necessity is clear, since tei diag(λ1, . . . , λn) ei = λi should be

positive. Conversely, if each λi is positive, for any non-zero vector (x1, . . . , xn) we have

(x1, . . . , xn) diag(λ1, . . . , λn) (x1, . . . , xn)
t

=

n∑
i=1

λi|xi|2 > 0.

�

Example 11.4.2. Consider the case of a two-by-two matrix Hermitian matrix

M =

(
a b

b̄ d

)
.

The characteristic polynomial is t2 − (a+ d)t+ (ad− bb̄).
Now, two real numbers α, β are positive if and only if α + β and αβ are positive. Namely,

the eigenvalues of M are positive if and only if Tr(M) > 0,det(M) > 0. That is, if and only if

a+ d > 0, ad− bb̄ > 0, which is equivalent to a > 0, d > 0 and ad− bb̄ > 0.

11.4.1. Extremum of functions of several variables. Symmetric bilinear forms are of great im-

portance everywhere in mathematics. For instance, given a twice differentiable function f :

Rn → R, the local extremum points of f are points α = (α1, . . . , αn) where the gradient
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(
∂f
∂x1

(α), . . . , ∂f∂xn (α)
)

vanishes. At these points one construct the Hessian matrix

(
∂2f

∂xi∂xj
(α)

)
=


∂2f
∂x21

(α) . . . ∂2f
∂x1∂xn

(α)

...
...

∂2f
∂xn∂x1

(α) . . . ∂2f
∂x2n

(α)

 ,

which is symmetric by a fundamental result about functions in several variables. The function

has a local minimum (maximum) iff and only if the Hessian is a positive definite (resp. minus the

Hessian is positive definite). See also the assignments. We illustrate that for one pretty function.

Consider the function f(x, y) = sin(x)2 + cos(y)2. The gradient vanishes at points where

sin(x)^2 + cos(y)^2

–3

–2

–1

0

1

2

3

x

–3

–2

–1

0

1

2

3

y

0

0.5

1

1.5

2

sin(x) = 0 or cos(x) = 0 and also sin(y) = 0 or cos(y) = 0. Namely, at points of the form

{(x, y) : x, y ∈ π
2Z}. The Hessian is(

2(1− 2 sin(x)2) 0

0 2(1− 2 cos(y)2)

)
.

This matrix is positive definite at an extremum point {(x, y) : x, y ∈ π
2Z} iff x ∈ πZ and

y ∈ π(Z + 1/2); those are the minima of the function. Similarly, we get maxima at the points

x ∈ π(Z + 1/2) and y ∈ πZ. The rest of the points are saddle points.

11.4.2. Classification of quadrics. Consider an equation of the form

ax2 + bxy + cy2 = N,

where N is some positive constant. What is the shape of the curve in R2, called a quadric,

consisting of the solutions for this equation?
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We can view this equation in the following form:

(x, y)

(
a b/2

b/2 c

)(
x

y

)
= N.

Let

A =

(
a b/2

b/2 c

)
.

We assume for simplicity that A is non-singular, i.e., det(A) 6= 0. We can pass to another

orthonormal coordinate system (the principal axis) such that the equation is written as

λ1x
2 + λ2y

2 = N

in the new coordinates. Here λi are the eigenvalues of A. Clearly, if both eigenvalues are positive

we get an ellipse, if both are negative we get the empty set, and if one is negative and the other

is positive then we get a hyperbole. We have

λ1 + λ2 = Tr(A), λ1λ2 = det(A).

The case where λ1, λ2 are positive (negative) corresponds to Tr(A) > 0, det(A) > 0 (resp. Tr(A) <

0, det(A) > 0). The case of mixed signs is when det(A) < 0.

Proposition 11.4.3. Let

A =

(
a b/2

b/2 c

)
.

The curve defined by

ax2 + bxy + cy2 = N,

is an:

• ellipse, if Tr(A) > 0, det(A) > 0;

• hyperbole, if det(A) < 0;

• empty, if Tr(A) < 0, det(A) > 0.

11.5. Normal operators. The normal operators are a much larger class than the self-adjoint

operators. We shall see that we have a good structure theorem for this wider class of operators.

Definition 11.5.1. A linear map T : V → V is called normal if

TT ∗ = T ∗T.

Example 11.5.2. Here are two classes of normal operators:

• The self adjoint operators. Those are the transformations T such that T = T ∗. In this

case TT ∗ = T 2 = T ∗T .

• The unitary operators. Those are the transformations T such that T ∗ = T−1. In this

case, TT ∗ = Id = T ∗T .
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Suppose that S is self-adjoint and U is unitary and, moreover, SU = US. Let T = SU . Then T

is normal since TT ∗ = SUU∗S∗ = SS∗ = S∗S and T ∗T = U∗S∗SU = S∗U∗US = S∗S, where

we have also used that if U and S commute so do U∗ and S∗.
In fact, one can prove that any normal operator T can be written as SU , where S is self-adjoint,

U is unitary, and SU = US.

Our goal is to prove orthonormal diagonalization for normal operators. We first proves some

lemmas needed for the proof.

Lemma 11.5.3. Let T be a linear operator and U ⊆ V a T -invariant subspace. Then U⊥ is

T ∗-invariant.

Proof. Indeed, v ∈ U⊥ iff 〈u, v〉 = 0, ∀u ∈ U . Now, for every u ∈ U and v ∈ U⊥ we have

〈u, T ∗v〉 = 〈Tu, v〉 = 0,

because Tu ∈ U as well. That shows T ∗v ∈ U⊥. �

Lemma 11.5.4. Let T be a normal operator. Let v be an eigenvector for T with eigenvalue λ.

Then v is also an eigenvector for T ∗ with eigenvalue λ̄.

Proof. We have

〈T ∗v − λ̄v, T ∗v − λ̄v〉 = 〈(T − λ · Id)∗v, (T − λ · Id)∗v〉

= 〈v, (T − λ · Id)(T − λ · Id)∗v〉

= 〈v, (T − λ · Id)∗(T − λ · Id)v︸ ︷︷ ︸
0

〉

= 0.

(11.1)

(We have used the identity (T − λ · Id)(T − λ · Id)∗ = (T − λ · Id)∗(T − λ · Id), which is easily

verified by expanding both sides and using TT ∗ = T ∗T .) It follows that T ∗v − λ̄v = 0 and the

lemma follows. �

Theorem 11.5.5. Let T : V → V be a normal operator. Then there is an orthonormal basis B

for V such that

[T ]B = diag(λ1, . . . , λn).

Proof. We prove that by induction on n = dim(V ); the proof is very similar to the proof of

Theorem 11.2.3. The theorem is clearly true for n = 1. Consider the case n > 1. Let v be a non-

zero eigenvector, of norm 1, U = Span(v). Then U is T invariant, but also T ∗ invariant, because

v is also a T ∗-eigenvector by Lemma 11.5.4. Therefore, U⊥ is T -invariant and T ∗-invariant by

Lemma 11.5.3 and clearly T |U⊥ is normal. By induction there is an orthonormal basis B′ for

U⊥ in which T is diagonal. Then B = {v} ∪ B′ is an orthonormal basis for V in which T is

diagonal. �
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Theorem 11.5.6 (The Spectral Theorem). Let T : V → V be a normal operator. Then

T = λ1ε1 + · · ·+ λrεr,

where λ1, . . . , λr are the eigenvalues of T and the εi are orthogonal projections5 such that

εi ⊥ εj , i 6= j, Id = ε1 + · · ·+ εr.

Proof. We first prove the following lemma.

Lemma 11.5.7. Let λ 6= µ be eigenvalues of T . Then

Eλ ⊥ Eµ.

Proof. Let v ∈ Eλ, w ∈ Eµ. On the one hand,

〈Tv,w〉 = 〈λv,w〉 = λ〈v, w〉.

On the other hand,

〈Tv,w〉 = 〈v, T ∗w〉 = 〈v, µ̄w〉 = µ〈v, w〉.
Since λ 6= µ it follows that 〈v, w〉 = 0. �

Now, by Theorem 11.5.5, T is diagonalizable. Thus,

V = Eλ1 ⊕ · · · ⊕ Eλr .

Let
εi : V → Eλi

be the projection. The Lemma says that the eigenspaces are orthogonal to each other and that

implies that εiεj = 0 for i 6= j. The identity, Id = ε1 + · · · + εr, is just a restatement of the

decomposition V = Eλ1 ⊕ · · · ⊕ Eλr . �

11.6. The unitary and orthogonal groups. (Time allowing)

5If R is a ring and ε1, . . . , εr are elements such that εiεj = δijεi and 1 = ε1 + · · · + εr, we call them
orthogonal idempotents. This is the situation we have in the theorem for R = End(V ).
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nullity, 91

projection, 29, 33

orthogonal, 71

self-adjoint, 99

singular, 23

linearly dependent, 10
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maximal, 11

Markov chain, 4

matrix
standard nilpotent, 90

diagonalizable, 77

elementary, 56
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unitary, 100
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