Assignment 2

1. Let V be the set of all sequences of complex numbers (a_0, a_1, a_2, \ldots) satisfying

 \[a_n = a_{n-1} + a_{n-2}, \quad \forall n \geq 2. \]

 Show that V has a natural structure of a vector space over \mathbb{C}. Find its dimension and a basis.

2. Let V be an n-dimensional vector space over a field \mathbb{F}. Let $T = \{t_1, \ldots, t_m\} \subset V$ be a linearly independent set. Let $W = \text{Span}(T)$. Prove:

 \[\dim(W) = m. \]

3. Let W be a subspace of a vector space V of dimension n. Let $\{t_1, \ldots, t_m\}$ be a basis for W. Prove that there exist vectors $\{t_{m+1}, \ldots, t_n\}$ in V such that $\{t_1, \ldots, t_m, t_{m+1}, \ldots, t_n\}$ is a basis for V.

4. Let V_1, V_2 be finite dimensional vector spaces over a field \mathbb{F}. Prove that

 \[\dim(V_1 \oplus V_2) = \dim(V_1) + \dim(V_2). \]

5. Consider $V := \mathbb{R}[t]_n$, the vector space of polynomials of degree $< n$ with real coefficients. Let

 \[r_1 < r_2 < \cdots < r_n \]

 be any real numbers. Show that for every i there exists a unique polynomial f_i in V that vanishes at all the r_j except for r_i where it obtains the value 1. Give an explicit formula for f_i. Show that

 \[f_1, f_2, \ldots, f_n \]

 comprise a basis for V.

6. Let $\mathcal{B} = \{(1, 1), (1, 5)\}$ and $\mathcal{C} = \{(2, 1), (1, -1)\}$ be bases of \mathbb{R}^2. Find the change of basis matrices g_M_c and c_M_B between the bases \mathcal{B} and \mathcal{C}. Let $v = \begin{pmatrix} 5 \\ 23 \end{pmatrix}$ with respect to the standard basis. Find $[v]_\mathcal{B}$ and $[v]_\mathcal{C}$.

7. Let \mathbb{F} be a finite field with q elements.

 (1) Show that the kernel of the ring homomorphism

 \[\mathbb{Z} \rightarrow \mathbb{F} \]

 defined by $n \mapsto n \cdot 1 = 1 + \cdots + 1$ (n times) is of the form $p\mathbb{Z}$ for some prime p. Conclude that we may assume that $\mathbb{F} \cong \mathbb{Z}/p\mathbb{Z}$ for some prime p.

 (2) Prove that \mathbb{F} is a vector space of finite dimension over $\mathbb{Z}/p\mathbb{Z}$ and if this dimension is n then \mathbb{F} has p^n elements\(^1\).

Bonus question (= 20%). Let \mathbb{F} be a finite field of q elements. Let $V = \mathbb{F}^n$ and let C be a code (= a subspace) of dimension k, hence having q^k elements. Let d be the minimal Hamming weight of a non zero element of C. Prove that

\[d \leq n - k + 1. \]

\(^1\)Note: at this point you’ve proven that every finite field has cardinality p^n for some prime p.
