
MAT235 Assignment 3 Solutions

1.1: 302 = 15× 19 + 17. ∴ the quotient is 15 and the remainder is 17.
1.2: −302 = −16× 19 + 2. ∴ the quotient is -16 and the remainder is 2.
1.3: 0 = 0× 19 + 0. ∴ q = 0, r = 0.
1.4: 2000 = 117× 17 + 11. ∴ q = 117, r = 11.
1.5: 2001 = 117× 17 + 12. ∴ q = 117, r = 12.
1.6: 2008 = 118× 17 + 2. ∴ q = 118, r = 2.

2: As suggested in the hint, let a ∈ Z be an arbitrary integer and write a = 4q + r
for r, q ∈ Z, 0 ≤ r ≤ 3. Then a2 = (4q + r)2 = 16q2 + 8qr + r2 = 4k′ + r2, where
k′ = 4q2 +2qr. If r is 0 or 1 we are done and if r = 2, then 4k′+22 = 4(k′+1) = 4k.
Finally, if r = 3, then 4k′ + 32 = 4(k′ + 2) + 1 = 4k + 1. Hence a2 can always be
written as an integer multiple of 4, or 1 plus an integer multiple of 4.

3: Let a = 2, b = c = 1. Then clearly a|(b+ c) but a 6 |b and a 6 |c.

4: Subbing the root r into the given equation, we have 0 = r2+ar+b. Rearranging,
we get −b = r2 + ar = r(a+ r). ∴ r|b and the quotient is −(a+ r).

5.1: Suppose (n, n+ 2) = d. Writing n = dk and n+ 2 = dk′, their difference can
be written as 2 = n+2−n = d(k′−k). ∴ d|2 and we conclude the only possibilities
for d are 1 and 2 (Note that GCDs are always positive). To show both 1 and 2 are
obtained for some n, check for n ∈ {1, 2}.
5.2: A similar argument as above shows d = (n, n + 6)|6. Hence d ∈ {1, 2, 3, 6}.
Again, choose n ∈ {1, 2, 3, 6} to show all such d can be obtained.
5.3: Again let d = (n, 2n + 1). Then d divides the difference 2n + 1 − n = n + 1.
But now d divides n and n + 1, so d divides the difference n + 1 − n = 1. Hence
d = 1.

6: We argue similarly to (5.3). a|n+2 and a|2n+18, so a divides n+16. Applying
differences again, we get a|14. Since a is odd and greater then 1, we conclude a = 7.
Choosing n = 5 shows that a = 7 is in fact possible.

7.1: We follow the Euclidean algorithm to find (a, b) and to construct elements
u, v ∈ Z such that au+ bv = (a, b).

72 = 1× 56 + 16 8 = 56− 3× 16
56 = 3× 16 + 8 =⇒ = 56− 3(72− 1× 56)
16 = 2× 8 + 0 = 4× 56− 3× 72.

∴ (56, 72) = 8 and u = 4, v = −3.
7.2:

138 = 5× 24 + 18 6 = 24− 1× 18
24 = 1× 18 + 6 =⇒ = 24− 1(138− 5× 24)
18 = 3× 6 = 6× 24− 138.

∴ (24, 138) = 6 and u = 6, v = −1.
1



2

7.3:

227 = 1× 143 + 84 1 = 7− 3× 2
143 = 1× 84 + 59 = 7− 3(9− 7) = −3× 9 + 4× 7
84 = 1× 59 + 25 = −3× 9 + 4(25− 2× 9) = 4× 25− 11× 9
59 = 2× 25 + 9 =⇒ = 4× 25− 11(59− 2× 25) = −11× 59 + 26× 25
25 = 2× 9 + 7 = −11× 59 + 26(84− 59) = 26× 84− 37× 59
9 = 1× 7 + 2 = 26× 84− 37(143− 84) = −37× 143 + 63× 84
7 = 3× 2 + 1 = −37× 143 + 63(227− 143) = 63× 227− 100× 143

∴ (143, 227) = 1 and u = −100, v = 63.
7.4:

314 = 1× 159 + 155 1 = 4− 1× 3
159 = 1× 155 + 4 = 4− 1(155− 38× 4) = −1× 155 + 39× 4
155 = 38× 4 + 3 =⇒ = −1× 155 + 39(159− 155) = 39× 159− 40× 155
4 = 1× 3 + 1 39× 159− 40(314− 159) = −40× 314 + 79× 159

∴ (314, 159) = 1 and u = −40, v = 79.

8:Assume a|c and b|c. In general it need not be the case that (ab)|c, for example
take a = b = 4 and c = 8. However, suppose now that (a, b) = 1, we provide
2 proofs, one which requires the fundamental theorem of arithmetic and one that
does not, that shows ab|c.
Proof 1: By the fundamental theorem of arithmetic, we can write a = pα1

1 · p
α2
2 ·

... · pαk

k and b = qβ1
1 · q

β2
2 · ... · q

βt

t , where the p’s and q’s are distinct primes and
the α’s and β’s are natural numbers. By the condition on the GCD, it follows that
none of the q’s can be the same prime as any of the p’s (Make sure you understand
why). Since a|c and b|c, it follows that c has a prime decomposition of the form

c =
k∏
i=a
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i
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q
βj

j

∏
s

lγs
s

where the final product is over some finite set of primes raised to positive integer
powers, which may or may not include any of the primes dividing a or b. Hence

c = ab
∏
s

lγs
s

and ∴ (ab)|c when (a, b) = 1.
Proof 2: Since (a, b) = 1, we can find integers u, v such that 1 = ua+vb. Multiply
both sides of this equation by c to get c = cua + cvb. Using the fact that c =
d× b = d′× a for some integers d, d′, we can factor the right hand side of the above
equation as c = a(cu+d′vb) = a(b(du+d′v)). Therefore c = ab(du+d′v) and hence
ab|c.

9: There are obviously different solutions to this problem. Here is a method that
admits a bound that is on the same order as the best possible (it is however not
the best possible bound).

Consider applying the Euclidean algorithm to the pair of integers n ≥ m > 0.
We can consider the output as a pair of finite sequences of non-negative integers
{rk}tk=1 and{qj}t−1

j=0, where we have r1 > r2 > ... > rt = 0, each qi > 0 and
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n = q0 ×m+ r1
m = q1 × r1 + r2
and for k > 2 we have
rk−2 = qk−1 × rk−1 + rk.

Consider the ratio n/r2. Using the top two equations above, we can conclude
that

n

r2
=
q0m+ r1

r2
=
q0(q1r1 + r2) + r1

r2
= q0 +

(q0q1 + 1)r1
r2

> 3

where the last inequality comes from the fact that each q is a positive integer and
because r1 > r2. Note further that this inequality must also hold if n/r2 is replaced
by m/r3 or rj/rj+3 where this is defined because we can always shift our starting
point from n and m to rj and rj+1 and then apply the above argument.

It follows that n/r3s+2 = n/r2 · r2/r5 · ... · r3(s−1)+2/r3(s)+2 > 3s+1. On the
other hand the Euclidean Algorithm terminates when rt = 0 or equivalently, rt < 1
since the r’s will always be integers. Hence if s ∈ N is such that n/r3s+2 > n, it
follows that the algorithm must terminate in at most 3s+ 2 steps. ∴ it suffices to
find s such that n/r3s+2 > 3s+1 > n, which is to say s > log n/ log 3 − 1. Hence
the Euclidean algorithm will terminate in less then 3 log n/ log 3 + 2 steps.


