Algebra II 189-251B

Instructor: Dr. E. Goren.

Assignment 2

To be submitted by January 26, 12:00

1. Let V be the set of all sequences of complex numbers (a_0, a_1, a_2, \dots) satisfying

$$a_n = a_{n-1} + a_{n-2}, \quad \forall n \ge 2.$$

Show that V has a natural structure of a vector space over \mathbb{C} . Find its dimension and a basis.

2. Let V be an n-dimensional vector space over a field \mathbb{F} . Let $T = \{t_1, \ldots, t_m\} \subset V$ be a linearly independent set. Let W = Span(T). Prove:

$$\dim(W) = m.$$

3. Let W be a subspace of a vector space V of dimension n. Let $\{t_1, \ldots, t_m\}$ be a basis for W. Prove that there exist vectors $\{t_{m+1}, \ldots, t_n\}$ in V such that $\{t_1, \ldots, t_m, t_{m+1}, \ldots, t_n\}$ is a basis for V.

4. Let V_1, V_2 be finite dimensional vector spaces over a field \mathbb{F} . Prove that

$$\dim(V_1 \oplus V_2) = \dim(V_1) + \dim(V_2)$$

5. Let \mathbb{F} be a field and a_{11}, \ldots, a_{1n} be scalars in \mathbb{F} . Let W_1 be the set of solutions to the linear equation $\sum_{j=1}^{n} a_{1j} x_j = 0$, namely,

$$W_1 = \{ (x_1, \dots, x_n) \in \mathbb{F}^n : a_{11}x_1 + \dots + a_{1n}x_n = 0 \}.$$

Note that W_1 is a subspace of \mathbb{F}^n . Prove:

- (1) $\dim(W_1) \ge n 1$.
- (2) Assume we are given scalars a_{ij} , $1 \le i \le k$, $1 \le j \le n$. Assume also that k < n. Let W be the solution set of the system of equations

$$a_{11}x_1 + \dots + a_{1n}x_n = 0$$
$$a_{21}x_1 + \dots + a_{2n}x_n = 0$$
$$\vdots \qquad \vdots$$
$$a_{k1}x_1 + \dots + a_{kn}x_n = 0.$$

Prove that $\dim(W) \ge n - k$. (Suggestion: Argue by induction on k. Use $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$).

6. Let $\mathcal{B} = \{(1,1), (1,5)\}$ and $\mathcal{C} = \{(2,1), (1,-1)\}$ be bases of \mathbb{R}^2 . Find the change of bases matrices $\mathcal{B}M_{\mathcal{C}}$ and $\mathcal{C}M_{\mathcal{B}}$ between the bases \mathcal{B} and \mathcal{C} . Let $v = \binom{8}{28}$ with respect to the standard basis. Find $[v]_{\mathcal{B}}$ and $[v]_{\mathcal{C}}$.

- 7. Let \mathbb{F} be a finite field with q elements.
 - (1) Show that the kernel of the ring homomorphism

 $\mathbb{Z} \longrightarrow \mathbb{F}$

defined by $n \mapsto n \cdot 1 = 1 + \dots + 1$ (*n* times) is of the form $p\mathbb{Z}$ for some prime *p*. Conclude that we may assume that $\mathbb{F} \supseteq \mathbb{Z}/p\mathbb{Z}$ for some prime *p*.

(2) Prove that \mathbb{F} is a vector space of finite dimension over $\mathbb{Z}/p\mathbb{Z}$ and if this dimension is *n* then \mathbb{F} has p^n elements¹.

¹Note: at this point you've proven that every finite field has cardinality p^n for some prime p.