MAT235 Assignment 3 Solutions

1.1: 302 =15 x 194 17. . the quotient is 15 and the remainder is 17.
1.2: =302 = —16 x 19 4+ 2. . the quotient is -16 and the remainder is 2.
1.3: 0=0x1940. -.q=0,r=0.

1.4: 2000 =117 x 17+ 11. . ¢ =117,r = 11.

1.5: 2001 =117 x 17+ 12. . ¢ =117,r = 12.

1.6: 2008 =118 x 17+ 2. . ¢ =118,r = 2.

2: As suggested in the hint, let a € Z be an arbitrary integer and write a = 4q + r
for r,q € Z, 0 < r < 3. Then a? = (4q +7)? = 16¢> + 8qr + r? = 4k’ + r%, where
k' = 4¢*+2qr. If r is 0 or 1 we are done and if r = 2, then 4k’ +22 = 4(k' +1) = 4k.
Finally, if » = 3, then 4k’ + 3% = 4(k’ +2) + 1 = 4k + 1. Hence a® can always be
written as an integer multiple of 4, or 1 plus an integer multiple of 4.

3: Let a =2,b=c = 1. Then clearly a|(b+ ¢) but a /b and a fe.

4: Subbing the root r into the given equation, we have 0 = r2+ar+b. Rearranging,
we get —b =12+ ar =r(a+r). ... r|b and the quotient is —(a + 7).

5.1: Suppose (n,n + 2) = d. Writing n = dk and n + 2 = dk/, their difference can
be written as 2 = n+2—n = d(k' — k). .". d|2 and we conclude the only possibilities
for d are 1 and 2 (Note that GCDs are always positive). To show both 1 and 2 are
obtained for some n, check for n € {1,2}.

5.2: A similar argument as above shows d = (n,n + 6)|6. Hence d € {1,2,3,6}.
Again, choose n € {1,2,3,6} to show all such d can be obtained.

5.3: Again let d = (n,2n + 1). Then d divides the difference 2n+1—n =n + 1.
But now d divides n and n + 1, so d divides the difference n +1 —n = 1. Hence
d=1.

6: We argue similarly to (5.3). a|n+2 and a|2n+ 18, so a divides n+ 16. Applying
differences again, we get a|14. Since a is odd and greater then 1, we conclude a = 7.
Choosing n = 5 shows that a = 7 is in fact possible.

7.1: We follow the Euclidean algorithm to find (a,b) and to construct elements
u,v € Z such that au + bv = (a, b).

72 =1 x 56 + 16 8=56—13x 16
56=3x16+8 = =56—3(72—1x 56)
16=2x8+0 =4 x 56— 3 x 72.

. (56,72) =8 and u = 4,v = =3.

7.2:
138 =5 x 24 + 18 6=24—-1x18
24=1x18+6 = =24-1(138 -5 x 24)
18 =3x%x6 =6 x 24 — 138.

. (24,138) = 6 and u = 6,v = —1.
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7.3:

227T=1x143+ 84 1=7-3x%x2

143 =1x84+59 =7-39-7)=-3x9+4x7

84 =1x59+25 =—-3x94+4(25-2x9)=4x25—-11x9

99 =2x25+9 = =4x25-11(59 — 2 x 25) = —11 x 59 + 26 x 25
25=2x947 = —11 x 59 4 26(84 — 59) = 26 x 84 — 37 x 59
9=1x7+2 =26 x 84 —37(143 — 84) = —37 x 143+ 63 x 84
T=3x2+1 = —37 x 143 4+ 63(227 — 143) = 63 x 227 — 100 x 143
. (143,227) = 1 and w = —100,v = 63.

7.4:

314 =1 x 159 4+ 155 1=4-1x3

159 =1 x 155 +4 =4—1(155-38x4) =—1x 155+ 39 x 4

155 =38 x4 +3 = = —1x155+39(159 — 155) = 39 x 159 — 40 x 155
4=1x3+1 39 x 159 — 40(314 — 159) = —40 x 314 + 79 x 159

. (314,159) =1 and uw = —40,v = 79.

8:Assume alc and ble. In general it need not be the case that (ab)|c, for example
take « = b = 4 and ¢ = 8. However, suppose now that (a,b) = 1, we provide
2 proofs, one which requires the fundamental theorem of arithmetic and one that
does not, that shows ab|c.
Proof 1: By the fundamental theorem of arithmetic, we can write a = p{'* - p3? -
o ppt and b = ¢)"! ~q§2 B qtﬁt, where the p’s and ¢’s are distinct primes and
the a’s and f’s are natural numbers. By the condition on the GCD, it follows that
none of the ¢’s can be the same prime as any of the p’s (Make sure you understand
why). Since alc and b|e, it follows that ¢ has a prime decomposition of the form

k t
= Tl T4 T
i=a j=1 s
where the final product is over some finite set of primes raised to positive integer
powers, which may or may not include any of the primes dividing a or b. Hence

c= aleZS

and .". (ab)|c when (a,b) = 1.

Proof 2: Since (a,b) = 1, we can find integers u, v such that 1 = ua+vb. Multiply
both sides of this equation by ¢ to get ¢ = cua + cvb. Using the fact that ¢ =
d x b= d x a for some integers d, d’, we can factor the right hand side of the above
equation as ¢ = a(cu+d'vb) = a(b(du+d'v)). Therefore ¢ = ab(du+ d’'v) and hence
able.

9: There are obviously different solutions to this problem. Here is a method that
admits a bound that is on the same order as the best possible (it is however not
the best possible bound).

Consider applying the Euclidean algorithm to the pair of integers n > m > 0.
We can consider the output as a pair of finite sequences of non-negative integers

{ri}t_, and{q; 3;(1), where we have ry > 7y > ... > r, =0, each ¢; > 0 and



n=q Xm-+rm;
m=qi Xry+r2
and for k > 2 we have
Th—2 = Qk—1 X Tk—1 + Tk-
Consider the ratio n/ry. Using the top two equations above, we can conclude
that

n_gm+r_ qoleir+72) + 1 — g+ (901 + 1)1 >3

T2 T2 T2 T2
where the last inequality comes from the fact that each ¢ is a positive integer and
because r; > 9. Note further that this inequality must also hold if n/ry is replaced
by m/rs or r;/r;+3 where this is defined because we can always shift our starting
point from n and m to r; and 7,41 and then apply the above argument.

It follows that n/r3syo = n/ra - ro/rs - .o - 35—1)42/T3(s)+2 > 35t1. On the
other hand the Euclidean Algorithm terminates when r, = 0 or equivalently, r, < 1
since the r’s will always be integers. Hence if s € N is such that n/rzs o > n, it
follows that the algorithm must terminate in at most 3s 4 2 steps. .. it suffices to
find s such that n/rssyo > 3Tt > n, which is to say s > logn/log3 — 1. Hence
the Euclidean algorithm will terminate in less then 3logn/log3 + 2 steps.



