Math 235 (Fall 2009): Assignment 6 Solutions

1.1: Notice that $19808 = 1980 \cdot 10 + 8$. Hence, by Fermat’s little theorem, $2^{19808} \equiv (2^{10})^{1980} \cdot 2^8 \equiv 1^{1980} \cdot 2^8 \equiv (2^4)^2 \equiv 16^2 \equiv 5^2 \equiv 25 \equiv 3 \pmod{11}$. Thus, $2^{19808} + 6 \equiv 9 \pmod{11}$. Using the Euclidean algorithm we can find $1 = 5 \cdot 9 + (-4) \cdot 11$. So, $5 \cdot 9 \equiv 1 \pmod{11}$. This means $(2^{19808} + 6)^{-1} \equiv 5 \pmod{11}$. Therefore, $(2^{19808} + 6)^{-1} + 1 \equiv 6 \pmod{11}$.

1.2: $12^2 \equiv 144 \equiv 28 \equiv -1 \pmod{29}$. Hence, $12^4 \equiv (-1)^2 \equiv 1 \pmod{29}$. Similarly $12^8 \equiv 12^{16} \equiv 1 \pmod{29}$.

By Fermat’s little theorem, $12^{28} \equiv 1 \pmod{29}$. Thus, $12^{25} \cdot 12^3 \equiv 1 \pmod{29}$, i.e., $12^{25} \equiv 12^{-3} \equiv (12^{-1})^{-1} \pmod{29}$. Now notice that from $12^4 \equiv 1 \pmod{29}$, it follows that $12^{-3} \equiv 12 \pmod{29}$. So, $12^{25} \equiv 12 \pmod{29}$.

2.1: $x^4 - x^3 - x^2 + 1 = (x^3 - 1)(x - 1) + (-x^2 + x)$

Hence, $gcd(x^4 - x^3 - x^2 + 1, x^3 - 1) = x - 1$ and

$x - 1 = (x^3 - 1) + (x - x^2 + x)(x + 1)$

$= (x^3 - 1) + [(x^4 - x^3 - x^2 + 1) - (x^3 - 1)(x - 1)](x + 1)$

$= (x^3 - 1)(1 - (x - 1)(x + 1)) + (x^4 - x^3 - x^2 + 1)(x + 1)$

$= (x^3 - 1)(-x^2 + 2) + (x^4 - x^3 - x^2 + 1)(x + 1)$

2.2: $gcd = x^2 + x + 2$ and

$x^2 + x + 2 = (x^5 + x^4 + 2x^3 - x^2 - x - 2)(\frac{1}{4}x + \frac{1}{4}) + (x^4 + 2x^3 + 5x^2 + 4x + 4)(-\frac{1}{4}x^2 - \frac{1}{2}x + \frac{3}{4})$

2.3: $gcd = x^2 - 1$ and

$x^2 - 1 = (x^4 + 5x^3 + 2x + 4) + (x^2 - 1)(-x^2 - 3x)$

2.4: $gcd = \frac{7x}{6} + \bar{6}$ and

$\frac{7x}{6} + \bar{6} = (3x^3 + 5x^2 + 6x)(\bar{2}x^2 + \bar{5}) + (\bar{4}x^4 + \bar{2}x^3 + \bar{3}x^2 + \bar{1}x + \bar{5})(\bar{2}x + \bar{4})$

2.5: $gcd = 3x - 3i$ (notice that this is the same as $gcd = x - i$) and

$3x - 3i = (x^2 + 1)(-x + i) + (x^3 - ix^2 + 4x - 4i)$

2.6: $gcd = \bar{1}$ and

$\bar{1} = (x^4 + x + \bar{1}) + (x^2 + x + \bar{1})(x^2 + x)$

3.1: Rephrasing the question: what are we using to conclude that $(g^a)^b = g^{ab} = (g^b)^a$?

By definition, $g^0 := 1$ and $g^{n+1} := g \cdot g^n$. Using this definition, one can see that in order to prove that $(g^a)^b = g^{ab}$ we need to use the associativity of the product in a ring.
3.2: If \(p > 3 \) and \(g^3 = 1 \), then \(\{g, g^2, g^3, ..., g^{p-1}\} \neq \{0, 1, ..., p-1\} \). In fact, \(g^4 = g^3 g = g \), \(g^5 = g^3 g^2 = g^2 \) and so on. Hence, \(\{g, g^2, g^3, ..., g^{p-1}\} = \{g, g^2\} \). A similar argument shows that \(\{g, g^2, g^3, ..., g^{p-1}\} \neq \{0, 1, ..., p-1\} \) if \(g^2 = 1 \).

Now, why isn’t it desirable to have a \(g \) satisfying an equation like \(g^n = 1 \) for a small \(n \)? As we saw, in this case, \(\{g, g^2, g^3, ..., g^{p-1}\} \) is a very small set. This makes the eavesdropper’s task of finding \(g^{ab} \) given \(g^a \) and \(g^b \) much easier.

3.3: The elements are: \(\overline{2}, \overline{5}, \overline{7} \) and \(\overline{11} \).

3.4: Since the communication is assumed to be over an open channel, an eavesdropper could know \(g^a \) and \(g^b \). Since he already know \(g \), he can then know \(a \) and \(b \). Therefore, he can compute \(g^{ab} \), which was supposed to be a secret shared by \(A \) and \(B \).

3.5: One possible way of doing this is the following:

\(A \) chooses a number \(a \), \(B \) chooses \(b \) and \(C \) chooses \(c \).

Similarly to what had been done before, \(B \) and \(C \) can share \(g^{bc} \). They send this to \(A \), which then computes \(g^{abc} = (g^{bc})^a \).

\(A \) computes \(g^a \) and sends it to \(B \) and \(C \). Now \(B \) computes \(g^{ab} = (g^a)^b \) and sends it to \(C \) (which now can compute \(g^{abc} = (g^{ab})^c \)). \(C \) computes \(g^{ac} = (g^a)^c \) and sends it to \(B \) (which can now compute \(g^{abc} = (g^{ac})^b \)).