MAT235 Assignment 3 Solutions

1.1: $302 = 15 \times 19 + 17$. \therefore the quotient is 15 and the remainder is 17. **1.2:** $-302 = -16 \times 19 + 2$. \therefore the quotient is -16 and the remainder is 2. **1.3:** $0 = 0 \times 19 + 0$. $\therefore q = 0, r = 0$. **1.4:** $2000 = 117 \times 17 + 11$. $\therefore q = 117, r = 11$. **1.5:** $2001 = 117 \times 17 + 12$. $\therefore q = 117, r = 12$. **1.6:** $2008 = 118 \times 17 + 2$. $\therefore q = 118, r = 2$.

2: As suggested in the hint, let $a \in \mathbb{Z}$ be an arbitrary integer and write a = 4q + r for $r, q \in \mathbb{Z}$, $0 \le r \le 3$. Then $a^2 = (4q + r)^2 = 16q^2 + 8qr + r^2 = 4k' + r^2$, where $k' = 4q^2 + 2qr$. If r is 0 or 1 we are done and if r = 2, then $4k' + 2^2 = 4(k'+1) = 4k$. Finally, if r = 3, then $4k' + 3^2 = 4(k'+2) + 1 = 4k + 1$. Hence a^2 can always be written as an integer multiple of 4, or 1 plus an integer multiple of 4.

3: Let a = 2, b = c = 1. Then clearly a|(b+c) but $a \not| b$ and $a \not| c$.

4: Subbing the root r into the given equation, we have $0 = r^2 + ar + b$. Rearranging, we get $-b = r^2 + ar = r(a + r)$. $\therefore r|b$ and the quotient is -(a + r).

5.1: Suppose (n, n + 2) = d. Writing n = dk and n + 2 = dk', their difference can be written as 2 = n + 2 - n = d(k' - k). $\therefore d|2$ and we conclude the only possibilities for d are 1 and 2 (Note that GCDs are always positive). To show both 1 and 2 are obtained for some n, check for $n \in \{1, 2\}$.

5.2: A similar argument as above shows d = (n, n + 6)|6. Hence $d \in \{1, 2, 3, 6\}$. Again, choose $n \in \{1, 2, 3, 6\}$ to show all such d can be obtained.

5.3: Again let d = (n, 2n + 1). Then d divides the difference 2n + 1 - n = n + 1. But now d divides n and n + 1, so d divides the difference n + 1 - n = 1. Hence d = 1.

6: We argue similarly to (5.3). a|n+2 and a|2n+18, so a divides n+16. Applying differences again, we get a|14. Since a is odd and greater than 1, we conclude a = 7. Choosing n = 5 shows that a = 7 is in fact possible.

7.1: We follow the Euclidean algorithm to find (a, b) and to construct elements $u, v \in \mathbb{Z}$ such that au + bv = (a, b).

$72 = 1 \times 56 + 16 56 = 3 \times 16 + 8 16 = 2 \times 8 + 0$	\Rightarrow	$8 = 56 - 3 \times 16$ = 56 - 3(72 - 1 × 56) = 4 × 56 - 3 × 72.
\therefore (56,72) = 8 and $u = 4, v = -3$. 7.2:		
$138 = 5 \times 24 + 18 24 = 1 \times 18 + 6 18 = 3 \times 6$	\Rightarrow	$6 = 24 - 1 \times 18$ = 24 - 1(138 - 5 × 24) = 6 × 24 - 138.

 $\therefore (24, 138) = 6$ and u = 6, v = -1.

 $227 = 1 \times 143 + 84$ $1 = 7 - 3 \times 2$ $= 7 - 3(9 - 7) = -3 \times 9 + 4 \times 7$ $143 = 1 \times 84 + 59$ $= -3 \times 9 + 4(25 - 2 \times 9) = 4 \times 25 - 11 \times 9$ $84 = 1 \times 59 + 25$ $\implies = 4 \times 25 - 11(59 - 2 \times 25) = -11 \times 59 + 26 \times 25$ $59 = 2 \times 25 + 9$ $25 = 2 \times 9 + 7$ $= -11 \times 59 + 26(84 - 59) = 26 \times 84 - 37 \times 59$ $= 26 \times 84 - 37(143 - 84) = -37 \times 143 + 63 \times 84$ $9 = 1 \times 7 + 2$ $7 = 3 \times 2 + 1$ $= -37 \times 143 + 63(227 - 143) = 63 \times 227 - 100 \times 143$ \therefore (143, 227) = 1 and u = -100, v = 63. 7.4: $314 = 1 \times 159 + 155$ $1 = 4 - 1 \times 3$ $= 4 - 1(155 - 38 \times 4) = -1 \times 155 + 39 \times 4$ $159 = 1 \times 155 + 4$ \implies = -1 × 155 + 39(159 - 155) = 39 × 159 - 40 × 155 $155 = 38 \times 4 + 3$ $4 = 1 \times 3 + 1$ $39 \times 159 - 40(314 - 159) = -40 \times 314 + 79 \times 159$ \therefore (314, 159) = 1 and u = -40, v = 79.

8:Assume a|c and b|c. In general it need not be the case that (ab)|c, for example take a = b = 4 and c = 8. However, suppose now that (a, b) = 1, we provide 2 proofs, one which requires the fundamental theorem of arithmetic and one that does not, that shows ab|c.

Proof 1: By the fundamental theorem of arithmetic, we can write $a = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_k^{\alpha_k}$ and $b = q_1^{\beta_1} \cdot q_2^{\beta_2} \cdot \dots \cdot q_t^{\beta_t}$, where the *p*'s and *q*'s are distinct primes and the α 's and β 's are natural numbers. By the condition on the GCD, it follows that none of the *q*'s can be the same prime as any of the *p*'s (Make sure you understand why). Since a|c and b|c, it follows that *c* has a prime decomposition of the form

$$c = \prod_{i=a}^{k} p_i^{\alpha_i} \prod_{j=1}^{t} q_j^{\beta_j} \prod_s l_s^{\gamma_j}$$

where the final product is over some finite set of primes raised to positive integer powers, which may or may not include any of the primes dividing a or b. Hence

$$c = ab \prod_{s} l_s^{\gamma_s}$$

and $\therefore (ab)|c$ when (a,b) = 1.

Proof 2: Since (a, b) = 1, we can find integers u, v such that 1 = ua + vb. Multiply both sides of this equation by c to get c = cua + cvb. Using the fact that $c = d \times b = d' \times a$ for some integers d, d', we can factor the right hand side of the above equation as c = a(cu + d'vb) = a(b(du + d'v)). Therefore c = ab(du + d'v) and hence ab|c.

9: There are obviously different solutions to this problem. Here is a method that admits a bound that is on the same order as the best possible (it is however not the best possible bound).

Consider applying the Euclidean algorithm to the pair of integers $n \ge m > 0$. We can consider the output as a pair of finite sequences of non-negative integers $\{r_k\}_{k=1}^t$ and $\{q_j\}_{j=0}^{t-1}$, where we have $r_1 > r_2 > ... > r_t = 0$, each $q_i > 0$ and

2

7.3:

 $n = q_0 \times m + r_1$ $m = q_1 \times r_1 + r_2$ and for k > 2 we have $r_{k-2} = q_{k-1} \times r_{k-1} + r_k.$

Consider the ratio n/r_2 . Using the top two equations above, we can conclude that

$$\frac{n}{r_2} = \frac{q_0 m + r_1}{r_2} = \frac{q_0 (q_1 r_1 + r_2) + r_1}{r_2} = q_0 + \frac{(q_0 q_1 + 1)r_1}{r_2} > 3$$

where the last inequality comes from the fact that each q is a positive integer and because $r_1 > r_2$. Note further that this inequality must also hold if n/r_2 is replaced by m/r_3 or r_j/r_{j+3} where this is defined because we can always shift our starting point from n and m to r_j and r_{j+1} and then apply the above argument.

It follows that $n/r_{3s+2} = n/r_2 \cdot r_2/r_5 \cdot \ldots \cdot r_{3(s-1)+2}/r_{3(s)+2} > 3^{s+1}$. On the other hand the Euclidean Algorithm terminates when $r_t = 0$ or equivalently, $r_t < 1$ since the r's will always be integers. Hence if $s \in \mathbb{N}$ is such that $n/r_{3s+2} > n$, it follows that the algorithm must terminate in at most 3s + 2 steps. \therefore it suffices to find s such that $n/r_{3s+2} > 3^{s+1} > n$, which is to say $s > \log n/\log 3 - 1$. Hence the Euclidean algorithm will terminate in less then $3 \log n/\log 3 + 2$ steps.