ASSIGNMENT 4 - MATH235, FALL 2009

Submit by 16:00, Monday, October 5 (use the designated mailbox in Burnside Hall, 10th floor).

1. The least common multiple of nonzero integers a, b is the smallest positive integer m such that a|m and b|m. We denote it by lcm(a, b) or [a, b]. Prove that:

- (1) If a|k and b|k then [a, b]|k.
- (2) $[a, b] = \frac{ab}{(a,b)}$ if a > 0, b > 0.

(You may want to prove at the same time exercise (2), although it is possible to solve this question without appeal to the Fundamental theory of arithmetic.)

2. Let $a = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$ and $b = p_1^{s_1} p_2^{s_2} \cdots p_k^{s_k}$, where p_1, p_2, \dots, p_k are distinct positive primes and each $r_i, s_i \ge 0$. Prove that

(1) $(a, b) = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k}$, where $n_i = \min(r_i, s_i)$. (2) $[a, b] = p_1^{t_1} p_2^{t_2} \cdots p_k^{t_k}$, where $t_i = \max(r_i, s_i)$.

3. Prove or disprove: If n is an integer and n > 2, then there exists a prime p such that n .

4. Find all the primes between 1 and 150. The solution should consist of a list of all the primes + giving the last prime used to sieve + explanation why you didn't have to sieve by larger primes.

5. Prove that

(1) $\sqrt{2+\sqrt{3}}$ is irrational;

(2) $\sqrt{2} + \sqrt{3}$ is irrational;

(3) $\sqrt[3]{p}$ is irrational, if p is a prime.

6. A relation can be either reflexive or not, symmetric of not, transitive or not. This gives a priori 8 possibilities (e.g., reflexive, non-symmetric, transitive). For each possibility either give an example of such a relation, or indicate why this possibility doesn't occur.

7. Consider the relation on \mathbb{Z} defined by $a \sim b$ if a|b. Is it reflexive? symmetric? transitive?

8. Calculate the following expressions, without using a calculator:

- (1) 1001 * 32 + 35 * 7921 modulo 2.
- (2) 101 * 100 * 99 67 modulo 102.
- (3) $7^{23} 9^{24}$ modulo 8.
- (4) 2^{64} modulo 19. (Hint: calculate 2^2 , 2^4 , 2^8 , 2^{16} , ... by repeated squaring.)
- (5) 2⁶⁶ modulo 19.