Math 235 (Fall 2009): Assignment 2 Solutions

@. It is clearly true in the case

1: Let us prove by induction that f(0,n) =
n =0.

Assume it holds for n. Consider the diagonals in the second list (e.g. the diagonal
6,7,8,9). Notice that, by construction, the first diagonal (0) has 1 element, the
second (1,2) has 2 elements, the third (3,4, 5) has 3 elements and, in general, the
n-th diagonal has n elements. f(0,7n) is the number at the top part of the n + 1-th
diagonal and f(0,n + 1) is the number at the top part of the n + 2-th diagonal.
Hence, f(0,n +1) = f(0,n) + (n+1) = ”("2“) + 2(n2+1) = (n+1)2("+2) and this
finishes the induction.

By construction it is easy to see that f(1,n) = f(0,n+1)+1, f(2,n) = f(1,n+

D+1=f(0,n+2)+14+1 = f(0,n+2)+2, f(3,n) = f(2,n+1)+1 = f(1,n+2)+2 =
f(0,n 4 3) 4+ 3 and, in general, f(m,n) = f(0,n+m)+m = W+m

Now we shall prove that f is really bijective. Notice that, by deﬁnltlon of f, it
satisfies f(m,n) = f(0,n+m)+m and f(O,n+m+1) = f(n+m70) + 1. Hence,
fO,n4+m) < f(l,n+m—1) < f(2,n+m—2) < ... < f(m,n) < .. < f(n+m,0) <
f(0,n+m+1). Not only this but each term in the previous inequalities are 1 plus
the previous term. Hence, it is clear that f is injective and surjective.

2: By the definition, |A;| = |A2| means that there is a bijective function f: A; —
As. Since |B;| = |Bs|, we also have a bijective function g : B; — Ba.

We want to show that |A; x By| = |As x Bs|, that is, we want to prove that
there is a bijective function h : Ay X By — Ay X Bs.

Define the function h(a1,b1) := (f(a1),g(b1)). Let us prove h is bijective.

h is injective: Infact, if h(a1,b1) = h(a}, b)), then (f(a1),g9(b1)) = (f(a}), g(b})),
ie, f(a1) = f(a}) and g(b1) = ¢g(b}). But since f and g are injective functions,
ay = ay and by = b}, that is, (a1,b1) = (af, b)).

h is surjective: Let (ag,bs) € As X Bag, i.e., az € Ay and by € Bs. Since f and
g are surjective functions, there is a; € A; and by € By such that f(a;) = as and
g(b1) = ba. Then, by definition of h, we have h(a1,b1) = (az, ba).

3: By Cantor—Bernstein—Schroeder theorem, it is enough to show two injective
functions f: N —-Q, g: Q — N.

Define f(n) :=n. Clearly f is injective.

Before defining g we will define an injective function h: Q — Z x Z. If x € Q,
there are unique a € Z and b € N\{0} such that z = ¢ (why?). Define h(z) := (a,b).
It is easy to see that h is injective.

By proposition 4.0.5 (in the notes), we have that |Z| = |N|. Hence, by exercise
2, we have |Z x Z| = |N x N|. Now, using proposition 4.0.6 we conclude that
|Z x Z| = |N|. Hence there is a bijective (hence, injective) function j : Z x Z — N.

Now define g := j o h: Q — N. Since both h and j are injective, g is injective.

4: There is a missing hypothesis in this exercise: By C A; and By C As. Now,
consider the case A} = Ay = By = Z, By = N. Clearly |A;| = |B;|. By proposition
4.0.5 in the IlO‘EGS7 |A2| = |BQ| But since Al\Bl = @ and AQ\BQ 7£ @, |A1\Bl| 7é
|A2\Bs| (why?).
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5: Tt is easy to see that f: A — 24 defined by f(a) := {a} is an injection.

Now suppose there is a bijection g : 24 — A. Define U := {a € A : a ¢ g(a)}.
Since g is a bijection and U € 24, U = g(ag) for some agy € A.

Is ag in U? If ag € U, ag ¢ g(ap) = U (by the definition of U). If ay ¢ U, since
U = g(ap), we get that ag ¢ g(ag) and, by definition of U, ag € U.

Therefore, ag € U < ag ¢ U. This is a contradiction. Therefore, such a g does
not exist.

6: Fact: Let z € C; then |z| = 0 if and only if z = 0. In fact, let z = a + bi. Then
|zl =05 |22=0&a®>+ > =04 (a,b) = (0,0) < z = 0.

Now, since |z1]|22] = |z122| = 0, then |z1| = 0 or |22| = 0. In the first case we
get, by the fact, z; = 0. In the second case, z5 = 0.

7: We know that all the roots of the equation az? + bz + ¢ = 0 are given by

—btybi-dac V21::_4“. Hence, the equation has only one solution if and only if b — 4ac = 0,
ie., b2 = 4ac.

Now, 22 + (1+ 6i)x + 1 = z has a unique solution if and only if 2% + (1 + 6i)z +

1 —z) = 0 has a unique solution. And this happens when (1 +6i)% = 4(1 — 2), i.e.,

_ (1+64)* _ 35-12 _ 39-12¢
T tl==27=+1=>=7=

z =

8: Let 2 = x+bi. Then R(2)? = Im(z)? if and only if 22 = 42, i.e., (x+y)(x—y) =
2? —y? = 0. Moreover, |z| <1 |2|2 <1 & 22 + y? < 1.Hence, on the complex
plane, the points z such that R(z)? = I'm(z)? and |z| < 1 form the segments (that
lie inside the closed unit disc) of two perpendicular lines that meet at the point 0
(one line passes through 1 + 4 and the other passes through 1 — ).



