Algebra II 189-251B

Instructor: Dr. E. Goren.

Assignment 6

To be submitted by March 9, 12:00

1. Let V be a finite dimensional vector space and let $W \subseteq V$ be a subspace. Prove that $\dim(V) = \dim(W) + \dim(V/W).$

2. Define functionals ϕ_1, \ldots, ϕ_n on $\mathbb{R}[t]_n$ by

$$\phi_i(f) = f(i).$$

Prove that $\{\phi_1, \ldots, \phi_n\}$ is a basis for $(\mathbb{R}[t]_n)^*$. What basis $\{s_1, \ldots, s_n\}$ for $\mathbb{R}[t]_n$ has the property that $\{\phi_1, \ldots, \phi_n\}$ is its dual basis?

3. Let U_1, U_2 be subspaces of a vector space V. Prove that¹

$$(U_1 + U_2)^{\perp} = U_1^{\perp} \cap U_2^{\perp}, \quad (U_1 \cap U_2)^{\perp} = U_1^{\perp} + U_2^{\perp},$$

4. Let $T: V \longrightarrow W$ be a linear transformation with kernel U. Show that $\text{Im}(T^*) = U^{\perp}$. Use that to conclude the following facts:²

- (1) If T is injective, T^* is surjective.
- (2) If T is surjective, T^* is injective. (I suggest proving this fact directly from the definitions and not as a consequence of $\text{Im}(T^*) = U^{\perp}$).

(3) $\dim(\operatorname{Im}(T)) = \dim(\operatorname{Im}(T^*)).$

(4) For every $m \times n$ matrix A we have

$$\operatorname{rank}_r(A) = \operatorname{rank}_c(A).$$

¹In your text book the notation U° is used instead of U^{\perp} .

²Try and prove the facts even if you can not prove that $\text{Im}(T^{\star}) = U^{\perp}$.