
The sign of a permutation, and realizing permutations as linear transformations.

Lemma 1. Let n ≥ 2. Let Sn be the group of permutations of {1, 2, . . . , n}. There exists a surjective
homomorphism of groups

sgn : Sn −→ {±1}
(called the ‘sign’). It has the property that for every i 6= j,

sgn( (ij) ) = −1.

Proof. Consider the polynomial in n-variables1

p(x1, . . . , xn) =
∏
i<j

(xi − xj).

Given a permutation σ we may define a new polynomial∏
i<j

(xσ(i) − xσ(j)).

Note that σ(i) 6= σ(j) and for any pair k < ` we obtain in the new product either (xk−x`) or (x`−xk).
Thus, for a suitable choice of sign sgn(σ) ∈ {±1}, we have2∏

i<j

(xσ(i) − xσ(j)) = sgn(σ)
∏
i<j

(xi − xj).

We obtain a function
sgn : Sn −→ {±1}.

This function satisfies sgn( (k`) ) = −1 (for k < `): Let σ = (k`) and consider the product∏
i<j

(xσ(i) − xσ(j)) = (x` − xk)
∏
i<j

i 6=k,j 6=`

(xi − xj)
∏
k<j
j 6=`

(x` − xj)
∏
i<`
i 6=k

(xi − xk)

Counting the number of signs that change we find that∏
i<j

(xσ(i) − xσ(j)) = (−1)(−1)]{j:k<j<`}(−1)]{i:k<i<`}
∏
i<j

(xi − xj) = −
∏
i<j

(xi − xj).

It remains to show that sgn is a group homomorphism. We first make the innocuous observation that
for any variables y1, . . . , yn and for any permuation σ we have∏

i<j

(yσ(i) − yσ(j)) = sgn(σ)
∏
i<j

(yi − yj).

Let τ be a permutation. We apply this observation for the variables yi := xτ(i). We get

sgn(τσ)p(x1, . . . , xn) = p(xτσ(1), . . . , xτσ(n))

= p(yσ(1), . . . , yσ(n))

= sgn(σ)p(y1, . . . , yn)

= sgn(σ)p(xτ(1), . . . , xτ(n))

= sgn(σ)sgn(τ)p(x1, . . . , xn).

1For n = 2 we get x1 − x2. For n = 3 we get (x1 − x2)(x1 − x3)(x2 − x3).
2For example, if n = 3 and σ is the cycle (123) we have

(xσ(1) − xσ(2))(xσ(1) − xσ(3))(xσ(2) − xσ(3)) = (x2 − x3)(x2 − x1)(x3 − x1) = (x1 − x2)(x1 − x3)(x2 − x3).

Hence, sgn( (1 2 3) ) = 1.
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This gives
sgn(τσ) = sgn(τ)sgn(σ).

�

Calculating sgn in practice. Recall that every permutation σ can be written as a product of
disjoint cycles

σ = (a1 . . . a`)(b1 . . . bm) . . . (f1 . . . fn).

Claim: sgn(a1 . . . a`) = (−1)`−1.
Corollary: sgn(σ) = (−1)] even length cycles.

Proof. We write
(a1 . . . a`) = (a1a`) . . . (a1a3)(a1a2)︸ ︷︷ ︸

`−1 transpositions

.

Since a transposition has sign −1 and sgn is a homomorphism, the claim follows. �

A Numerical example. Let n = 11 and

σ =
(

1 2 3 4 5 6 7 8 9 10
2 5 4 3 1 7 8 10 6 9

)
.

Then
σ = (1 2 5)(3 4)(6 7 8 10 9).

Now,
sgn( (1 2 5) ) = 1, sgn( (3 4) ) = −1, sgn( (6 7 8 10 9) ) = 1.

We conclude that sgn(σ) = −1.

Realizing Sn as linear transformations. Let F be any field. Let σ ∈ Sn. There is a unique
linear transformation

Tσ : Fn −→ Fn,

such that
T (ei) = eσ(i), i = 1, . . . n,

where, as usual, e1, . . . , en are the standard basis of Fn. Note that

Tσ


x1

x2

...
xn

 =


xσ−1(1)

xσ−1(2)

...
xσ−1(n)

 .

(For example, because Tσx1e1 = x1eσ(1), the σ(1) coordinate is x1, namely, in the σ(1) place we have
the entry xσ−1(σ(1)).) Since for every i we have TσTτ (ei) = Tσeτ(i) = eστ(i) = Tστei, we have the
relation

TσTτ = Tστ .

The matrix representing Tσ is the matrix (aij) with aij = 0 unless i = σ(j). For example, for n = 4
the matrices representing the permutations (12)(34) and (1 2 3 4) are, respectively

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 .
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Otherwise said,3

Tσ =
(
eσ(1) | eσ(2) | . . . | eσ(n)

)
=



eσ−1(1)

——–
eσ−1(2)

——–
...

——–
eσ−1(n)


.

It follows that
sgn(σ) det(Tσ) = sgn(σ) det

(
eσ(1) | eσ(2) | . . . | eσ(n)

)
= det

(
e1 | e2 | . . . | en

)
= det(In)
= 1.

Recall that sgn(σ) ∈ {±1}. We get
det(Tσ) = sgn(σ).

3This gives the interesting relation Tσ−1 = T t
σ . Because σ 7→ Tσ is a group homomorphism we may conclude that

T−1
σ = T t

σ . Of course for a general matrix this doesn’t hold.


