
Math 235 (Fall 2009): Assignment 2 Solutions

1: Let us prove by induction that f(0, n) = n(n+1)
2 . It is clearly true in the case

n = 0.
Assume it holds for n. Consider the diagonals in the second list (e.g. the diagonal

6, 7, 8, 9). Notice that, by construction, the first diagonal (0) has 1 element, the
second (1, 2) has 2 elements, the third (3, 4, 5) has 3 elements and, in general, the
n-th diagonal has n elements. f(0, n) is the number at the top part of the n + 1-th
diagonal and f(0, n + 1) is the number at the top part of the n + 2-th diagonal.
Hence, f(0, n + 1) = f(0, n) + (n + 1) = n(n+1)

2 + 2(n+1)
2 = (n+1)(n+2)

2 and this
finishes the induction.

By construction it is easy to see that f(1, n) = f(0, n+ 1) + 1, f(2, n) = f(1, n+
1)+1 = f(0, n+2)+1+1 = f(0, n+2)+2, f(3, n) = f(2, n+1)+1 = f(1, n+2)+2 =
f(0, n + 3) + 3 and, in general, f(m, n) = f(0, n + m) + m = (n+m)(n+m+1)

2 + m.
Now we shall prove that f is really bijective. Notice that, by definition of f , it

satisfies f(m, n) = f(0, n + m) + m and f(0, n + m + 1) = f(n + m, 0) + 1. Hence,
f(0, n+m) < f(1, n+m−1) < f(2, n+m−2) < ... < f(m, n) < ... < f(n+m, 0) <
f(0, n + m + 1). Not only this but each term in the previous inequalities are 1 plus
the previous term. Hence, it is clear that f is injective and surjective.

2: By the definition, |A1| = |A2| means that there is a bijective function f : A1 →
A2. Since |B1| = |B2|, we also have a bijective function g : B1 → B2.

We want to show that |A1 × B1| = |A2 × B2|, that is, we want to prove that
there is a bijective function h : A1 ×B1 → A2 ×B2.

Define the function h(a1, b1) := (f(a1), g(b1)). Let us prove h is bijective.
h is injective: In fact, if h(a1, b1) = h(a′1, b

′
1), then (f(a1), g(b1)) = (f(a′1), g(b′1)),

i.e., f(a1) = f(a′1) and g(b1) = g(b′1). But since f and g are injective functions,
a1 = a′1 and b1 = b′1, that is, (a1, b1) = (a′1, b

′
1).

h is surjective: Let (a2, b2) ∈ A2 × B2, i.e., a2 ∈ A2 and b2 ∈ B2. Since f and
g are surjective functions, there is a1 ∈ A1 and b1 ∈ B1 such that f(a1) = a2 and
g(b1) = b2. Then, by definition of h, we have h(a1, b1) = (a2, b2).

3: By Cantor–Bernstein–Schroeder theorem, it is enough to show two injective
functions f : N→ Q, g : Q→ N.

Define f(n) := n. Clearly f is injective.
Before defining g we will define an injective function h : Q → Z × Z. If x ∈ Q,

there are unique a ∈ Z and b ∈ N\{0} such that x = a
b (why?). Define h(x) := (a, b).

It is easy to see that h is injective.
By proposition 4.0.5 (in the notes), we have that |Z| = |N|. Hence, by exercise

2, we have |Z × Z| = |N × N|. Now, using proposition 4.0.6 we conclude that
|Z× Z| = |N|. Hence there is a bijective (hence, injective) function j : Z× Z→ N.

Now define g := j ◦ h : Q→ N. Since both h and j are injective, g is injective.

4: There is a missing hypothesis in this exercise: B1 ⊆ A1 and B2 ⊆ A2. Now,
consider the case A1 = A2 = B1 = Z, B2 = N. Clearly |A1| = |B1|. By proposition
4.0.5 in the notes, |A2| = |B2|. But since A1\B1 = ∅ and A2\B2 6= ∅, |A1\B1| 6=
|A2\B2| (why?).
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5: It is easy to see that f : A→ 2A defined by f(a) := {a} is an injection.
Now suppose there is a bijection g : 2A → A. Define U := {a ∈ A : a /∈ g(a)}.

Since g is a bijection and U ∈ 2A, U = g(a0) for some a0 ∈ A.
Is a0 in U? If a0 ∈ U , a0 /∈ g(a0) = U (by the definition of U). If a0 /∈ U , since

U = g(a0), we get that a0 /∈ g(a0) and, by definition of U , a0 ∈ U .
Therefore, a0 ∈ U ⇔ a0 /∈ U . This is a contradiction. Therefore, such a g does

not exist.

6: Fact : Let z ∈ C; then |z| = 0 if and only if z = 0. In fact, let z = a + bi. Then
|z| = 0⇔ |z|2 = 0⇔ a2 + b2 = 0⇔ (a, b) = (0, 0)⇔ z = 0.

Now, since |z1||z2| = |z1z2| = 0, then |z1| = 0 or |z2| = 0. In the first case we
get, by the fact, z1 = 0. In the second case, z2 = 0.

7: We know that all the roots of the equation ax2 + bx + c = 0 are given by
−b±

√
b2−4ac
2a . Hence, the equation has only one solution if and only if b2 − 4ac = 0,

i.e., b2 = 4ac.
Now, x2 + (1 + 6i)x + 1 = z has a unique solution if and only if x2 + (1 + 6i)x +

(1− z) = 0 has a unique solution. And this happens when (1 + 6i)2 = 4(1− z), i.e.,
z = − (1+6i)2

4 + 1 = 35−12i
4 + 1 = 39−12i

4 .

8: Let z = x+bi. Then R(z)2 = Im(z)2 if and only if x2 = y2, i.e., (x+y)(x−y) =
x2 − y2 = 0. Moreover, |z| ≤ 1 ⇔ |z|2 ≤ 1 ⇔ x2 + y2 ≤ 1.Hence, on the complex
plane, the points z such that R(z)2 = Im(z)2 and |z| ≤ 1 form the segments (that
lie inside the closed unit disc) of two perpendicular lines that meet at the point 0
(one line passes through 1 + i and the other passes through 1− i).


