Algebra II 189-251B Instructor: Dr. E. Goren.

Assignment 4

To be submitted by February 9, 12:00
In this assignment V' and W are vector spaces of dimension n and m respectively, over a field F.

1. Let B be a basis for V and C a basis for W. Prove that for any m x n matrix A with entries in F
there exists a unique linear transformation T : V' — W such that ¢[T]z = A.

2. Deduce from the theorems on determinants the following:

1. If a column is zero, the determinant is zero.
det(A) = det(A?), where A® is the transposed matrix.
If a row is zero, the determinant is zero.
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Let A be a matrix in “block form”:
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Here each A; is a square matrix say of size r;, and As starts at the r; + 1 column and r; + 1
row, etc. Prove that

det(A) = det(A;) det(Az) - - - det(Ay).

Conclude that the determinant of a triangular matrix is given by
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(Here each a;; is a scalar).

3. Calculate the following series of determinants.
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4. Prove the following formula (the Vandermonde determinant):
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For example, for n = 2,3 we have
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det (% ﬁ;) = (SCQ — Il), det (1 T2 1%) = (:ZZQ — 1'1)(503 — Il)(l’g — Ig).
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