
MAT235 Assignment 11 Solutions

5: Clearly the identity lies in the intersection of 2 subgroups. If a and b also lie in
the intersection, then so does a−1 and ab since H1 and H2 are subgroups and hence
closed under inversion and multiplication. Therefore so to is their intersection,
hence H1 ∩H2 is a subgroup.

12: Since < a >=< b >, we must have a = bn and b = am for some integers m
and n. If a fixes some point s ∈ S, then clearly bs = ams = s and so b also fixes s.
Likewise a fixes s if b does. Hence I(a) = I(b).

13: Recall that for s ∈ S we have |Orb(s)| = |G|/|Stab(s)|. Let s1, . . . , sk be
representatives of all the disjoint orbits in S. Then we have

N =
k∑

i=1

|Orb(si)| =
k∑

i=1

|G|/|Stab(si)|

Notice that every term in the sum on the right must be a power of p between 0
and r since pr is the size of the group. It follows that if S has no fixed point (ie.
no point for which |Stab(s)| = |G|, then every term in the sum is a positive power
of p and not 1. But this would imply the entire sum, and hence N , is divisible by
p, giving us a contradiction.

Symmetries of a cube: (i) Note that every symmetry sends a face to a face, of
which there are 6 for a cube, and if every face is fixed, then the symmetry is trivial.
Since for every pair of faces, it is obvious that there is some permutation that sends
one face to another, the orbit of any face has 6 elements in it and hence it suffices
to find the number of symmetries that fix some given face (by lemma 30.2.1 in the
notes, |G| = |Orb(s)||Stab(s)|). Each face is a square, and there are 8 symmetries
of a square (4 rotations and 4 reflections, the D4 group). It is easy to see that
each symmetry of a square face can be extended to a unique symmetry of the cube;
any rotation can be extended to a rotation about an axis through the cube by the
same degree, and any reflection can be extended to a reflection through the unique
plane that contains the line of reflection and is perpendicular to the face. It follows
there are 6× 8 = 48 symmetries for the cube. Note that another approach to this
problem is to consider vertices instead of faces.

(ii) There are no symmetries of order 5 because 5 does not divide 48. Again
considering our group as a subset of S6 (by its faithful action on the faces), we can
consider the symmetry σ that flips the cube through a plane that runs parallel to
two faces, then σ = (16) for a certain labeling of the faces where 1 and 6, 2 and 5,
3 and 4 are opposite faces. We can also consider τ as the symmetry that rotates
around an axis collinear with the diagonal of some pair of opposite vertices. Again
τ = (123)(456) for the same labeling. Composing στ = (123645) is an element of
order 6.

(iii) There are a number of ways to show that there are 24 rotations. One way
is to recall Lagrange’s theorem, ie. that the order of a subgroup must divide the
order of the group. Since it is clear that not every symmetry is a rotation (ie. not
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orientation preserving) it is enough to construct 17 explicit rotations (48 /3 = 16)
to prove that there must be 24 rotations total.

(iv) Realization as a subgroup of S6 is related to the solution to (i), where it was
noted that each permutation acts on the faces. It is clear that if a symmetry fixes
every face, then it fixes the cube and must be the identity. By labeling the faces 1
through 6, we can construct an explicit injective homomorphism from G to S6 by
considering each element of G as a permutation by how it permutes the numbers
corresponding to the faces (it is an injection because if a symmetry fixes every face,
it must be the identity). There is no subgroup of order 48 in S5 (Lagrange). To
realize H as a subgroup of S4, consider the action of H on the diagonals connecting
the opposite vertices of the cube (there are 4 such diagonals so label them 1 through
4). It is easy to show that there are rotations (ie. elements of H) that act as 3
cycles and rotations that act as 4 cycles on these diagonals if we proceed as above
in realizing these rotations as permutations. Argue that all such elements generate
the whole group S4, which has the same order as H.

1 (i) We use the CFF with the group Z/12Z and S the number of all possible
painted roulettes (so |S| =

(
12
7

)
×
(
5
2

)
= 792× 10 = 7920). Note that from problem

13 above, if < a >=< b > then I(a) = I(b) so it is enough to find I(a) for
a ∈ {0, 1, 2, 3, 4, 6}, where I(a) is the number of elements of S fixed by the action
of a. Clearly I(0) = |S| = 7920. Clearly I(1) = 0 because for i to fix a roulette,
every wedge would have to be the same. By the above remark, it follows that
I(5) = I(7) = I(11) are also all 0. Likewise I(2) = I(10) must be zero because
otherwise there would be at most 2 colours. For 3 to fix an element, every colour
appearing would have to be divisibly by 4, and similarly for 4 or 6 to fix an element,
every colour appearing would have to be divisibly by 3 or 2 respectively. Since this
is not the case, we get that I(n) = 0 for all n except 0. Hence the number of orbits
by the CFF is 7920/12 = 660.

(ii) We proceed similarly as above, except now the group of interest is D12.
Again I(e) = |S| = 7920 and I(yn) = 0 for 1 ≤ n ≤ 11 because this action is
the same as the action calculated for n above. It remains to consider xyn for
0 ≤ n ≤ 11, where say x is flipping through the axis that intersects stone 12 and
stone 6 (so x =(1 11)(2 10)(3 9)(4 8)(5 7)). Notice that xyn for n even are all
flipping through axes that intersect two stones, (ie. 5 disjoint transpositions) and
xyn for n odd are all flipping through axis that lie between the stones (ie. 6 disjoint
transpositions). It follows that I(xyn) = 0 for n odd because for such an element
to fix a necklace, every colour would have to appear an even number of times. For
x to fix a necklace, we must have that stones 12 and 6 must be either blue or green,
with each colour appearing once (this is again because of a parity argument like
the one above). The stones from 1 through 5 must consist of 1 red, 1 blue and
3 green, and these choices determine a unique arrangement of stones fixed by x.
Hence I(x) = 2 ×

(
5
1

)
×
(
4
1

)
= 40. Since I(xyn) = I(x) for all n even (there is an

obvious bijection between the elements that they fix), we have

N = 1/24× (7920 + 40× 6) = 340.
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2 (i) Again Z/12Z acts on the set S of all possible colourings of roulettes and
|S| =

(
12
2

)
×
(
10
4

)
= 13860. As before I(0) = 13860, I(1) = I(5) = I(7) = I(11) = 0,

I(2) = I(10) = 0, I(3) = I(9) = 0 and I(4) = I(8) = 0. Finally, 6 as an action
on 12 elements looks like 6 disjoint transpositions and so we can consider each
transposition as a pair that must share the same colour and for which 1 pair must
be red, 2 pairs blue and 3 pairs green. Thus there are

(
6
1

)
×
(
5
2

)
= 60 possible

pairings. Hence the number of distinct roulettes (equivalently the number of orbits
of S under the above action) is

N = 1/12× (13860 + 60) = 1160.

2 (ii) As before we have I(e) = 13860, I(y6) = 60 and I(yn) = 0 for n 6= 0, 6. We are
again left with considering the two different cases of flipping. For xyn with n even
and x as above, we have 5 disjoint transpositions. There are 3 subcases, depending
on the colouring of the stones that the reflection axis passes through. Case 1 is
that these two stones are coloured red, then we can colour the remaining pairs in(
5
2

)
= 10 ways. Case 2 is that these stones are blue, then there are

(
5
1

)
×
(
4
1

)
= 20

choices. Finally if the two stones on the axis are green, we have
(
5
1

)(
4
2

)
= 30 choices.

In total there are 10 + 20 + 30 = 60 arrangements that are fixed by xyn for each
even n. For xyn and n odd, we have 6 disjoint transpositions corresponding to 6
pairs that must have the same colouring. Hence the number of elements fixed by
such an xyn is

(
6
1

)(
5
2

)
= 60. We conclude

N = 1/24(13860 + 6× 60 + 6× 60 + 60) = 610.

3 (i) Similarly as above, except now we have Z/14Z and the order of S is
(
14
2

)(
12
4

)(
8
3

)
=

2522520. As in (1), the common divisor of the number of stones is 1, and we can
conclude that only the trivial group element fixes anything in S. It follows that

N = 1/14× 2522520 = 180180.

3 (ii) We are now considering the group action of D14, a group of order 28. As
before, the previous result applies so that I(yn) is 0 unless n = 0 in which case
I(yn) = |S|. Assume x is a reflection about an axis running through 14 and 7, so is
represented in S14 as 6 disjoint transpositions. There are two colours that appear
an odd number of times, and so as in (1), I(xyn) = 0 if n is odd. If n is even, we
must have both green and black appearing as colours of the two stones intersecting
the axis of reflection, and for the other 6 pairs of stones, we have

(
6
1

)(
5
2

)(
3
1

)
= 180

choices. Hence I(xyn) = 2× 180 = 360 for each n even. We conclude

N = 1/28(2522520 + 7× 360) = 90180.


