Lemma 1. Let $n \ge 2$. Let S_n be the group of permutations of $\{1, 2, ..., n\}$. There exists a surjective homomorphism of groups

$$\operatorname{sgn}: S_n \longrightarrow \{\pm 1\}$$

(called the 'sign'). It has the property that for every $i \neq j$,

$$\operatorname{sgn}((ij)) = -1.$$

Proof. Consider the polynomial in n-variables¹

$$p(x_1,\ldots,x_n) = \prod_{i < j} (x_i - x_j).$$

Given a permutation σ we may define a new polynomial

$$\prod_{i < j} (x_{\sigma(i)} - x_{\sigma(j)})$$

Note that $\sigma(i) \neq \sigma(j)$ and for any pair $k < \ell$ we obtain in the new product either $(x_k - x_\ell)$ or $(x_\ell - x_k)$. Thus, for a suitable choice of sign $\operatorname{sgn}(\sigma) \in \{\pm 1\}$, we have²

$$\prod_{i < j} (x_{\sigma(i)} - x_{\sigma(j)}) = \operatorname{sgn}(\sigma) \prod_{i < j} (x_i - x_j).$$

We obtain a function

$$\operatorname{sgn}: S_n \longrightarrow \{\pm 1\}.$$

This function satisfies sgn($(k\ell)$) = -1 (for $k < \ell$): Let $\sigma = (k\ell)$ and consider the product

$$\prod_{i < j} (x_{\sigma(i)} - x_{\sigma(j)}) = (x_{\ell} - x_k) \prod_{\substack{i < j \\ i \neq k, j \neq \ell}} (x_i - x_j) \prod_{\substack{k < j \\ j \neq \ell}} (x_{\ell} - x_j) \prod_{\substack{i < \ell \\ i \neq k}} (x_i - x_k)$$

Counting the number of signs that change we find that

$$\prod_{i < j} (x_{\sigma(i)} - x_{\sigma(j)}) = (-1)(-1)^{\sharp\{j:k < j < \ell\}} (-1)^{\sharp\{i:k < i < \ell\}} \prod_{i < j} (x_i - x_j) = -\prod_{i < j} (x_i - x_j).$$

It remains to show that **sgn** is a group homomorphism. We first make the innocuous observation that for any variables y_1, \ldots, y_n and for any permuation σ we have

$$\prod_{i < j} (y_{\sigma(i)} - y_{\sigma(j)}) = \operatorname{sgn}(\sigma) \prod_{i < j} (y_i - y_j).$$

Let τ be a permutation. We apply this observation for the variables $y_i := x_{\tau(i)}$. We get

$$\mathbf{sgn}(\tau\sigma)p(x_1,\ldots,x_n) = p(x_{\tau\sigma(1)},\ldots,x_{\tau\sigma(n)})$$
$$= p(y_{\sigma(1)},\ldots,y_{\sigma(n)})$$
$$= \mathbf{sgn}(\sigma)p(y_1,\ldots,y_n)$$
$$= \mathbf{sgn}(\sigma)p(x_{\tau(1)},\ldots,x_{\tau(n)})$$
$$= \mathbf{sgn}(\sigma)\mathbf{sgn}(\tau)p(x_1,\ldots,x_n).$$

¹For n = 2 we get $x_1 - x_2$. For n = 3 we get $(x_1 - x_2)(x_1 - x_3)(x_2 - x_3)$.

²For example, if n = 3 and σ is the cycle (123) we have

 $(x_{\sigma(1)} - x_{\sigma(2)})(x_{\sigma(1)} - x_{\sigma(3)})(x_{\sigma(2)} - x_{\sigma(3)}) = (x_2 - x_3)(x_2 - x_1)(x_3 - x_1) = (x_1 - x_2)(x_1 - x_3)(x_2 - x_3).$ Hence, sgn((1 2 3)) = 1. This gives

$$\mathbf{sgn}(\tau\sigma) = \mathbf{sgn}(\tau)\mathbf{sgn}(\sigma).$$

Calculating sgn in practice. Recall that every permutation σ can be written as a product of disjoint cycles

$$\sigma = (a_1 \dots a_\ell)(b_1 \dots b_m) \dots (f_1 \dots f_n).$$

<u>Claim</u>: $\operatorname{sgn}(a_1 \dots a_\ell) = (-1)^{\ell-1}$. <u>Corollary</u>: $\operatorname{sgn}(\sigma) = (-1)^{\sharp \text{ even length cycles}}$.

Proof. We write

$$(a_1 \dots a_\ell) = \underbrace{(a_1 a_\ell) \dots (a_1 a_3)(a_1 a_2)}_{\ell-1 \text{ transpositions}}.$$

Since a transposition has sign -1 and sgn is a homomorphism, the claim follows.

A Numerical example. Let n = 11 and

 $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 5 & 4 & 3 & 1 & 7 & 8 & 10 & 6 & 9 \end{pmatrix}.$

Then

$$\sigma = (1\ 2\ 5)(3\ 4)(6\ 7\ 8\ 10\ 9).$$

Now,

$$sgn((1\ 2\ 5)) = 1$$
, $sgn((3\ 4)) = -1$, $sgn((6\ 7\ 8\ 10\ 9)) = 1$

We conclude that $sgn(\sigma) = -1$.

Realizing S_n as linear transformations. Let \mathbb{F} be any field. Let $\sigma \in S_n$. There is a unique linear transformation

 $T_{\sigma}: \mathbb{F}^n \longrightarrow \mathbb{F}^n,$

such that

 $T(e_i) = e_{\sigma(i)}, \quad i = 1, \dots n,$

where, as usual, e_1, \ldots, e_n are the standard basis of \mathbb{F}^n . Note that

$$T_{\sigma} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} x_{\sigma^{-1}(1)} \\ x_{\sigma^{-1}(2)} \\ \vdots \\ x_{\sigma^{-1}(n)} \end{pmatrix}.$$

(For example, because $T_{\sigma}x_1e_1 = x_1e_{\sigma(1)}$, the $\sigma(1)$ coordinate is x_1 , namely, in the $\sigma(1)$ place we have the entry $x_{\sigma^{-1}(\sigma(1))}$.) Since for every *i* we have $T_{\sigma}T_{\tau}(e_i) = T_{\sigma}e_{\tau(i)} = e_{\sigma\tau(i)} = T_{\sigma\tau}e_i$, we have the relation

$$T_{\sigma}T_{\tau}=T_{\sigma\tau}.$$

The matrix representing T_{σ} is the matrix (a_{ij}) with $a_{ij} = 0$ unless $i = \sigma(j)$. For example, for n = 4 the matrices representing the permutations (12)(34) and (1 2 3 4) are, respectively

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Otherwise said,³

$$T_{\sigma} = \begin{pmatrix} e_{\sigma(1)} \mid e_{\sigma(2)} \mid \dots \mid e_{\sigma(n)} \end{pmatrix} = \begin{pmatrix} \frac{e_{\sigma^{-1}(1)}}{e_{\sigma^{-1}(2)}} \\ \vdots \\ \vdots \\ e_{\sigma^{-1}(n)} \end{pmatrix}.$$

It follows that

$$\operatorname{sgn}(\sigma) \det(T_{\sigma}) = \operatorname{sgn}(\sigma) \det \left(e_{\sigma(1)} \mid e_{\sigma(2)} \mid \dots \mid e_{\sigma(n)} \right)$$
$$= \det \left(e_1 \mid e_2 \mid \dots \mid e_n \right)$$
$$= \det(I_n)$$
$$= 1.$$

Recall that $\mathbf{sgn}(\sigma) \in \{\pm 1\}$. We get

$$\det(T_{\sigma}) = \mathbf{sgn}(\sigma).$$

³This gives the interesting relation $T_{\sigma^{-1}} = T_{\sigma}^t$. Because $\sigma \mapsto T_{\sigma}$ is a group homomorphism we may conclude that $T_{\sigma}^{-1} = T_{\sigma}^t$. Of course for a general matrix this doesn't hold.